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A B S T R A C T

A library of 1-(1′,2,3,3′,4,4′,6-hepta-O-acetyl-6′-deoxy-sucros-6′-yl)-1,2,3-triazoles have been investi-
gated for their antibacterial, antifungal and cytotoxic activities. Most of the target compounds showed
good inhibitory activity against a variety of clinically and food contaminant important microbial patho-
gens. In particular, 1-(1′,2,3,3′,4,4′,6-hepta-O-acetyl-6′-deoxy-sucros-6′-yl)-4-(4-pentylphenyl)-1,2,3-
triazole (5) was highly active against all the tested bacteria with minimal inhibitory concentrations (MICs)
ranging between 1.1 and 4.4 μM and bactericidal concentrations (MBCs) from 2.2 and 8.4 μM. The com-
pound 1-(1′,2,3,3′,4,4′,6-hepta-O-acetyl-6′-deoxy-sucros-6′-yl)-4-(4-bromophenyl)-1,2,3-triazole (3) showed
antifungal activity with MICs from 0.6 to 4.8 μM and minimal fungicidal concentrations (MFCs) ranging
between 1.2 and 8.9 μM. Furthermore, some of the compounds possessed moderate cytotoxicity against
human breast, lung, cervical and hepatocellular carcinoma cell lines, without showing toxicity for non-
tumor liver cells. The above mentioned derivatives represent promising leads for the development of new
generation of sugar-triazole antifungal agents.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The alarming rates of emerging and reemerging microbial threats
coupled with the growing antimicrobial resistance to current an-
tibiotics are major concerns to the public health and scientific
communities worldwide.1,2 These trends have emphasized the urgent
need for designing and developing new classes of antimicrobial
agents with different chemical structures and mechanism of action
compared with traditional drugs, in order to improve their activi-
ties while retaining good bioavailability and safety profiles.3

1,2,3-Triazole derivatives are an important class of heterocyclic
compounds with various potential applications,4 which have
aroused growing attention in recent years with the introduction of
‘click chemistry’ for their easy and efficient synthesis.5 The triazole
is an attractive bridge group, which could connect two
pharmacophores to produce novel bifunctional molecules,6 while
it is almost impossible to be hydrolyzed, oxidized or reduced. Though
1,2,3-triazole units are not present in natural products, they are

remarkably stable to metabolic transformations and are present
in many drugs such as tazobactam, cefatrizine, fluconazole,
voriconazole, itraconazole and posaconazole.7 New triazoles with
improved pharmacological and pharmacokinetic profiles are emerg-
ing rapidly.8

Various glycosides can be found in natural resources, mainly in
the form of glycoconjugates, such as glycopeptides, glycolipids, and
nucleic acids, where the saccharide moiety plays important role for
their biological activity.9 Considering that sugar moieties with
polyhydroxyl groups have been extensively employed in drug design
with the view to improve water solubility and to increase the in-
teraction between receptors and guests for molecular recognition,10,11

various novel monosaccharide-derived 1,2,3-triazoles were syn-
thesized and their inhibiting activities for glycosidases, such as
α-glucosidase, isomaltase, amyloglucosidase and β-glucosidase,12

sweet almond β-glucosidase and yeast α-glucosidase,13 or
a-glucosidase (Saccharomyces cerevisiae), β-glucosidase (almonds),
α-galactosidase (green coffee beans), β-galactosidase (Aspergillus
oryzae), α-mannosidase (Canavalia ensiformis), β-mannosidase (snail
acetone powder), and β-N-acetylglucosaminidase,14 were tested.
Others were tested against fucosidases,15 trans-sialidase,16 glyco-
gen phosphorylase,17 etc. Members of the sugar-triazole conjugates
family were investigated for other biological activities, such as re-
ceptor interactions,18 antitubercular activity,19 nucleoside mimetics,20
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and antiviral agents.21 Many of them have shown strong antibac-
terial and antifungal activities, for example glycal-derived
tetrahydrofuran 1,2,3-triazoles,22 pyranoid derivatives comprising
both triazole and conjugated carbonyl system,23

d-glucose-derived
benzyl and alkyl 1,2,3-triazoles,24 6-triazolyl 2,3,6-trideoxy sugars,25

and triazoles with substituted triazole-piperidine side chains.26

Antitumor agents for chemotherapy also attract much atten-
tion, since cancer is responsible for many lethal outcomes
worldwide.27 Derivatives of 4β-(1,2,3-triazol-1-yl)podophyllotoxin
have been obtained and their cytotoxicity toward human cancer cell
lines HL-60, A-549, HeLa and HCT-8 were assessed, showing potent
anticancer activity toward HL-60 and moderate cytotoxicities against
the rest of the studied cell lines.28

