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ABSTRACT: Variations in the gene encoding uridine
diphosphate glucuronosyltransferase 1A1 (UGT1A1) are
particularly important because they have been associated
with hyperbilirubinemia in Gilbert’s and Crigler–Najjar
syndromes as well as with changes in drug metabolism.
Several variants associated with these phenotypes are non-
synonymous single-nucleotide polymorphisms (nsSNPs).
Bioinformatics approaches have gained increasing impor-
tance in predicting the functional significance of these
variants. This study was focused on the predictive ability
of bioinformatics approaches to determine the pathogenic-
ity of human UGT1A1 nsSNPs, which were previously
characterized at the protein level by in vivo and in
vitro studies. Using 16 Web algorithms, we evaluated 48
nsSNPs described in the literature and databases. Eight
of these algorithms reached or exceeded 90% sensitivity
and six presented a Matthews correlation coefficient above
0.46. The best-performing method was MutPred, followed
by Sorting Intolerant from Tolerant (SIFT). The predic-
tion measures varied significantly when predictors such
us SIFT, polyphen-2, and Prediction of Pathological Mu-
tations on Proteins were run with their native alignment
generated by the tool, or with an input alignment that was
strictly built with UGT1A1 orthologs and manually cu-
rated. Our results showed that the prediction performance
of some methods based on sequence conservation analysis
can be negatively affected when nsSNPs are positioned
at the hypervariable or constant regions of UGT1A1
ortholog sequences.
Hum Mutat 36:1215–1225, 2015. C© 2015 Wiley Periodicals, Inc.

KEY WORDS: UGT1A1; nsSNPs; bioinformatics; geno-
type; phenotype; protein function

Introduction
Uridine diphosphate glucuronosyltransferase (UGT1A1) is an

enzyme involved in the metabolism and detoxification of numer-
ous xenobiotic and endogenous compounds, including bilirubin
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[Strassburg et al., 2008]. To date, more than 300 single-nucleotide
polymorphisms (SNPs) within the UGT1A1 gene (MIM #191740;
HUGO: 12530) have been identified. Many of these variants have
been associated with human diseases; however, in some cases, the ab-
sence of functional studies has led to their pathogenicity remaining
unclear. As with other genes, UGT1A1 presents many nonsynony-
mous SNPs (nsSNPs) in which genotype–phenotype correlations are
not established. Some of them have been associated with Gilbert’s
syndrome (GS) [Huang et al., 2000; Kaniwa et al., 2005; Costa 2006;
Farheen et al., 2006] and with Crigler–Najjar syndrome (CNS) types
I and II [Labrune et al., 1994; Seppen et al., 1994; Ciotti et al., 1998;
Labrune et al., 2002; Yusoff et al., 2006; Sneitz et al., 2010], as
well as with changes in drug clearance and/or response [Sai et al.,
2004]. GS is a benign and common condition characterized by a
deficiency in bilirubin conjugation due to reduced activity of the
enzyme glucuronyltransferase (approximately 30%), which causes
moderate hyperbilirubinemia [Huang et al., 2000; Costa, 2006]. The
most common variant associated with GS is the TA duplication at
position c.-41 -40dupTA (variant UGT1A1∗28) of the start codon in
the promoter region of the UGT1A1 gene [Bosma et al., 1995]. CNS
types I and II are also associated with mutations in the UGT1A1
gene, which lead to the absence or severe reduction of UGT1A1 en-
zyme activity [Deiss, 1999; Costa, 2006]. The clinical classification
of the two CNS types is also based on the response to phenobarbital
administration, which induces UGT1A1 enzyme activity, and by the
presence of kernicterus [Costa, 2006].

As the functional evaluation of nsSNPs is time-consuming and
expensive, bioinformatics tools have gained increasing importance
and have been used to guide additional functional studies. These
methods can be divided into two main categories: sequence-based
approaches and sequence- and structure-based methods. The for-
mer uses multiple sequence alignments (MSA) and incorporates
different methodologies to measure residue conservation, namely,
Sorting Intolerant from Tolerant (SIFT) [Kumar et al., 2009], Predic-
tion of Pathological Mutations on Proteins (PMUT) [Ferrer-Costa
et al., 2005], and multivariate analysis of protein polymorphism
(MAPP) [Stone and Sidow, 2005]. These tools assume that func-
tional SNPs occur at evolutionarily conserved sites and that the
majority of nsSNP are functionally neutral [Ng and Henikoff, 2006;
Tavtigian et al., 2006]. Thus, the prediction of a SNP’s functional
effect is created based on conservation and variation in a specific
position. The latter group uses sequence and structure features,
which predict the possible impact of an amino acid substitution.
Examples of this type of program include polymorphism phenotyp-
ing, version-2 (Polyphen-2) [Adzhubei et al., 2010] and molecular
phenotyping of coding nsSNPs (SNPeffect) [Reumers et al., 2006].
Some structure-based methods are generally more reliable when the
three-dimensional (3D) structure of the protein is considered and

