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Abstract 

Pterospartum tridentatum (L.) Willk., Gomphrena globosa L. and Cymbopogon citratus 

(DC) Stapf. are examples of medicinal plants with antioxidant properties by their own, 

but that can be improved when mixed. In the present work, the antioxidant activity and 

phenolic compounds were determined in the infusions prepared from the individual 

plants, and from mixtures of these plants in different proportions. P. tridentatum > C. 

citratus > G. globosa was the order observed for antioxidant efficacy, which can be 

related to their different composition in phenolic compounds. Synergism was the main 

effect observed among the tested mixtures, mainly for the infusions prepared from the 

plants in proportion 40%:60% (either P. tridentatum and C. citratus; or G. globosa and 

C. citratus). The infusion obtained with 40% of P. tridentatum and 60% of C. citratus 

gave the highest antioxidant properties. The present study validates the 

commercialization of the studied plants combined in specific proportions.  
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1. Introduction 

Nowadays, the therapeutic effects of plants are very important for human health, as the 

World Health Organization (WHO) estimates that 60% of the total human population 

still treats primary health care problems with traditional remedies based mainly on 

phytotherapy (WHO, 2014). Furthermore, contemporary dietary programs generally 

recommend specific medicinal and aromatic plants as functional foods (foods that 

provide health benefits beyond normal physiological nutritional requirements) 

(Gonçalves, Gomes, Costa & Romano, 2013).  

Tea and herbal infusions are examples of those foods, being prepared with fresh or dried 

flowers, leaves, seeds, or roots, generally by pouring boiling water over the plant parts 

and letting them steep for a few minutes. Herbal infusions are considered rich in 

phenolic compounds recognized for their beneficial effects on human health (Costa et 

al., 2012). Phenolic compounds comprise flavonoids, phenolic acids, and tannins, 

among others. Some applications proposed for natural phenolic compounds are based 

on their antioxidant activity against reactive species involved in aging and in chronic, 

autoimmune, inflammatory, coronary and degenerative diseases (Ruiz & Romero, 

2001). 

Studies involving the evaluation of synergistic effects of combined plants are emerging 

and seem to highlight the potential of the mixtures when compared with the isolated 

plant (Pereira, Calhelha, Barros, Queiroz & Ferreira, 2014). Synergy assessment has 

become a key area in phytomedicine research in recent years, in order to find a scientific 

rationale for the centuries-old, often-observed therapeutic superiority of many multidrug 

combinations in traditional medicine over single constituents (Wagner & Ulrich-

Merzenich, 2009). As herbal extracts consist of complex mixtures of major compounds, 

concomitant agents and other substances, the complex multi-component nature of 
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medicinal herbs may serve as a valuable resource due to its potential treatment effects 

by synergy (Yang et al., 2014). Synergistic interactions between the components of 

individual or mixtures of herbs are a vital part of their therapeutic efficacy (Williamson, 

2001). In fact, many leading researchers have advocated using combination approaches 

to pursue the optimum therapeutic efficacy and to improve the patient's overall health 

status (Yang et al., 2014). 

Pterospartum tridentatum (L.) Willk. is traditionally used to treat affections of the 

nervous, cardiovascular, digestive and urinary systems (Novais, Santos, Mendes & 

Pinto-Gomes, 2004), and some researchers had already studied its infusion regarding 

antioxidant capacity (Paulo et al., 2008;	  Gonçalves et al., 2013).  Gomphrena globosa L. 

is commonly consumed for the treatment of several respiratory inflammatory conditions 

and was previously characterized regarding its phenolic compounds (Silva et al., 2012; 

Zhu et al., 2013). Cymbopogon citratus (DC.) Stapf. infusion is used, in Portuguese 

traditional medicine, to treat mainly digestive system problems (Novais et al., 2004), 

and the antioxidant capacity of the infusion was also studied (Cheel, Theoduloz, 

Rodríguez & Schmeda-Hirschmann, 2005; Francisco et al., 2013). 