Sucrose, being a biorenewable, biocompatible and biodegrad-
able raw material with relatively low cost,29 is a promising starting
material for the synthesis of new compounds with biological
activity.30 Our research group has been focused on the applica-
tions of sucrose for the synthesis of new compounds with potential
applications either industrial or in academia. In this sense, we have
developed sucrose chemoselective derivatization methods,31,32 the
synthesis of sucrose-based biodegradable polymers33–35 and
nanoparticles.36 To the best of our knowledge, the only other example
in the literature of the synthesis of sucrose triazoles was reported
by Jarosz et al. for the construction of sucrose macrocycles with com-
plexation properties.37,38

Based on these literature data and the features described pre-
viously, we have created a small library of 1,2,3-triazoles of sucrose39

to be screened for their biological activities.40 Their antimicrobial
and antifungal activities were tested and compared with the ones
of some commercial antibiotics. Cytotoxicity against a number of
human tumor cell lines and non-tumor liver cell primary culture
was studied as well.

2. Results and discussion

2.1. Chemistry

The library of 1,2,3-triazole-sucrose derivatives is presented in
Fig. 1 and have been synthesized as previously described.39 Briefly,
the series of 1-(1′,2,3,3′,4,4′,6-hepta-O-acetyl-6′-deoxy-sucros-6′-
yl)-1,2,3-triazoles were obtained by microwave assisted copper
catalyzed 1,3-dipolar cycloaddition of sucrose derived azides with
terminal alkynes in excellent yields and in short reaction times. The

compound 1′,2,3,3′,4,4′,6-hepta-O-acetyl-6′-azido-6′-deoxy-
sucrose was regioselectively synthesized from sucrose by improved
procedure and used for the cycloadditions.

The antimicrobial and cytotoxic activities of the synthesized
library of compounds have been studied in their peracetylated form.
There are indications in the literature that hydrophobic groups as
acetyls increase the molecule’s tendency to aggregate on the cell
membrane and facilitate its permeability. On the other hand, the
presence of the acetyl groups can influence the enzymatic activi-
ty, triggering higher or lower affinity of the compound toward various
enzymes involved in the processes.41

2.2. Antibacterial activity

The results of the antibacterial activity, evaluated by the
microdilution method, of the 1,2,3-triazole-sucrose derivatives
and standard antibiotics are presented in Table 1. All derivatives
showed antibacterial activity against all the tested bacteria
with minimal inhibitory concentrations (MICs) ranging between 1.1
and 38 μM and bactericidal concentrations (MBCs) from 2.2 and
57.2 μM. The antibacterial activity could be presented as follows:
5 > 3 > 7 > 6 > 9 > 1 > 10 > 4 > 2 > 8, but higher than the tested com-
mercial drugs streptomycin and ampicillin. The most resistant
bacteria to these compounds were Listeria monocytogenes, while the
most susceptible bacteria were Bacillus cereus and Staphylococ-
cus aureus. The obtained results are in agreement with Isloor et al.,26

who have synthesized 1,2,4-triazole-3(4H)-thione derivatives and
reported higher antibacterial activity for the compounds with
p-substitutions.

2.3. Antifungal activity

All the triazole-sucrose derivatives showed antifungal activity
(also evaluated by a microdilution method) with MICs from 0.6 to
26 μM and minimal fungicidal concentrations (MFCs) ranging
between 2.2 and 39 μM (Table 2). The antifungal activity could be
presented as follows: 3 > 1 > 5 > 7 > 9 > 4 > 2 > 6 > 8 > 10 and once
more, higher than the tested standards, bifonazole and ketoconazole.
The highest activity was verified for Trichoderma viride, while As-
pergillus fumigatus was the most resistant fungi.

