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Overcoming performance and convergence issues of discrete transform based

modeling of crosslinking classical and reversible deactivated radical

polymerizations

M.R.P.F.N. Costa!", R.C.S. Dias’
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*Corresponding author: Méario Rui P.F.N. R Costa, Email: mrcosta@fe.up.pt

Population balances of polymer species in terms of discrete transforms with respect to counts of groups
lead to tractable first order partial differential equations when all rate constants are independent of chain
length and loop formation is negligible [1]. Average molecular weights in the absence of gelation are long
known to be readily found through integration of an initial value problem. The extension to size
distribution prediction is also feasible, but its performance is often lower to the one provided by methods
based upon real chain length domain [2]. Moreover, the absence of a good starting procedure and a higher
numerical sensitivity has decisively impaired its application to non-linear reversibly deactivated
polymerizations, namely NMRP [3]. Here, a new kind of Picard iteration applied to the two point
boundary value problems (2PBVP) arising from the solution of population balance by the method of
characteristics was introduced. It can lead to initial estimates for standard numerical methods for 2PBVP
or as a standalone procedure. CPU time is about 20 times lower than for case studies in [2]. The annoying
usability and convergence problems previously found when tackling non-linear NMRP also belong to the
past, as shown by the successful calculation of gel fraction and sol average molecular weight shown in
Figures 1 and 2. Compared to predictions shown in Fig. 2, experimental results in [4] show a general
qualitative agreement, with a delayed gel time (at conversion 0.5 rather than 0.3), which is not unexpected

since loop formation reactions have been neglected in these calculations.
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Fig. 1: 84 mmol/L BPO + 100 mmol/L TEMPO at the start Fig. 2: 34 mmol/L TEMPO adduct at the start

Predicted monomer conversion, gel weight fraction and sol M, vs. time for batch bulk styrene + 1.6% mol 4,4'-
divinylbiphenyl at 125 °C
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