C© 2015 WILEY PERIODICALS, INC.



the nsSNPs are classified based on size, polarity, and protein stability
changes. Nevertheless, the use of these methods might be limited due
to the lack of protein structural information. However, these predic-
tion methods can, to some extent, analyze one sequence and mod-
ulate substitutions in the structure of a homologous protein rather
than in the exact protein structure of interest. The nsSNPs func-
tional prediction methods can also incorporate annotations from
the Swiss-Prot database or use information from other prediction
programs to identify transmembrane regions or secondary struc-
tures [Wang and Moult, 2001; Ferrer-Costa et al., 2004]. Moreover,
the consensus deleteriousness (CONDEL) tool combines different
Web tool outputs into a unified classification [Gonzalez-Perez et al.,
2011]. Most of the sequence-based amino acid substitutions that
prediction methods accept as input include a protein sequence or
protein identifier (ID). Afterwards, the search is performed against
a system databases to find homologous sequences and produce an
MSA [Karchin et al., 2005; Ng and Henikoff, 2006; Jordan et al.,
2010; Thusberg et al., 2011]. To automatically generate MSAs, the
homologous sequences are selected from several databanks such as
the SWISS-PROT or NCBI’s nonredundant protein databases. The
obtained MSAs contain orthologs, paralogs, and multiple versions
of the same sequence that can potentially alter conservation profiles.
Between two paralogs, the average amino acid sequence identity is
only 30% [Wong and Zang, 2014]. Ideally, only orthologous se-
quences should be used in an MSA, but paralogs have been widely
used, probably due to the limited number of orthologous sequences.
Some observations have noted that a MSA constructed only with
orthologous sequences can lead to a more reliable evolutionary anal-
ysis, which improves the predictor’s performance [Shu et al., 2003;
Tavtigian et al., 2006]. The aim of the present study was to investi-
gate the prediction ability of 16 Web available algorithms to assign
biological or biochemical roles to a set of UGT1A1 variants that have
been phenotypically characterized by in vivo and in vitro studies.

Methods

Variants Search

To define a set of UGT1A1 gene (MIM #191740; HUGO:
12530) SNPs previously characterized at the protein level, we per-
formed a literature review and a search for variants using the
databases: http://www.polydoms.cchmc.org/polydoms, http://www
.ensembl.org, http://www.genecards.org, and http://www.ncbi.nlm
.nih.gov/SNP. Information was obtained from the specific site for
UGT nomenclature (http://www.pharmacogenomics.pha.ulaval.ca/
cms/ugt_alleles/) to find UGT1A1 variants related to unconjugated
hyperbilirubinemia in GS and CNS. Despite the description of more
than 300 SNPs in the database, this study only included 87 variants,
which are described in the literature as being associated or not with
hyperbilirubinemia. Among these, 38 were classified as pathogenic
based on in vitro or in vivo studies that included site-directed muta-
genesis, expression studies, assays of liver biopsy specimen, admin-
istration of phenobarbital, and the duodenal bile pattern; however,
10 SNPs were associated with normal bilirubin levels. These two
groups of variants represent the gold standard for this study. The
remaining 37 nsSNPs were also described as being associated with
unconjugated hyperbilirubinemia, but the functional impact at the
protein level had not yet been determined (Supp. Table S1).

Running Predictors

The sequence-based tools included: SIFT, MAPP; Protein Anal-
ysis Through Evolutionary Relationships (PANTHER), Predictor