Fungi were in general more sensitive than bacterial species. The
antifungal activity exhibited by many potent antifungal agents has

Fig. 1. General structure and library of the synthesized 1-(1′,2,3,3′,4,4′,6-hepta-O-acetyl-6′-deoxy-sucros-6′-yl)-1,2,3-triazoles.39
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been attributed to the presence of triazole ring system; one of the
major examples containing triazole ring is fluconazole.8

According to the obtained results, it is obvious that the deriva-
tives 5 (with 4-pentylphenyl substituent) showed the best
antibacterial activity, while 3 (with 4-bromophenyl substituent) pos-
sessed the best antifungal activity.

The results showed that the growth of the various types of bac-
teria tested responded differently to the synthetic compounds. This

indicates that it may have different modes of action on the differ-
ent species or that the metabolism of some bacteria is able to
overcome the effect of the compound or adapt to it. It is known that
Gram positive bacterial species are more susceptible to antimicro-
bial agents than Gram negative bacteria, and that fungi are more
susceptible than bacteria in general.42,43 Thus, the susceptibility of
microorganisms to external agents depends not only on their prop-
erties, but also on the microorganism itself.

Table 1
Antibacterial activity of the synthesized 1,2,3-triazole-sucrose derivatives

Compound μM Staphylococcus
aureus

Bacillus
cereus

Micrococcus
flavus

Listeria
monocytogenes

Pseudomonas
aeruginosa

Salmonella
typhimurium

Escherichia
coli

Enterobacter
cloacae

1 MIC 9.80 ± 0.02a 2.60 ± 0.01c 9.80 ± 0.02b,c 9.80 ± 0.02c 9.80 ± 0.01c 5.20 ± 0.02b,c 9.80 ± 0.07b 13.1 ± 0.2a

MBC 19.6 ± 0.1b 19.6 ± 0.1a 19.6 ± 0.1b 19.6 ± 0.1b 19.6 ± 0.1b 19.6 ± 0.1a 19.6 ± 0.1a 19.6 ± 0.1b

2 MIC 9.70 ± 0.01a 5.2 ± 0.02b 12.9 ± 0.2b 9.70 ± 0.01c 12.9 ± 0.2b 12.9 ± 0.1a 12.9 ± 0.1a 9.70 ± 0.02b

MBC 19.4 ± 0.1b 19.4 ± 0.2a 19.4 ± 0.2b 19.4 ± 0.1b 19.4 ± 0.1b 19.4 ± 0.1a 19.4 ± 0.1a 19.4 ± 0.1b

3 MIC 8.90 ± 0.02a 4.80 ± 0.03b 8.90 ± 0.01b,c 4.80 ± 0.02d 4.80 ± 0.02d 2.40 ± 0.01c 4.80 ± 0.03c 1.20 ± 0.07d

MBC 17.8 ± 0.2b 17.8 ± 0.1a 17.8 ± 0.1c 17.8 ± 0.2c 17.8 ± 0.1b 4.80 ± 0.02d 8.90 ± 0.02b 8.90 ± 0.03c

4 MIC 4.90 ± 0.02b 12.40 ± 0.07a 12.4 ± 0.1b 12.4 ± 0.1b 12.4 ± 0.1b 9.30 ± 0.02a,b 12.4 ± 0.1a 9.30 ± 0.02b

MBC 18.6 ± 0.1b 18.60 ± 0.03a 18.60 ± 0.01b 18.60 ± 0.07b,c 18.6 ± 0.2b 18.6 ± 0.2a 18.60 ± 0.07a 18.6 ± 0.1b

5 MIC 1.10 ± 0.01c 1.10 ± 0.01d 4.40 ± 0.02d 4.40 ± 0.01d 1.10 ± 0.01e 1.10 ± 0.01d 4.40 ± 0.03c 1.10 ± 0.01d

MBC 2.20 ± 0.07d 4.40 ± 0.02c 8.40 ± 0.02d 33.6 ± 0.1a 8.4 ± 0.1c,d 4.40 ± 0.01d 8.40 ± 0.07b 1.70 ± 0.01d