In a previous study, our research group described the antioxidant activity and phenolic 

composition in methanol/water extracts (80:20, v/v) of the mentioned species (Roriz, 

Barros, Carvalho, Santos-Buelga & Ferreira, 2014), but to our knowledge, there are no 

studies on mixtures of those plants. This is a very interesting topic as there are available 

commercial mixtures (dry material for infusions preparation) of P. tridentatum and C. 

citratus, as also G. globosa and C. citratus, in specific proportions (40:60%), for 

infusions preparation. Therefore, in the present work, we intend to validate those 

combinations by assessing the synergistic effects regarding antioxidant properties and 

compounds.  
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2. Material and Methods 

2.1. Samples and samples preparation 

Plant material of Pterospartum tridentatum (L.) Willk., Gomphrena globosa L. and 

Cymbopogon citratus (DC) Stapf. was purchased from Ervital, a Portuguese certificated 

company from Castro Daire (Portugal). P. tridentatum flowers were wild gathered in 

spring 2012 (respecting plant phenology and abundance). The other studied species 

were grown, also in 2012, with organic farming methods. The parts used were the 

flowers of G. globosa and leaves of C. citratus. Harvested plant parts were processed 

using in-storage and low temperature drying methods (solar heated air, average daily 

temperature around 30-32 ºC in shade conditions and controlled relative humidity). 

Botanical identification was confirmed by Ana Maria Carvalho, responsible of the 

medicinal plant collection of the Herbarium of the Escola Superior Agrária (BRESA), 

of the Polytechnic Institute of Bragança (Trás-os-Montes, Portugal). Samples for 

analysis were prepared by mixing dried and powdered (20 mesh) plant materials, in the 

following proportions: P. tridentatum (25%) + C. citratus (75%) and P. tridentatum 

(40%) + C. citratus (60%); G. globosa (25%) + C. citratus (75%) and G. globosa (40%) 

+ C. citratus (60%). Individual samples of each plant species were also analysed. 

For infusions preparation, each individual sample or mixture (1 g) was added to 250 mL 

of boiling distilled water, left to stand at room temperature for 5 min, and then filtered 

under reduced pressure. The obtained infusions were frozen and lyophilized. The 

lyophilized infusions were re-dissolved in distilled water, to obtain stock solutions of 10 

mg/mL. 

For each species, three samples were used and all the assays were carried out in 

triplicate. 
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2.2. Standards and reagents 

HPLC-grade acetonitrile was obtained from Merck KgaA (Darmstadt, Germany). 

Formic and acetic acids were purchased from Prolabo (VWR International, France). 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), was purchased from 

Matreya (PA, USA). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) was obtained from Alfa 

Aesar (Ward Hill, MA, USA). Phenolic standards were from Extrasynthèse (Genay, 

France). Water was treated in Milli-Q water purification system (TGI Pure Water 

Systems, Greenville, SC, USA). 

 

2.3. Analysis of phenolic compounds in the infusions 

Phenolic compounds were analysed by High-Performance Liquid Chromatography 

(HPLC, Hewlett-Packard 1100, Agilent Technologies, Santa Clara, CA, USA) as 

previously described by the authors (Roriz et al.,  2014). Double online detection was 

carried out in the diode array detector (DAD) using 280 nm and 370 nm as preferred 

wavelengths and in a mass spectrometer (MS, API 3200 Qtrap, Applied Biosystems, 

Darmstadt, Germany) connected to the HPLC system via the DAD cell outlet. The 

phenolic compounds were identified by comparing their retention time, UV-Vis and 

mass spectra with those obtained from standard compounds, when available. Otherwise, 

peaks were tentatively identified comparing the obtained information with available 

data reported in the literature. For quantitative analysis, a calibration curve for each 

available phenolic standard was constructed based on the UV signal. For the identified 

phenolic compounds for which a commercial standard was not available, the 

quantification was performed through the calibration curve of other compound from the 

same phenolic group. The results were expressed in mg per g of lyophilized infusion. 
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Betacyanins. Each sample (1 g) was extracted with 30 mL of methanol containing 0.5% 

trifluoroacetic acid (TFA), and filtered through a Whatman nº 4 paper. The residue was 

then re-extracted twice with additional 30 mL portions of 0.5% TFA in methanol. The 

combined extracts were evaporated at 35 ºC to remove the methanol, and re-dissolved in 

water. For purification, the extract solution was deposited onto a C-18 SepPak® Vac 3 

cc cartridge (Phenomenex), previously activated with methanol followed by water; 

sugars and more polar substances were removed by passing through 10 mL of water and 

betalain/betacyanin pigments were further eluted with 5 mL of methanol:water (80:20, 

v/v) containing 0.1% TFA. The extract was concentrated under vacuum, lyophilized, re-

dissolved in 1 mL of 20% aqueous methanol and filtered through a 0.22-µm disposable 