of Human Deleterious SNPs (PhD-SNP), Gene Ontology (GO)
database in the form of a GO-based score (SNPs&GO), Mutation As-
sessor (Xvar), and Align Grantham Variance/Grantham Difference
(A-GVGD). SIFT predicts whether an amino acid substitution or
insertions/deletions affect protein function and is based on the
degree of conservation of amino acid residues in sequence align-
ments derived from closely related sequences [Kumar et al., 2009;
Sim et al., 2012]. MAPP predictions are established by assessing
the physicochemical variation in each column of a sequence align-
ment, and require a MSA and a phylogenetic tree detailing the
evolutionary distance between species [Stone and Sidow, 2005].
PANTHER is a system constructed with complete genomes (82)
ordered into gene families and subfamilies, and their evolutionary
relationships are collected in phylogenetic trees, MSAs, and statis-
tical models (hidden Markov models or HMMs) [Thomas et al.,
2003; Mi et al., 2013]. PhD-SNP is created on a support vector
machine (SVM) adept at using different sequence and evolution-
ary information to predict variant pathogenicity. SNPs&GO collects
a specific framework of information derived from the protein se-
quence, protein sequence profile, and protein function to predict
human disease-related single point protein mutations [Calabrese
et al., 2009]. Xvar predictions are based on the evolutionary conser-
vation of the affected amino acid in protein homologs [Reva et al.,
2011]. A-GVGD provides a class probability constructed based on
the evolutionary conservation and chemical nature of the amino
acid residues to predict whether a mutation is enriched as delete-
rious or enriched as neutral. A-GVGD achieves this by combining
multiple protein sequence alignments along with information on
the side chain composition, polarity and steric characteristics of
the mutant amino acid to determine whether the mutation might
lead to the modification of the protein structure [Tavtigian et al.,
2006]. The sequence- and structure-based approaches comprised:
Polymorphism Phenotyping version-2 (Polyphen-2), Pathogenic
Mutation prediction (PMUT) on proteins; Screening for Nonac-
ceptable Polymorphisms (SNAP); the SVM-based method Hansa;
SNPeffect; Mutation Prediction (MutPred); Functional Analysis
Through Hidden Markov models (FATHMM version 2.3); CONsen-
sus DELeteriousness (CONDEL); and Meta-Predictor (Meta-SNP).
PolyPhen-2 is based on the possible impact of an amino acid sub-
stitution on the structure and function of a human protein by ana-
lyzing several features comprising the sequence and eight sequence-
based and three structure-based features, which were selected using
machine learning (Bayesian classification) [Adzhubei et al., 2010].
PMUT uses different types of sequence information to label mu-
tations, as well as neural networks to process this information for
the prediction of pathological mutations [Ferrer-Costa et al., 2005].
SNAP is a neural-network-based method that uses in silico-derived
protein information (e.g., secondary structure, conservation, sol-
vent accessibility) to predict the functionality of mutated proteins
[Bromberg and Rost, 2007; Bromberg et al., 2008]. Hansa is based on
the SVM method, which uses a set of discriminatory features (10) to
categorize missense mutations as neutral or deleterious [Hicks et al.,
2013] and to map mutations onto the query protein as “disease” or
“neutral” [Acharya and Nagarajaram, 2012]. SNPeffect version 2.0
provides a platform for predicting the effect of coding nsSNPs on the
structure and function of the affected protein; the high resolution
structural data of the SNPeffect server are used to unequivocally
model the mutant structures so that changes in protein stability and
binding can be evaluated [Reumers et al., 2006]. MutPred uses a
random forest algorithm based on the probabilities of gain or loss
of properties relating to features of protein structure and dynamics
to predict the functional properties and amino acid sequence, pro-
vide evolutionary information, and calculate the molecular cause of
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disease-associated substitution [Li et al., 2009]. FATHMM version
2.3 is a species-independent method with optional species-specific
weightings for the prediction of the functional effects of protein mis-
sense variants that allows the user to discriminate deleterious and
neutral polymorphisms along with molecular and phenotypic con-
sequences [Shihab et al., 2013]. Meta-SNP is a random forest-based
binary classifier used to distinguish between disease-related and
polymorphic nonsynonymous single-nucleotide variants (nsSNVs),
which takes as input the output of the four predictors (PANTHER,
PhD-SNP, SIFT, and SNAP) [Capriotti et al., 2013]. CONDEL and
Meta-SNP were included as integrative tools. CONDEL establishes
a weighted average of normalized scores of three individual meth-
ods, SIFT, Polyphen-2, and Xvar (CONDEL first version, available
until April 2014; CONDEL v1); a recent version of this method
integrates another two different tools (FATHMM and MAPP). The
main characteristics of these methods are summarized in Table 1
according to the guidelines on this topic [Vihinen, 2012, 2013],
and the most important steps used for this study are depicted in
Figure 1.

Most of these tools only require as input the protein sequence
or identifier and the amino acid substitution of interest. Usually,
the majority of the outputs of these tools provide a binary classi-
fication of variants: “neutral/tolerant” or “deleterious/pathogenic.”
When the output of a specific tool had more than two categories, we
grouped them into a binary classification (neutral and deleterious).
This is a strategy already used by other authors with the same tools
[Tavtigian et al., 2006; Hicks et al., 2011]. In the Xvar method, the
nsSNPs can be predicted as “neutral,” “low,” “medium,” and “high”
[Hicks et al., 2011]; however, in this study, the variants classified
as “neutral” and “low” were considered neutral, and the variants
predicted as “medium” and “high” were clustered as deleterious
variants. Using Polyphen-2, Adzhubei and coworkers (2010) con-
sidered that the variants predicted as ‘‘benign” were neutral and
the other classes (“possibly damaging” or “probably damaging”)
were deleterious variants; in the present study, we followed this
classification for neutral and deleterious variants. The Align-GVGD
tool classifies variants as “neutral,” “unclassified,” and “deleterious”
[Tavtigian et al., 2006; Hicks et al., 2011]. For our study, the variants
predicted as “neutral” and “unclassified” were categorized as neutral
variants, as previously reported by others [Hicks et al., 2011]. The
output for the MutPred tool contains a general score (g) inferring the
probability that the amino acid substitution is deleterious/disease-
associated, and a top five property score (p) for its impact on the
structural and functional properties of the protein. According to the
tool developer, a P value less than 0.05 is considered significant, even
when the user applies their own limits of significance. In this study,
we considered the cutoff of g 0.75 and p < 0.05 (referred to as con-
fident hypotheses) to differentiate between benign and pathogenic
mutations, as reported elsewhere [Li et al., 2009]. The tool Human
Splicing Finder (HSF) (Version 2.4.1) was used to test whether any
of the pathogenic missense substitutions interfere with splicing sig-
nals or motifs in some human sequences [Desmet et al., 2009]. All
field tests using the described algorithms were run on a PC from
January 7 to July 20, 2014 (Supp. Tables S2A, S2B, and S3), with the
exception of Meta-SNP and HSF, which were run from January 15
to March 10, 2015.