6 MIC 8.90 ± 0.02a 4.80 ± 0.02b 11.90 ± 0.01b,c 11.9 ± 0.2b 11.90 ± 0.03b 8.90 ± 0.01a,b 11.90 ± 0.01a 4.80 ± 0.04c

MBC 17.8 ± 0.2b 17.8 ± 0.1a 17.8 ± 0.2c 17.8 ± 0.1c 17.80 ± 0.03b 17.8 ± 0.2b 17.80 ± 0.07a 35.60 ± 0.02a

7 MIC 5.20 ± 0.07b 5.20 ± 0.03b 7.80 ± 0.02c 9.70 ± 0.02c 9.7 ± 0.02c 2.60 ± 0.02c 9.70 ± 0.02b 5.20 ± 0.01c

MBC 9.70 ± 0.02c 9.70 ± 0.02b 9.70 ± 0.01d 19.4 ± 0.1b 19.40 ± 0.01b 9.70 ± 0.01c 19.40 ± 0.01a 19.40 ± 0.03b

8 MIC 9.50 ± 0.01a 5.10 ± 0.03b 19.0 ± 0.1a 25.4 ± 0.1a 38.0 ± 0.1a 9.50 ± 0.07a,b 12.7 ± 0.1a 5.10 ± 0.01c

MBC 38.0 ± 0.1a 19.0 ± 0.1a 38.0 ± 0.2a 38.0 ± 0.2a 57.2 ± 0.1a 19.0 ± 0.1a 19.0 ± 0.1a 19.0 ± 0.1b

9 MIC 9.90 ± 0.02a 1.30 ± 0.07d 9.90 ± 0.02b,c 9.90 ± 0.01c 9.90 ± 0.01c 1.30 ± 0.05c 9.90 ± 0.02b 5.20 ± 0.03c

MBC 19.8 ± 0.1b 19.8 ± 0.2a 19.8 ± 0.2b 19.8 ± 0.1b 19.8 ± 0.1b 19.8 ± 0.1a 19.8 ± 0.1a 19.8 ± 0.1b

10 MIC 9.80 ± 0.01a 5.20 ± 0.01b 13.0 ± 0.07b 9.80 ± 0.01c 9.80 ± 0.01c 5.20 ± 0.07b,c 13.0 ± 0.2a 9.80 ± 0.07b

MBC 19.6 ± 0.1b 19.6 ± 0.1a 19.6 ± 0.1b 19.6 ± 0.2b 19.6 ± 0.1b 19.6 ± 0.1a 19.6 ± 0.1a 19.6 ± 0.1b

Streptomy-cin MIC 20 ± 1 45.6 ± 1 86 ± 1 86 ± 1 86 ± 1 86 ± 1 86 ± 1 132 ± 1
MBC 46 ± 1 86 ± 1 172 ± 1 172 ± 1 172 ± 1 172 ± 1 172 ± 1 264 ± 2

Ampi-cillin MIC 116 ± 1 116 ± 1 116 ± 1 172 ± 1 344 ± 2 172 ± 1 116 ± 1 172 ± 1
MBC 172 ± 1 172 ± 1 172 ± 1 228 ± 2 576 ± 2 228 ± 2 228 ± 2 344 ± 2

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration.
In each column, different letters mean significant differences between the antibacterial activity of the synthesized compounds (p < 0.05); MIC and MBC values were ana-
lyzed separately.

Table 2
Antifungal activity of the synthesized 1,2,3-triazole-sucrose derivatives

Compound μM Aspergillus
fumigatus

Aspergillus
versicolor

Aspergillus
ochraceus

Aspergillus
niger

Trichoderma
viride

Penicillium
funiculosum

Penicillium
ochrochloron

Penicillium
verrucosum

1 MIC 9.80 ± 0.01c 1.30 ± 0.01c 0.65 ± 0.02d 2.60 ± 0.01c 1.30 ± 0.01c 5.20 ± 0.02c,d 5.20 ± 0.02c 5.20 ± 0.01d

MFC 19.6 ± 0.1b 2.60 ± 0.02d 2.60 ± 0.01c 5.20 ± 0.02c,d 2.60 ± 0.02c,d 9.80 ± 0.01c 9.80 ± 0.01c 9.80 ± 0.02b

