

# Abstract Book

### CICTA 2015

10th Iberian and 7th Iberoamerican Congress on Environmental Contamination and Toxicology. Abstract Book

Autor: n.d.

Coordenação científica: Sandra Mariza Monteiro e Ana Maria Coimbra

Editor: UTAD - Universidade de Trás-os-Montes e Alto Douro

Ano: 2015

Suporte: Eletrónico Formato: PDF / PDF/A

ISBN: 978-989-704-210-2

Secretariado: 3Victórias - Viagens e Turismo - Vila Real Design: Magda Barata, Ana Mil-Homens



10th Iberian and 7th Iberoamerican Congress on Environmental Contamination and Toxicology

julho 2015

Coordenação cientifica: Sandra Mariza Monteiro e Ana Maria Coimbra

| Endocrine Disruption                                                                                    | 89  |  |
|---------------------------------------------------------------------------------------------------------|-----|--|
| $\label{thm:condition} \textbf{Effects of the endocrine disruptor vinclozolin in the benthic organism}$ |     |  |
| Chironomus riparius (Diptera).                                                                          | 89  |  |
| Developmental effects of a xenoestrogen and an aromatase-inhibitor                                      |     |  |
| in zebrafish ( <i>Danio rerio</i> ) embryogenesis                                                       | 91  |  |
| Differences in the xenoestrogenic sensitivity of five teleost species                                   |     |  |
| exposed to 17α-ethinylestradiol                                                                         | 93  |  |
| Gonadal development and biological recovery of zebrafish exposed to                                     | )   |  |
| 17β-estradiol (e2) and 17α-ethinylestradiol (ee2)                                                       | 95  |  |
| Evaluation of zebrafish gonad development after endocrine                                               |     |  |
| disruptors' exposures                                                                                   | 97  |  |
|                                                                                                         |     |  |
| Biomarkers                                                                                              | 99  |  |
| Ecotoxicological and biochemical effects of an herbicide and a metal                                    |     |  |
| on zooplankton and phytoplankton estuarine and marine species                                           | 99  |  |
| The influence of different microalgae diets on cell and tissue level                                    |     |  |
| biomarkers in mussel digestive gland                                                                    | 101 |  |
| Accumulation kinetics of copper and silver and assessment of the effects                                |     |  |
| exerted after dietary exposure in oysters Crassostrea gigas                                             | 103 |  |
| Sub-lethal effects of exposure to atrazine in gill cells of sea lamprey                                 |     |  |
| downstream migrants                                                                                     | 105 |  |
| Identification of molecular biomarkers of exposure to sanitary                                          |     |  |
| sewage in oyster Crassostrea brasiliana                                                                 | 107 |  |
| Biomarkers, histopathology and condition indices in sole (Solea                                         |     |  |
| senegalensis) exposed to contaminated sediment                                                          | 109 |  |
| Is there endocrine disruption in male mugilids from the Tagus Estuary?                                  | 111 |  |
| Background concentrations of polycyclic aromatic hydrocarbons metabolites                               |     |  |
| in Portuguese firemen                                                                                   | 113 |  |

| Risk Assessment                                                                                           | 115 |
|-----------------------------------------------------------------------------------------------------------|-----|
| Wastewater reuse: a study of chloroform formation                                                         | 115 |
| Carbon capture and storage (ccs) strategy: a risk assessment overview                                     | W   |
| focused on marine bacteria                                                                                | 117 |
| Maturity and stability parameters in the quality assessment of composts,                                  |     |
| sludges and other representative organic wastes intended to agricultural use $% \left\{ 1,2,,n\right\}$   | 119 |
| Testing potential CO <sub>2</sub> leakages on three marine microalgae: metal                              |     |
| speciation and biological effects                                                                         | 12  |
| Rational design for safer nanomaterials: a case study with                                                |     |
| nano-biosurfactants.                                                                                      | 123 |
| Determination of estuarine vulnerability to contamination for use in                                      |     |
| ecological risk assessment                                                                                | 125 |
| Phosphorus fractionation in sediments from a small-sized dam in a rur                                     | al  |
| mountainous catchment: case study in NE Portugal                                                          | 127 |
| $\label{lem:environment} \textbf{Environment risk assessment and bioaccumulation of metals in the metal}$ |     |
| contaminated basin                                                                                        | 129 |
|                                                                                                           |     |
| Global Changes                                                                                            | 131 |
| An ecological relevant approach to oil sands                                                              | 13  |
| Bioremediation                                                                                            | 133 |
| Synergistic and beneficial effects of 2,4-epibrassinolide and progesterone for                            |     |
| environmental remediation of progesterone by <i>Solanum nigrum</i> L. Plants                              | 133 |
| Effect of aluminum on ros content and antioxidant system in rye                                           |     |
| (Secale cereale I.) leaves and roots                                                                      | 135 |
| Bioremediation of different types of oil in estuarine and coastal                                         |     |
| environments – the role of autochthonous microorganisms                                                   | 137 |

(WWTP) in the vicinity of the estuary, which are removing the suspended particulate matter (SPM) in the wastepipes, thus lessening (at least) the input/exposure by ingestion. More studies are warrant, with more sensitive biomarkers (like hepatic expression of vitellogenin), to definitely answer the question at stake.