LC filter disk for HPLC analysis. Betacyanins were determined by HPLC as previously 

described by the authors (Roriz et al., 2014). Double detection was carried out by DAD, 

using 520 nm as the preferred wavelength, and in a MS connected to the HPLC system 

via the DAD cell outlet. The betacyanins were tentatively identified by comparing their 

UV-Vis and mass spectra with available data information reported in the literature. The 

quantification was performed using a calibration curve of gomphrenin (isolated in our 

laboratory). The results were expressed in mg per g of lyophilized infusion. 

 

2.4. Evaluation of antioxidant activity in the infusions 

DPPH radical-scavenging activity was evaluated by using an ELX800 microplate reader 

(Bio-Tek Instruments, Inc; Winooski, VT, USA), and calculated as a percentage of 

DPPH discolouration using the formula: [(ADPPH-AS)/ADPPH] × 100, where AS is the 

absorbance of the solution containing the sample at 515 nm, and ADPPH is the 

absorbance of the DPPH solution (Barros et al., 2013). Reducing power was evaluated 
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by the capacity to convert Fe3+ into Fe2+, measuring the absorbance at 690 nm in the 

microplate reader mentioned above (Barros et al., 2013). Inhibition of β-carotene 

bleaching was evaluated though the β-carotene/linoleate assay; the neutralization of 

linoleate free radicals avoids β-carotene bleaching, which is measured by the formula: 

β-carotene absorbance after 2h of assay/initial absorbance) × 100 (Barros et al., 2013). 

Lipid peroxidation inhibition in porcine (Sus scrofa) brain homogenates was evaluated 

by the decreasing in thiobarbituric acid reactive substances (TBARS); the color 

intensity of the malondialdehyde-thiobarbituric acid (MDA-TBA) was measured by its 

absorbance at 532 nm; the inhibition ratio (%) was calculated using the following 

formula: [(A - B)/A] × 100%, where A and B were the absorbance of the control and the 

sample solution, respectively (Barros et al., 2013). The results were expressed in EC50 

values (sample concentration providing 50% of antioxidant activity or 0.5 of absorbance 

in the reducing power assay). Trolox was used as positive control. 

 

2.5. Classification of additive, synergistic or antagonistic effects  

Theoretical values for antioxidant activity of the mixtures were calculated as weighted 

mean experimental EC50 values of the individual samples and considering additive 

contributions of individual species in each percentage; for instance, P. tridentatum 

(25%) + C. citratus (75%) EC50 = EC50 P. tridentatum × 0.25 + EC50 C. citratus × 0.75.  

The classification in additive (AD), synergistic (SN) or antagonistic (negative 

synergistic; AN) effects was performed as follow: AD: EC50 theoretical and 

experimental values reveal differences lower than 10%; SN: EC50 experimental values 

are more than 10% lower than theoretical values; AN: EC50 experimental values are 

more than 10% higher than theoretical values. The limit of 10% was chosen taking into 

account the coefficients of variation obtained in the replications of each antioxidant 
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activity assay. It should be noted that lower EC50 values mean greater antioxidant 

activity.  

 

3. Results and Discussion 

3.1. Phenolic profiles 

Phenolic compound profiles of the infusion extracts of P. tridentatum (Pt), G. globosa 

(Gg) and C. citratus (Cc) are shown in Figure 1. Data (retention time, λmax in the 

visible region, molecular ion and main fragment ions observed in MS2) obtained by 

HPLC-DAD-ESI/MS analysis regarding phenolic compounds and betacyanins 

identification and individual quantification in the dry extracts of the infusions are 

presented in Tables 1-3. 