2 MIC 9.70 ± 0.01c 9.70 ± 0.03a 5.20 ± 0.01a 5.20 ± 0.02b 2.60 ± 0.01b 9.70 ± 0.01c 9.70 ± 0.01b 25.8 ± 0.1a

MFC 38.8 ± 0.1a 19.4 ± 0.1b 9.70 ± 0.02a 9.70 ± 0.02c 5.20 ± 0.02a,b 19.4 ± 0.1b 19.4 ± 0.1b 38.8 ± 0.1a

3 MIC 4.80 ± 0.10d 1.20 ± 0.01c 1.20 ± 0.01c 2.40 ± 0.02c 0.60 ± 0.01d 1.20 ± 0.01e 2.40 ± 0.01d 2.40 ± 0.01d

MFC 8.90 ± 0.01c 4.80 ± 0.02c 2.40 ± 0.01c 4.80 ± 0.01d 1.20 ± 0.01d 4.80 ± 0.02d 4.80 ± 0.03d 4.80 ± 0.01c

4 MIC 24.8 ± 0.1b 9.30 ± 0.01a 4.90 ± 0.01a 4.90 ± 0.01b 3.70 ± 0.01a,b 9.30 ± 0.02c 9.30 ± 0.01b 9.30 ± 0.07b

MFC 37.2 ± 0.1a 18.6 ± 0.1b 9.30 ± 0.01a 18.6 ± 0.1b 4.90 ± 0.01b 18.6 ± 0.1b 37.2 ± 0.1a 37.2 ± 0.1a

5 MIC 8.40 ± 0.01b,c 3.30 ± 0.03b 2.20 ± 0.01b 4.40 ± 0.01b 1.10 ± 0.01c,d 4.40 ± 0.01d 8.40 ± 0.01b 6.60 ± 0.01c

MFC 16.8 ± 0.1b 4.40 ± 0.01c 4.40 ± 0.02b 8.40 ± 0.01c 2.20 ± 0.02b,c 8.40 ± 0.02c 16.8 ± 0.1b 8.40 ± 0.01b

6 MIC 23.8 ± 0.1b 8.90 ± 0.01a 4.80 ± 0.02a 8.90 ± 0.02a 4.80 ± 0.01a 23.8 ± 0.1a 23.8 ± 0.1a 23.8 ± 0.1a

MFC 35.7 ± 0.1a 17.8 ± 0.1b 8.90 ± 0.01a 17.8 ± 0.1b 8.90 ± 0.01a 35.7 ± 0.2a 35.7 ± 0.2a 35.7 ± 0.1a

7 MIC 5.20 ± 0.07d 2.60 ± 0.02b,c 2.60 ± 0.01b 2.60 ± 0.01c 1.30 ± 0.01c,d 2.60 ± 0.02d,e 5.20 ± 0.02b,c 5.20 ± 0.02c

MFC 19.4 ± 0.1b 5.20 ± 0.07c 5.20 ± 0.02b 9.70 ± 0.01c 2.60 ± 0.01b,c 9.70 ± 0.01c 9.70 ± 0.01c 9.70 ± 0.01b

8 MIC 25.4 ± 0.1b 9.50 ± 0.02a 5.10 ± 0.01a 5.10 ± 0.02b 5.10 ± 0.02a 9.50 ± 0.01c 9.50 ± 0.01b 19.0 ± 0.1b

MFC 38.0 ± 0.2a 38.0 ± 0.1a 9.50 ± 0.02a 19.0 ± 0.1b 9.50 ± 0.01a 19.0 ± 0.1b 38.0 ± 0.1a 38.0 ± 0.1a

9 MIC 9.90 ± 0.03c 1.30 ± 0.01c 2.60 ± 0.02b 2.60 ± 0.01c 2.00 ± 0.02b 2.60 ± 0.01d,e 2.60 ± 0.01d 5.20 ± 0.01c

MFC 19.8 ± 0.1b 2.60 ± 0.07c,d 5.20 ± 0.01b 9.90 ± 0.01c 2.60 ± 0.01b,c 5.20 ± 0.02c,d 9.90 ± 0.02c 9.90 ± 0.01b