Tools Depending on MSAs

Some of the evaluated tools generate their own alignments
and do not allow users to create and submit their own
MSA. In these cases, the protein sequence was submitted in

FASTA format or protein ID using the selected methods (Xvar;
PANTHER; PhD-SNP; Hansa; SNPs&GO; and MutPred). Other
tools require a MSA built by the user as input, such as the A-
GVGD and MAPP tools. Moreover, MAPP needs a phylogenetic
unrooted tree. SIFT and PMUT generate an alignment internally
but they also permit user-generated alignments. The Web server
version of Polyphen-2 has its own alignment pipeline, but user-
generated alignments can be submitted to the stand-alone soft-
ware version that can be downloaded onto a local computer. Using
these last three methods, we were able to test whether their per-
formance would be affected by the alignment employed. For this
purpose, and also to run the A-GVGD and MAPP algorithms, we
performed a search of UGT1A1 orthologs in databases and built a
MSA with 27 sequences. Most of the sequences were retrieved from
the inparanoid (http://inparanoid.sbc.su.se/cgi-bin/index.cgi) and
Ensembl databases (http://www.ensembl.org/info/docs/compara/).
Orthologs of the human UGT1A1 protein were aligned by a mul-
tiple alignment program for amino acid or nucleotide sequences
using Multiple Alignment from Fast Fourier Transform (MAFFT,
version 7) [Katoh et al., 2013]. The identified orthologs were se-
lected and those that produced large gaps were removed from the
MSA. Functional predictions from SIFT were performed by two
input options: in an automated manner, where the SIFT search for
protein sequence homologies to the query protein; and based on
the sequence that allows the calculation of the probability for each
possible amino acid change. Users can select UniRef90, SeqSWISS-
PROT, SWISS-PROT/TrEMBL, or NCBI’s nonredundant protein
databases to search for homologies by using the PSI-BLAST method
with default settings or by changing the median conservation of
the sequences. There are two other possibilities, the use of mul-
tiple related sequences or MSA. We ran these methods with the
27 orthologs of MSA to test tool performance.

Statistical Analysis

The predictive capacity of the functional significance of UGT1A1
nsSNPs of the studied algorithms was evaluated by statistical mea-
sures of performance, such as sensitivity (SEN), specificity (SPC),
Matthew correlation coefficient (MCC) [Matthews, 1975], and ac-
curacy (ACC). Sensitivity refers to the probability of identifying
true deleterious mutations, whereas specificity represents the prob-
ability of identifying true neutral mutations [Hicks et al., 2011].
As reported in previous studies, true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) were used to
compute sensitivity (SEN) or a true positive rate, specificity (SPC),
or a true negative rate, ACC and MCC [Hicks et al., 2011], as follows:

SEN =
TP

(TP + FN)
SPC =

TN

(TN + FP)

MCC =
TP × TN – FP × FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

ACC =
(TP + TN)

TP + FP + TN + FN

The MCC scores range from +1 (a perfect prediction) to –1 (an
inverse prediction) where 0 represents an average random predic-
tion [Baldi et al., 2000]. This measurement has been favored over
“accuracy,” as the last is less sensitive to the different numbers of
pathogenic and nonpathogenic variant classes. Usually, the value
for MCC increases in a slower manner and reaches a maximum of
0.5 when 75% of cases were correctly predicted. Random results
(50% of both negative and positive correctly predicted) give a value
of 0. The McNemar’s χ2 test (α = 0.05) was used to assess the
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differences between the proportions of correct predictions obtained
by the three tools executed with their native alignment [SIFT Self;
Polyphen-2 Self; PMUT Self] and with the alignment of 27 or-
thologs (SIFT Orth[27]; Polyphen-2 Orth[27]; PMUT Orth[27])
for the same variants.