All the compounds found in the infusions were already described and tentatively 

identified in a previous study carried out by our research group, but using methanolic 

extracts of the plants (Roriz et al., 2014). Nevertheless, it should be highlighted that 

some of the compounds previously identified in the methanolic extracts could not be 

found in the infusions studied herein, as the heating process inherent to infusion could 

destroy them (Samaniego-Sánchez et al., 2011). In particular, 7-O-methylgenistein 

(prunetin) that was described for P. tridentatum methanolic extract (Roriz et al., 2014), 

was not observed in its infusion (Table 1). Dihydroflavonol C-derivatives (namely peak 

1Pt, 43.04 mg/g of infusion) were also the major compounds found in P. tridentatum 

infusions (Table 1). The phenolic profile of infusions prepared from wild P. 

tridentatum was already described by some authors (Vitor et al., 2004; Paulo et al., 

2008); nevertheless, the results described herein for a commercial sample are more 

detailed (with a higher number of identified compounds, also indicating the 

concentration found for each compound- qualitative and quantitative analyses).  



10	  
	  

Regarding G. globosa (Table 2, Figure 1B and C), the qualitative profile in phenolic 

compounds of the infusion was similar to the one previously described for methanolic 

extract (Roriz et al., 2014) and for other infusions of the plant (Silva et al., 2012). The 

composition in betacyanins was also similar to the one described by Cai, Sun and Corke 

(2001) for an infusion prepared from a wild sample. Flavonoids continued to be the 

main phenolic compounds found in G. globosa, being kaempferol 3-O-rutinoside (peak 

12Gg, 0.89 mg/g of infusion) the main flavonol. Otherwise, gomphrenin III isomers were 

also the major betacyanins found (Table 2, Figure 1C). 

trans p-Coumaric acid and luteolin, previously found in C. citratus methanolic extract 

(Roriz et al., 2014), were not observed in the infusion (Table 3, Figure 1D). Otherwise, 

compound 2aCc, corresponding to the cis isomer of caffeic acid, was only detected in the 

infusion due to the heat treatment applied. The identity of that compound was 

established based on the observation that hydroxycinnamoyl cis derivatives are expected 

to elute before the corresponding trans ones, as previously checked in our laboratory 

(Barros, Dueñas, Carvalho, Ferreira & Santos-Buelga, 2012). Flavonoids were also the 

major group found in the infusion of C. citatus, being luteolin 2’’-O-deoxyhexosyl-6-C-

hexoside (peak 6Cc, 13.12 µg/g dw) the main compound (Table 3).  The phenolic 

characterization described in the present study was more detailed than the ones 

described by other authors (Figueirinha, Paranhos, Pérez-Alonso, Santos-Buelga & 

Batista, 2008; Figueirinha, Cruz, Francisco, Lopes & Batista, 2010; Marques & Farah, 

2009; Port’s, Chisté, Godoy, & Prado, 2013). 

 

3.3. Antioxidant activity of the infusions prepared from individual and mixed samples 

Herbal companies have been preparing mixtures of plants to consume as infusions with 

improved organoleptic parameters, in particular flavor. In fact, despite some healthy 

properties of P. tridentatum and G. globosa (as mentioned in the Introduction section), 
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their flavor is unpleasant for the majority of consumers. Therefore, the strategy is to add 

a pleasant flavored plant, such as C. citratus, to achieve a mixture with suitable 

organoleptic properties according to consumers' preferences. Furthermore, these 

mixtures can provide beneficial effects taking advantage on the synergism between 

plants, besides the improvement of flavor. In this perspective, there are available 

commercial mixtures (dry material for infusions preparation) of P. tridentatum + C. 

citratus and G. globosa + C. citratus in 40:60% proportion that demands scientific 

studies in order to validate these percentages of combination. We also studied other 

possibilities increasing the percentage of C. citratus to 75%, as it would not be 

recommended to increase the other species (P. tridentatum and G. globosa over 40%) 

due to the previous mentioned organoleptic and sensorial reasons.  

The infusions prepared from individual or mixed plants in different proportions gave 

high antioxidant activity namely, free radicals scavenging activity, reducing power, and 

lipid peroxidation inhibition (Table 4). The order of antioxidant efficacy of the 

individual samples in the four in vitro assays was P. tridentatum > C. citratus > G. 

globosa. Pterospartum tridentatum and G. globosa infusions showed, in general, higher 

antioxidant activity than methanolic extracts, while the opposite was observed for C. 

citratus (Roriz et al., 2014). Particularly, P. tridentatum showed higher DPPH 

scavenging activity than the infusions prepared from other commonly consumed herbs 

such as Camellia sinensis (L.) kuntze (EC50=250 µg/mL) (Pereira, Barros, Vilas-Boas, 

& Ferreira, 2013), Matricaria recutita L. (EC50=395 µg/mL) (Guimarães et al., 2013) 

and Melissa officinalis L. (EC50=190 µg/mL) (Dias, Barros, Sousa, & Ferreira, 2012). 