10 MIC 19.6 ± 0.1b,c 9.80 ± 0.01a 5.20 ± 0.01a 9.80 ± 0.02a 3.90 ± 0.02b 9.80 ± 0.01c 19.6 ± 0.1a 26.0 ± 0.1a

MFC 39.2 ± 0.1a 39.2 ± 0.1a 9.80 ± 0.03a 39.2 ± 0.1a 5.20 ± 0.01ab 19.6 ± 0.1b 39.2 ± 0.1a 39.2 ± 0.1a

Ketoco-nazole MIC 380 ± 1 380 ± 1 285 ± 1 380 ± 1 1900 ± 4 380 ± 1 1900 ± 4 2850 ± 4
MFC 950 ± 3 950 ± 3 380 ± 1 950 ± 3 2850 ± 4 950 ± 3 2850 ± 4 3800 ± 4

Bifo-nazole MIC 480 ± 1 320 ± 1 480 ± 1 480 ± 1 480 ± 1 640 ± 2 640 ± 1 640 ± 1
MFC 640 ± 2 640 ± 2 640 ± 2 640 ± 2 640 ± 2 800 ± 2 800 ± 2 960 ± 3

MIC, minimum inhibitory concentration; MFC, minimum fungicidal concentration.
In each column different letters mean significant differences between the antifungal activity of the synthesized compounds (p < 0.05); MIC and MFC values were analyzed
separately.
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2.4. Cytotoxicity

The cytotoxicity of the compounds was evaluated, through the
Sulforhodamine B assay, against four human tumor cell lines (breast
– MCF7, non-small cell lung – NCI-H460, cervical – HeLa and he-
patocellular – HepG2, carcinomas), and in a porcine liver primary
cell culture (PLP2), established by us. Compound 1 inhibited the
growth of all the tested tumor cell lines (Table 3). The cytotoxicity
showed by this compound may be due to the presence of 4-phenyl-
1,2,3-triazole in the end group. This group was also reported to be
effective in suppressing pancreatic cancer cells in vitro growth.2

Compounds 3 and 10 (similar structure to compound 1, with a
4-bromophenyl and cyclohexyl substituents, respectively) only in-
hibited the HepG2 cell line, while compound 7 (with an
acryloxymethyl substituent) showed moderate activity against the
MCF7 cell line. Compounds 2, 4–6, 8 and 9 were not active against
any of the tested cell lines, at the maximum concentration tested
(500 μM).

Up to the same concentration, none of the tested compounds
showed toxicity toward the non-tumor liver primary culture
(PLP2).

3. Conclusions

In summary, a small library of sucrose 1,2,3-triazoles has been
created and screened for antibacterial, antifungal and cytotoxic ac-
tivities in order to identify lead compounds for the pharmacology.
The experimental results showed that compound 5 (with
4-pentylphenyl substituent) had the highest antibacterial activity,
while compound 3 (with 4-bromophenyl substituent) was the stron-
gest antifungal agent. Also, the compounds showed a moderate
cytotoxicity against some of the tested tumor cell lines, but without
toxicity for non-tumor liver cells.

4. Materials and methods

4.1. Standards and reagents

Ampicillin, bifonazole and ketoconazole were purchased by
Panfarma (Belgrade, Serbia), Srbolek (Belgrade, Serbia) and
Zorkapharma (Šabac, Serbia), respectively. Fetal bovine serum (FBS),
l-glutamine, Hank’s balanced salt solution (HBSS), trypsin–EDTA
(ethylenediaminetetraacetic acid), penicillin/streptomycin solu-
tion (100 U/mL and 100 mg/mL, respectively), and RPMI-1640 were
from Hyclone (Logan, USA). Streptomycin, acetic acid, ellipticine,
sulforhodamine B (SRB), trypan blue, trichloroacetic acid (TCA) and
Tris were purchased from Sigma Chemical Co. (Saint Louis, USA).
Water was treated in a Milli-Q water purification system (TGI Pure
Water Systems, USA).