Results
This study compared the predictive ability of 16 Web-available

tools (Table 1) to infer the functional effects of 48 UGT1A1 nsSNPs
already characterized at the protein level. To measure their perfor-
mance (Table 2), we used four statistical measures, SEN, SPC, MCC,
and ACC.

MutPred showed the best performance in almost all measures in
the following order, SEN (97%), SPC (70%), MCC (0.73), and
ACC (0.92). Higher SEN values were also obtained with PAN-
THER (96.7%), PMUT Orth (94.7%), Hansa (92.1%), SNPs&GO
(91.9%), SIFT Orth (91.9%), and Meta-SNAP (92%). However, the
ACC obtained for PANTHER (0.77), PMUT Orth (0.81), Hansa
(0.81), SNPs&GO (0.83), SIFT Orth (0.89), and Meta-SNP (0.83)
was lower than for MutPrep. Concerning specificity, higher values
were obtained for SIFT Orth (80%), followed by MutPrep SNAP
and PMUT self (70%), whereas the other methods showed lower
values (Table 2). All of the applied predictors showed higher SEN
(median value: 82.9%) than SPC (median value: 45.7%).

Considering MCC, which has been described as the best param-
eter to measure a predictor’s performance [Johnson et al., 2005],
the MutPred method presented the best value (0.73) and was fol-
lowed by SIFT Orth(27) (0.69), PhD-SNP (0.62), A-GVGD Orth(9)
(0.48), whereas SNPs&GO, SNAP, and Meta-SNP showed MCC val-
ues of 0.46. The tool with the worst performance was FATHMM,
which had the lowest value for MCC (0.05). CONDEL (version
2), which integrates the output of Xvar, SIFT, Polyphen-2, MAPP,
and FATHMM, achieved a MCC value of 0.05. Tools using worker’s
alignments as the input (SIFT, Polyphen-2, and PMUT) allow the
use of another MSA for performance evaluation (Supp. Text S1). The
predictive ability of these tools increased with the use of orthologous
MSA, particularly PMUT that was the most positively affected. Sig-
nificant differences between the proportions of correct predictions
were obtained when Polyphen-2 and PMUT were run with orthol-
ogous MSA versus when they were executed with the automatically
generated alignment (p = 0.021 and p = 0.007, respectively). SIFT
was less influenced by the MSA employed (p = 0.063); however, all
the metrics were improved when using the orthologous alignment
(Table 2). SIFT has multiple options in its automated manner (MSA
built by the tool); the best result, achieved by the “SIFT Sequence”
option, used the UniRef90 dataset that produces the MSA and elim-
inates sequences with more than 90% identity to the query. The pro-
tein sequence alignment of 27 UGT1A1 orthologs used as the input
for SIFT, Polyphen-2, and PMUT in FASTA format is presented in
Supp. Text S1. For the A-GVGD method, another alignment was
required with few orthologous sequences. The best results were ob-
tained using a MSA built with nine orthologs (including human
UGT1A1), available as online supporting information (Supp. Text
S2). The alignment of 27 orthologs is shown (Supp. Fig. S1) and
corresponds to a section of the protein sequence acceptor-binding
region (Supp. Fig. S1A), as well as to a fragment of the donor-binding
site (Supp. Fig. S1B).

Phenotype analysis through SNPeffect did not give reliable struc-
tural information for the UGT1A1 protein to proceed with a FoldX
stability analysis, which estimates the importance of the interactions
that contribute to the stability of proteins and protein complexes.
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Figure 1. Flow chart used to test 48 UGT1A1 nsSNPs by in silico analysis using 16 algorithms.

The SNPeffect tool allows the user to reduce the homology thresh-
old, but this implies a loss in model accuracy. When the homology
was set to 50%, we still did not retrieve further results. This tool was
therefore excluded from the performing analysis because it failed to
classify most of the UGT1A1 variants. Polyphen-2 and SIFT unsuc-
cessfully generated predictions for two variants in our data set. The
PANTHER Web tool failed to generate predictions for nine variants
(out of 48). This may occur when the sequence alignment gener-
ated by the tool is poor or when the variant is located at a residue
absent in the majority of the MSA column and, consequently, is
unable to be modeled by the Human Markov Model [Thomas et al.,
2003]. However, PANTHER was reliable when predictions were ob-
tained. Using more evolutionarily distant orthologs, we found that
the majority of variants were classified as neutral.

We also applied 16 tools to predict the phenotype of the 37 nsSNPs
that were not characterized at a protein level. These were referred to
as ND (Supp. Table S2A) but were associated with hyperbilirubine-
mia. Most tools classified some of the variants as neutral: six and
seven for PhD-SNP; three for SIFT Orth; seven for A-GVGD-7; and
three for Hansa (Supp. Table S3).