The highest activity observed for P. tridentatum can be related with the presence of 

dihydroflavonol and isoflavone derivatives. Indeed, the antioxidant properties of 

isoflavones and their role in the protection against diseases development have been 
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described (Ferguson et al., 2014). The antioxidant activity of C. citratus infusion could 

be attributed to the high concentration of flavonoids, especially apigenin and luteolin 

derivatives. Apigenin and luteolin, commonly found in different fruits, vegetables and 

herbs, have demonstrated to possess high antioxidant ability by scavenging free radicals 

(Galati, Moridani, Chan & O’Brien, 2001). Finally, G. globosa infusion that showed the 

lowest antioxidant potential, gave also the lowest concentration in phenolic compounds.  

Regarding infusions prepared with P. tridentatum and C. citratus in different 

proportions (25:75% or 40:60%), only synergistic effects were observed (Table 4), 

although the mixture with 40% of P. tridentatum and 60% of C. citratus showed greater 

antioxidant properties. This could be related with the higher percentage of P. 

tridentatum, the individual plant with the highest antioxidant activity. 

For the infusion prepared with 25% of G. globosa and 75% of C. citratus, the 

antagonistic effects predominated (reducing power and TBARS inhibition); an additive 

effect was observed for free radicals scavenging activity and synergism was only 

obtained for β-carotene bleaching inhibition (Table 4). Regarding the infusion prepared 

with 40% of G. globosa and 60% of C. citratus, synergistic effects were observed for 

free radicals scavenging activity and lipid peroxidation inhibition, but an antagonist 

effect was obtained for reducing power (Table 4). 

The phenolic compounds were further analysed in the infusions prepared from the two 

mixtures that showed the highest antioxidant activity: P. tridentatum (40%) + C. 

citratus (60%) and G. globosa (40%) + C. citratus (60%) (Table 5). In P. tridentatum 

(40%) + C. citratus (60%) infusion it can be observed a prevalence of the profile of P. 

tridentatum, even though this species is present in lower proportion (40%). This could 

be explained by the fact of P. tridentatum being the species with the highest 

concentration of phenolic compounds, mainly dihydroflavonol and isoflavone 
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derivatives, that are also present in high concentration in this mixture. The opposite 

occurs for the mixture G. globosa (40%) + C. citratus (60%); in this case, the 

predominant profile is from C. citratus (60%), presenting this species a higher phenolic 

content in comparison with G. gombosa. The phenolic profile obtained in the infusions 

prepared from those mixtures could also explain their highest antioxidant activity.  

Overall, P. tridentatum infusion displayed the highest antioxidant activity, followed by 

C. citratus and, finally, G. globosa. The dissimilarity in antioxidant potential is certainly 

related with their different composition in phenolic compounds. Synergism was the 

main effect observed among the tested mixtures, being more evident in the infusions 

prepared with the plants in proportion 40%:60% (either P. tridentatum and C. citratus; 

or G. globosa and C. citratus). The present study validates the combination of the 

studied plants in specific proportions to be commercialized for infusions preparation. 
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Figure Legends 

Figure 1. HPLC phenolic profiles of the infusions of (A)- P. tridentatum (recorded at 
280 nm); (B)- G. globosa (recorded at 370 nm); (C)- G. globosa betacyanin profile 
(recorded at 520 nm) and (D)- C. citratus (recorded at 370 nm). 
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Table 1. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and 

quantification of phenolic compounds in infusion extracts of P. tridentatum (Pt) (mean ± SD). 
 