4.2. Chemistry

Compounds 1–10 were synthesized as previously described39

using microwave irradiation and isolated by flash column chroma-
tography in pure form. Their structures and purity were confirmed
by common spectroscopic techniques (IR, NMR), MALDI-TOF, m.p.
and [α]D.

Stock solutions of the compounds were prepared in 5% DMSO
and kept at −20 °C. Prior to the assays, appropriate dilutions were
prepared.

4.3. Antimicrobial activity

4.3.1. Antibacterial activity
The Gram-positive bacteria S. aureus (ATCC 6538), B. cereus (clin-

ical isolate), Micrococcus flavus (ATCC 10240) and Listeria
monocytogenes (NCTC 7973), and the Gram-negative bacteria Pseu-
domonas aeruginosa (ATCC 27853), Salmonella typhimurium (ATCC
13311), Escherichia coli (ATCC 35210), and Enterobacter cloacae
(human isolate) were used. The antibacterial assay was carried out
by a microdilution method.44,45 The bacterial suspensions were ad-
justed with sterile saline to a concentration of 1.0 × 105 CFU/mL.
Compound solutions were added to the Tryptic Soy broth (TSB)
medium (100 μL) with bacterial inoculum (1.0 × 104 CFU per well).
The lowest concentrations without visible growth (at the binocu-
lar microscope) were defined as concentrations that completely
inhibited bacterial growth (MICs). The MICs obtained from the sus-
ceptibility testing of various bacteria to tested extracts were
determined also by a colorimetric microbial viability assay based
on reduction of an INT ((p-iodonitrotetrazolium violet) [2-(4-
iodophenyl)-3-(4-nitrphenyl)-5-phenyltetrazolium chloride; Sigma])
color and compared with positive control for each bacterial strains.
The MBCs were determined by serial sub-cultivation of 2 μL into
microtiter plates containing 100 μL of broth per well and further
incubation for 24 h. The lowest concentration with no visible growth
was defined as the MBC, indicating 99.5% killing of the original in-
oculum. The optical density of each well was measured at a
wavelength of 655 nm by Microplate manager 4.0 (Bio-Rad Labo-
ratories) and compared with a blank (broth medium plus diluted
extracts) and the positive control. Streptomycin and ampicillin were
used as positive controls. Five percent DMSO was used as a nega-
tive control.

4.3.2. Antifungal activity
Aspergillus fumigatus (human isolate), A. versicolor (ATCC 11730),

A. ochraceus (ATCC 12066), A. niger (ATCC 6275), Trichoderma viride
(IAM 5061), Penicillium funiculosum (ATCC 36839), P. ochrochloron
(ATCC 9112) and P. verrucosum var. cyclopium (food isolate) were
used. In order to investigate the antifungal activity of the com-
pounds, a modified microdilution technique was used.46 The fungal

Table 3
Cytotoxicity of the synthesized 1,2,3-triazole-sucrose derivatives (GI50 values in μM)

MCF7
(breast carcinoma)

NCI-H460
(non-small lung carcinoma)

HeLa
(cervical carcinoma)

HepG2
(hepatocellular carcinoma)

PLP2
(liver primary culture)

1 228 ± 12b 210 ± 7b 269 ± 18a 280 ± 9a >500
3 >500 >500 >500 195 ± 8 >500
7 318 ± 4 >500 >500 >500 >500

10 >500 >500 >500 375 ± 15 >500
Ellipticine 3.7 ± 0.2 8.0 ± 0.2 4.75 ± 0.05 13 ± 1 8.6 ± 0.1

GI50 values correspond to the compound concentration achieving 50% of growth inhibition in human tumor cell lines or in liver primary culture PLP2. GI50 values for com-
pounds 2, 4–6, 8 and 9 were >500 μM.
For compound 1, different letters mean significant differences for different cell lines (p < 0.05).
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spores were washed from the surface of agar plates with sterile 0.85%
saline containing 0.1% Tween 80 (v/v) and spore suspension was ad-
justed with sterile saline to a concentration of 1.0 × 105. Compound
solutions were added to the broth Malt medium with inoculum. The
lowest concentrations without visible growth (at the binocular mi-
croscope) were defined as MICs. The fungicidal concentrations (MFCs)
were determined by serial subcultivation of a 2 μL of tested com-
pounds dissolved in medium and incubated for 72 h at 28 °C. The
lowest concentration with no visible growth was defined as MFC
indicating 99.5% killing of the original inoculum. DMSO was used
as a negative control, and commercial fungicides, bifonazole and
ketoconazole were used as positive controls. Five percent DMSO was
used as a negative control.