Results from the tool Human Splicing Finder (3.0) for the
48 UGT1A1-characterized nsSNPs (Supp. Table S2A) and for the
37 nsSNPs not characterized are also presented (Supp. Table S2B).
Most of the predicted variants were classified as “potential alteration
for splicing,” which involves the creation or alteration of an exonic
splicing enhancer site, activation of an exonic cryptic donor site, or
the creation of an exonic splicing silencer site, compared with those
where no significant splicing motif alteration was detected.

Discussion
Determining the pathogenicity of an nsSNP could be an impor-

tant step in the establishment of the genetic basis of its pathology,
assessment of individual susceptibility to disease, understanding its
pathogenesis, identification of molecular targets for drug treatment,
and improvement in individual therapy. An increasing number of
algorithms have been developed to predict the impact of missense
mutations on protein function. In this context, we evaluated the
performance of 16 available tools to predict the functionality of our
selected UGT1A1 nsSNP variants.

Comparison of Tool Performance Obtained in Other Studies

The majority of bioinformatics tools described in the literature are
sequence- and structure-based approaches. MutPred, a sequence-
and structure-based approach, was found to be the best performance
tool to predict the phenotype of UGT1A1 nsSNPs [Li et al., 2009].
This tool foresees the disruption of molecular function and works
specifically for well-studied proteins when the homology and solved
structure are available [De Baets et al., 2012]. It was expected that the
lack of a 3D solved structure of the UGT1A1 protein could be a lim-
itation for this analysis, but the establishment of MutPred’s g > 0.75
cutoff to differentiate between benign and disrupted/pathogenic
variants was found to accurately classify neutral variants from
our data set, showing the higher specificity of this tool (70%).
The other tools with a good performance were SIFT (Orth) and
PhD-SNP.
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Table 2. Sensitivity (SEN), Specificity (SPC), Matthew’s Correla-
tion Coefficients (MCC), and Accuracy (ACC) of the Selected SNP-
Based Pathogenicity Detection Tools that Calculate the 48 UGT1A1
snSNPs (n = 10 Neutral; n = 38 Deleterious) Whose Functional Im-
pact on UGT1A1 Protein Was Already Evaluated by In Vitro and In
Vivo Studies

Tools SEN (%) SPC (%) MCC ACC

PolyPhen 2 Self 81.6 30.0 0.12 0.71
PolyPhen 2 Orth (27) 88.9 40.0 0.24 0.75
SIFT Self 86.5 44.4 0.31 0.78
SIFT Orth (27) 91.9 80.0 0.69 0.80
A-GVGD Orth (27) 65.0 67.0 0.25 0.65
A-GVGD Orth (9) 88.0 60.0 0.48 0.82
PMUT Self 47.4 70.0 0.14 0.52
PMUT Orth (27) 94.7 30.0 0.33 0.81
Xvar 81.6 30.0 0.12 0.73
SNPs&GO 92.1 50.0 0.46 0.83
PhD-SNP 92.1 70.0 0.62 0.88
MAPP 79.0 50.0 0.26 0.73
CONDEL (v.1) 86.5 50.0 0.35 0.80
CONDEL (v.2) 84.0 20.0 0.05 0.71
Hansa 92.1 40.0 0.37 0.81
SNAP 81.6 70.0 0.46 0.79
MutPred 97.4 70.0 0.73 0.92
PANTHER 96.7 11.1 0.15 0.77
FATHMM 66.0 40.0 0.05 0.60
Meta-SNP 92.0 50 0.46 0.83

UGT1A1 gene: MIM #191740; HUGO: 12530.
SEN, sensitivity; SPC, specificity; MCC, Matthew’s correlation coefficients; ACC, ac-
curacy; AUC, area under the curve; _Self, run with native alignment (default settings);
_Ortho (27), run with the orthologs alignment (MSA of 27 orthologs). _Ortho (9) runs
with special alignment built for A-GVGD tool (MSA of nine orthologs).

These results are in accordance with those obtained in other stud-
ies, in which MutPred showed a good performance [Li et al., 2009;
Thusberg et al., 2011]. Thusberg et al. (2011) evaluated eight tools
that were also included in our study in a total dataset of 40,000
variants and concluded that no single method could be rated as the
best for all parameters. Their study showed that the SNPs&GO and
MutPred approaches reached the best performance for ACC and
MCC (for SNPs&GO: MCC = 0.65; ACC = 0.82; and for MutPred:
MCC = 0.63; ACC = 0.81). Two other studies evaluated predictor’s
performance using a set of UGT1A1 nsSNPs and reached a lower
performance [Di et al., 2009; Galehdari et al., 2013]. The study that
analyzed SIFT and Polyphen performance (first version) encom-
passed other UGT1A1 variants but did not include neutral variants
[Di et al., 2009]. For Polyphen, the correct prediction rate was 66.7%
and for SIFT it was 57.1%; the prediction rate was significantly lower
compared with that found in the present study, which was 88.9% for
SIFT and 81.6% for Polyphen-2, respectively (data not shown). In
another study, the performance of six SNP-based pathogenicity tools
(SIFT, Polyphen-2, MutPred, PhD-SNP, Provean, and FATHMM)
were tested with 59 UGT1A1 nsSNPs associated with CNS [Gale-
hdari et al., 2013]. The results showed the highest ACC values for
SIFT (0.63), followed by MutPrep and Polyphen-2, both with 0.62,
whereas for MCC the highest value was obtained with SIFT (0.34)
followed by MutPrep and Polyphen-2 (0.30 for both). These are
statistically lower values when compared with those obtained in the
present study for MutPrep (MCC: 0.73; ACC: 0.92) and SIFT Orth
(MCC: 0.69; ACC: 0.89). The FATHMM method showed the lowest
performance in our work as well as in Galehdari et al. (2013) study.
These discrepancies could be related to the use of different crite-
rion for variant selection. In our study, the selection of UGT1A1
variants was based on a literature search. The selected variants were
pathogenic and had already been validated by functional studies,