### Acknowledgements

Ana Silva, Margarida Raposo, Pedro Oliveira, Luis Cerdeira and Ana Fraga.



## **Biomarkers**

# Background concentrations of polycyclic aromatic hydrocarbons metabolites in Portuguese firemen

M. Oliveira<sup>1</sup>; K. Slezakova<sup>2</sup>; A. Fernandes<sup>3</sup>; J.A. Vaz<sup>3</sup>; C. Delerue-Matos<sup>1</sup>; M.C. Pereira<sup>2</sup>; S. Morais<sup>1</sup>

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants produced by the incomplete combustion of organic materials. PAHs may pose risks to human health as many of the individual compounds are cytotoxic and mutagenic to both lower and higher organisms, being some of them regarded as carcinogenic. Pyrene is by far the most characterized PAH in all sample matrices, and is classified as PAH marker of exposure while benzo(a)pyrene is considered the biomarker of carcinogenic exposure to PAHs. Among the 16 PAHs established by US EPA as priority pollutants, naphthalene, acenaphthene, fluorene, and phenanthrene are also found in almost all the matrices.

Workers from industrial settings where airborne PAH levels are high such as coke works and the primary aluminium industry, show excess rates of cancers. Firemen are also exposed to high concentrations of PAHs during firefighting; however their biomonitoring is difficult and epidemiological studies are scarce. During the last decade, the urinary 1-hydroxypyrene has been used as a biomarker of environmental and occupational exposure to PAHs. Still no standard reference or occupational guidelines are available for any urinary PAH metabolite.

Within the present work, sixty healthy and no smoking Portuguese firemen from ten Portuguese corporations from the district of Bragança (North of Portugal) were evaluated regarding their levels of the most important urinary hydroxyl-PAHs: 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene,

<sup>&</sup>lt;sup>1</sup>Centre for the Research and Technology for Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal;

<sup>&</sup>lt;sup>2</sup>University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal;

<sup>&</sup>lt;sup>3</sup>MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Portugal; Department of Biology, School of Sciences and Technology, University of Évora, Portugal;

<sup>&</sup>lt;sup>4</sup>Department of Biology, School of Sciences and Technology, University of Évora, Portugal; <sup>5</sup>Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), ICBAS, University of Porto UPorto, Portugal;

<sup>&</sup>lt;sup>6</sup>Lusophone University of Humanities and Technologies, Lisbon, Portugal

1-hydroxyphenanthrene, 1-hydroxypyrene and 3-hydroxybenzo(a) pyrene. Firemen were asked to fill a structured questionnaire to characterize the group and to identify the potential exposure routes to PAHs. Hydroxyl-PAH concentrations were normalized with the respective urinary creatinine levels.

### Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia through the projects Pest-C/EQB/LA0006/2013 and Pest-C/EQB/UI0511/2013. M. Oliveira and K. Slezakova are also grateful for their fellowships SFRH/BD/80113/2011 and SFRH/BPD/65722/2009, respectively.

<sup>1</sup>REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto; <sup>2</sup>LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto; <sup>3</sup>Escola Superior de Saúde, Instituto Politécnico de Bragança



## **Risk Assessment**

# Wastewater reuse: a study of chloroform formation

<u>Anabela Rebelo</u><sup>1</sup>; Isabel Ferra2; Albertina Marques<sup>2</sup>; Isolina Gonçalves<sup>2</sup>; Rui Oliveira<sup>2</sup>; Margarida Pereira<sup>3</sup>

Wastewater reuse has been considered an appropriate and alternative water source, e.g., for green areas irrigation. For safety reasons, recycled waters should be chlorinated, to maintain a residual protection against microbiological regrowth. However this disinfection procedure can lead to secondary reactions and subsequent formation of halogenated compounds, such as trihalomethanes, that include chloroform (CHCl<sub>3</sub>), a substance that presents a significant risk to or via the aquatic environment, and named as a priority substance according to the European Water Framework Directive.

Although the chloroform formation has been widely studied, the majority of experiments have been carried out on natural organic matter (NOM) from surface waters and less attention has been paid to wastewaters. When municipal wastewaters are stored in landscape ponds (e.g., in golf courses), NOM from two distinct water sources is present. Since the aromatic content of NOM depends on the type of source, the disinfection by-products (DBP) formation is expected to follow a different pattern.

The chloroform concentration and its correlation with chlorine dose and reaction time in synthetic wastewaters for reclamation purposes were studied in this work. Experiments were carried out in batch mode with a simulated wastewater for green areas irrigation. A two variant empirical model is proposed to simulate breakpoint chlorination practices, when chlorine dose is equal or lower than chlorine demand, and super chlorination techniques, when chlorine dose tends to surpass chlorine