4.4. Cytotoxic activity

4.4.1. Cytotoxicity in human tumor cell lines
Four human tumor cell lines were used: MCF-7 (breast adeno-

carcinoma), NCI-H460 (non-small cell lung carcinoma), HeLa (cervical
carcinoma) and HepG2 (hepatocellular carcinoma) from DSMZ
(Leibniz-Institut DSMZ—Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH). Cells were routinely maintained as ad-
herent cell cultures in RPMI-1640 medium containing 10% heat-
inactivated FBS and 2 mM glutamine at 37 °C, in a humidified air
incubator containing 5% CO2. Each cell line was plated at an appro-
priate density (7.5 × 103 cells/well for MCF-7 and NCI-H460 or
1.0 × 104 cells/well for HeLa and HepG2) in 96-well plates and allowed
to attach for 24 h. Cells were then treated for 48 h with various con-
centrations of the compounds. Following this incubation period, the
adherent cells were fixed by adding cold 10% trichloroacetic acid
(TCA, 100 μL) and incubated for 60 min at 4 °C. Plates were then
washed with deionized water and dried; sulforhodamine B (SRB)
solution (0.1% in 1% acetic acid, 100 μL) was then added to each plate
well and incubated for 30 min at room temperature. Unbound SRB
was removed by washing with 1% acetic acid. Plates were air dried,
the bound SRB was solubilized with 10 mM Tris (200 μL) and the
absorbance was measured at 540 nm in ELX800 Microplate Reader
(Bio-Tek Instruments, Inc; Winooski, USA).47 The results were ex-
pressed in GI50 values (compound concentration that inhibited 50%
of the net cell growth). Ellipticine was used as positive control. The
absence of DMSO toxicity was confirmed by treating cells with the
maximum concentration of DMSO used in the assays (0.25%).

4.4.2. Cytotoxicity in a porcine liver primary cell culture
A cell culture was prepared from a freshly harvested porcine liver

obtained from a local slaughter house, and it was designed as PLP2.
Briefly, the liver tissues were rinsed in Hank’s balanced salt solu-
tion containing 100 U/mL penicillin, 100 μg/mL streptomycin and
divided into 1 × 1 mm3 explants. Some of these explants were placed
in 25 cm2 tissue flasks in DMEM medium supplemented with 10%
fetal bovine serum, 2 mM nonessential amino acids and 100 U/mL
penicillin, 100 mg/mL streptomycin and incubated at 37 °C with a
humidified atmosphere containing 5% CO2. The medium was changed
every 2 days. Cultivation of the cells was continued with direct moni-
toring every 2–3 days using a phase contrast microscope. Before
confluence was reached, cells were subcultured and plated in 96-
well plates at a density of 1.0 × 104 cells/well, and cultivated in DMEM
medium with 10% FBS, 100 U/mL penicillin and 100 μg/mL strep-
tomycin. Sulforhodamine B assay was performed according to a
procedure previously described.47 The results were expressed in GI50

values (compound concentration that inhibited 50% of the net cell
growth). Ellipticine was used as positive control. The absence of
DMSO toxicity was confirmed by treating cells with the maximum
concentration of DMSO used in the assays (0.25%).

4.5. Statistical analysis

For all the experiments three solutions were prepared from each
compound concentration, and all the assays were carried out in trip-
licate. The results are expressed as mean values and standard
deviation (SD). The results were analyzed using one-way analysis
of variance (ANOVA) followed by Tukey’s HSD Test with α = 0.05.
This analysis was carried out using SPSS v. 22.0 program (IBM Corp.,
Armonk, NY: USA).
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