and the neutral variants were described as being associated with
normal bilirubin levels.

Performance of Algorithms That Run with User MSA

There are tools that generate MSAs internally and allow the user
option to create and submit their own MSAs. Some SNPs predictors
do not always perform optimally with their own program-generated
MSA, and more accurate results could be achieved with gene-specific
MSAs optimized by the user [Hicks et al., 2011]. Considering that
orthologous sequences are more reliable in providing phylogenetic
information, several groups have improved predictions by restrict-
ing the analysis to orthologs rather than paralogs [Shu et al., 2003;
Tavtigian et al., 2006]. Orthologs are corresponding genes in differ-
ent lineages and are a consequence of speciation, whereas paralogs
result from gene duplication [Lynch et al., 2004]. A conserved po-
sition within a MSA may be due to evolutionary selection pressure
that preserves protein functions, but it can also occur by chance.
Increasing the orthologs added to a MSA leads to greater power in
discriminating local substitutions as pathogenic and nonpathogenic
[Wong et al., 2014]. So, the quality of MSA is a critical step because
it is used to infer how an amino acid substitution is tolerated at a
given position. The three tools, SIFT Orth, Polyphen-2, and PMUT,
allow great control of user-defined sequences in the alignment and
flexibility when adding or removing sequences in the MSA; however,
additional work is needed to obtain an alignment with the relevant
protein sequences. There is also the potential to skew results by
variations in the number and types of species included in the MSA.
We verified that Polyphen-2 and PMUT were the most affected by
the MSA employed; contrarily, the performance of SIFT was not
significantly changed when it was run with the orthologous MSA.

We verified that most of the variants are classified as neutral by
the A-GVGD tool when the alignments contain a large number
of sequences. The presence of gaps in the vicinity of the alignment
column leads to predictions toward neutral, as verified by Hicks et al.
(2011). To improve the tool’s performance, another alignment was
required that contained few orthologous sequences (nine orthologs)
and has a higher identity. Using this alignment, the results again
classified most of the variants as neutral. Manual inspection of
the alignment is recommended to ensure that predictions are as
appropriate and accurate as possible.

The prediction Ability Can Be Affected by the Presence of
Hypervariable or Constant Regions of UGT1A1 Orthologs
Sequences

A reliable MSA of UGT1A1 orthologs is difficult to obtain due
to the presence of hypervariable and constant regions observed in
the UGT1A1 orthologs sequences. The UGT1A1 gene is part of a
complex locus that encodes several UDP-glucuronosyltransferases
[Mackenzie, 1986]. The locus includes 13 unique alternate first ex-
ons, followed by four common exons. Each of the remaining nine
5’ exons may be spliced to the four common exons, resulting in
nine proteins with different N-terminals and identical C-terminals.
Each first exon encodes the substrate binding site, which is regu-
lated by its own promoter (acceptor-binding region; residues 26–
291), and the other four exons (conserved region; residues: 292
and 490) encode donor-binding regions that contain the sugar-
binding site [Mackenzie, 1986]. According to Li and Wu (2007),
the donor-binding region is highly conserved, especially in the
donor-interacting residues (the residues interacting with UDP glu-
curonic acid) and in the acceptor-binding region that presents four
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hypervariable regions among vertebrate UGTs. Classification
of variants based on phylogenetic information assumes that
pathogenic sites remain conserved and that nonpathogenic sites
exhibit increased diversity. Some of the validated pathogenic vari-
ants located at the hypervariable region of the UGT1A1 protein are
frequently classified as neutral due to the low conservation observed
at those positions by sequence-based tools. Examples of these vari-
ants are p.G71R [Aono et al., 1995], p.F83L [Sutomo et al., 2002],
and p.V225G [Costa et al., 2006], which are associated with GS
and CNS. In contrast, neutral mutations are classified as deleterious
when they are located at the constant region.

In the prediction analyses of the other 37 variants described in
the literature as being associated with hyperbilirubinemia but that
lacked functional studies (Table 2), we observed that some predic-
tors with the best performance classified these variants as neutral.
This can happen for several reasons: (1) all of these methods have
an error associated with their prediction and none of these tools
reach 100% accuracy; (2) most of these variants that were clas-
sified as neutral are located in the hypervariable region (p.M1V,
p.Q6H, pH39D, p.W40R, p.V169E, p.Q185P) as observed for the
first data set analyzed in this study; and (3) the variant could be
classified as neutral and its association with hyperbilirubinemia may
have resulted from an incorrect assumption. The establishment of
a genotype–phenotype correlation for SNPs of the UGT1A1 gene
may be challenging due to the presence of other frequent mutations
at the promoter region that could also be associated with elevated
bilirubin levels. In fact, in a previous work [Rodrigues et al., 2012],
we identified nine heterozygous SNPs by sequencing analysis of the
coding regions of the UGT1A1 gene. Three of these new variants
were detected in GS patients (p.E180Q; p.M404T; p.R475C), four
were detected in controls (p.I215V; p.M272V; p.V386I; p.I492T),
and two were already described in the literature. Data showed that
three of these new variants had been previously classified as benign,
p.I215V, p.M272V, and p.V386I, and individuals presented total
bilirubin concentrations of 5.1, 10.1, and 4.3 μmol/L, respectively.
Three other variants were expected to have an effect on protein
function, p.M404T, p.475C, and p.I492T, and individuals showed
total bilirubin levels of 36.6, 51.3, and 5.8 μmol/L, respectively.
However, in the presence of the two promoter polymorphisms,
c.–41 –40dupTA and c.–3279T>G, higher total bilirubin levels were
observed in GS patients and controls, both in heterozygotes and
homozygotes [Rodrigues et al., 2012].

Possible Consequences on the Pre-mRNA Maturation and
Processing of Some SNPs

In recent years, several bioinformatics tools have been developed
to identify diseases that cause missense variants. Most of them only
consider their impact at the protein functional level and do not take
into account their effect on the pre-mRNA maturation and process-
ing, something that is performed by specific predictive splicing tools.
Several studies revealed that disease-causing missense mutations,
which disrupt splicing, could be relatively higher than reported
[Lopez-Bigas et al., 2005; Sterne-Weiler et al., 2011]. This could be
due to the lack of a specific RNA to perform molecular and in vivo
approaches. The 87 UGT1A1 variants analyzed in the present study
by Human Splice Finder were classified as potential splicing disrup-
tion variants. Some of these variants were already characterized at
the molecular level and have an impact on enzyme activity. This large
number of missense variants, classified as putative splice variants,
might be related to the regulation of gene expression of the UGT
locus. The presence of new UGT1A1 proteins generated by alterna-

tive splicing of a further exon in the UGT1A1 locus was confirmed
by immunofluorescence and coimmunoprecipitation assays using a
specific anti-UGT1A1 antibody and generated a structural diversity
of UGT1A1 proteins that are differentially expressed in several tis-
sues [Lévesque et al., 2007]. These data suggest that the expression
of UGT1A1 members is dependent on transcriptional regulatory
mechanisms beyond those associated with tissue-specific expres-
sion [Lévesque et al., 2007]. Alternative splicing of exons may affect
the fine balance of isoforms and, therefore, contribute to disease or
to genetic modification of the disease phenotype and thus interfere
with potential therapy [Garcia-Blanco et al., 2004]. However, these
data will require further analysis.

Conclusion
The information provided by the in silico methods has the ad-

vantage of directing and complementing functional assays. The best
performing methods obtained in this study for UGT1A1 variants
were MutPred and SIFT-Orth. The capacity of the SNP prediction
methods can vary according to the available structural informa-
tion and the MSA employed. We verified that methods primarily
based on protein structural information such as SNPeffect failed to
give reliable information for the UGT1A1 variants. There are nu-
merous available evolutionary tools that do not allow the user to
select the alignments. One of the concepts that our data suggest
is that the selection of user inputs improves the performance of
these methods. Our data suggest that whenever possible, the user
should consider optimizing the sequence alignment employed. The
performance study of SNP predictors using a set of functionally
well-characterized variants is essential to help redirect the in silico
analysis of a particular gene.

Acknowledgments

The authors thank Dr. Adam Hospital, from the University of Barcelona
(PMUT), for his help in analyzing our data and Dr. Ivan Adzhubey
(Polyphen-2) from Harvard Medical School for providing the analysis with
Standalone software on a local computer and guidance to analyze the results.
Finally, we thank Professor Pedro Oliveira from the Biomedical Sciences In-
stitute Abel Salazar, University of Porto, for help with the statistical analysis.

Disclosure statement: The authors declare no conflicts of interest.

References
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