	  

	  

	  

	  

 

 

 

 

 

 

 

 

 

 

nd- not detected 

Peak Rt (min) λmax 
(nm) 

Molecular ion 
[M-H]- (m/z) 

Tentative 
 identification 

Quantification  
(mg/g inf) 

1Pt 5.0 290,sh340 465 Dihydroquercetin 6-C-hesoxide 43.04 ± 0.65 
2Pt 6.1 294,sh346 465 Dihydroquercetin 6-C-hesoxide 2.74 ± 0.17 
3Pt 7.7 290,sh340 479 Myricetin-6-C-glucoside 12.87 ± 0.01 
4Pt 18.7 356 609 Quercetin deoxyhexosyl-hexoside 0.77 ± 0.01 
5Pt 18.9 356 609 Quercetin-3-O-rutinoside 2.10 ± 0.13 
6Pt 19.8 354 463 Quercetin-3-O-glucoside (isoquercitrin) 11.85 ± 0.05 
7Pt 20.2 354 463 Quercetin O-hexoside 5.81 ± 0.07 
8Pt 21.2 262,sh312 431 Genistein 7-O-glucoside (genistin) 3.53 ± 0.11 
9Pt 22.4 262,sh308 461 5,5’-Dihydroxy-3’-methoxy-isoflavone-7-O-β-glucoside 2.25 ± 0.05 
10Pt 24.6 260,sh332 431 Genistein-8-C-glucoside 1.28 ± 0.03 
11Pt 26.0 256,sh322 505 Methylbiochanin A/methylprunetin O-hexoside 1.65 ± 0.06 
12Pt 27.8 262,sh332 269 Genistein 3.08 ± 0.04 
13Pt 28.7 262,sh336 341 Methylbiochanin A/methylprunetin derivative 0.97 ± 0.05 
14Pt 29.0 252,sh328 607 Biochanin A O-hexoside-O-hexoside 0.72 ± 0.07 
15Pt 31.4 260,sh340 445 Biochanin A 7-O-glucoside (sissotrin) 0.60 ± 0.02 
16Pt 33.1 260,sh338 649 Biochanin A O-acetylhexoside-O-hexoside 0.31 ± 0.02 
17Pt 34.5 264,sh338 491 Biochanin A O-hexoside 4.79 ± 0.03 
18Pt 37.7 260,sh332 283 4’-O- Methylgenistein (biochanin A) 9.52 ± 0.00 
19Pt 38.6 262,sh334 283 7-O-Methylgenistein (prunetin) nd 
20Pt 39.5 262,sh338 299 7-O-methylorobol 1.45 ± 0.03 
21Pt 41.0 264,sh290 297 Methylbiochanin A/ methylprunetin 0.58 ± 0.01 

    Total flavonols 33.40 ± 0.28 
    Total dihydroflavonols 45.78 ± 1.42 
    Total isoflavone 30.72 ± 0.38 
    Total flavonoids 109.90 ± 1.32 
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Table 2. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and 

quantification of phenolic compounds and betacyanins in infusion extracts of G. globosa (Gg) (mean ± SD). 

Peak Rt (min) λmax 
(nm) 

Molecular ion 
[M-H]- (m/z) 

Tentative 
 identification 

Quantification  
(mg/g inf) 

1Gg 11.0 326 355 cis-Ferulic acid hexoside 0.37 ± 0.03 
2Gg 12.6 326 355 trans-Ferulic acid hexoside 0.52 ± 0.01 
3Gg 15.5 309 163 cis-p-Coumaric acid 0.09 ± 0.01 
4Gg 16.4 310 163 trans-p-Coumaric acid 0.41 ± 0.01 
5Gg 18.1 324 193 cis-Ferulic acid 0.20 ± 0.02 
6Gg 18.3 358 595 Quercetin 3-O-(6-pentosyl)-hexoside 0.08 ± 0.02 
7Gg 18.6 324 193 trans-Ferulic acid 0.92 ± 0.01 
8Gg 19.0 358 609 Quercetin 3-O-rutinoside 0.66 ± 0.01 
9Gg 19.2 346 725 Kaempferol 3-O-(2-pentosyl, 6-O-rhamnosyl)-hexoside 0.56 ± 0.06 

10Gg 19.9 358 463 Quercetin 3-O-glucoside 0.10 ± 0.01 
11Gg 21.1 350 579 Kaempferol 3-O-(2-pentosyl)-hexoside 0.19 ± 0.02 
12Gg 22.4 348 593 Kaempferol 3-O-rutinoside 0.89 ± 0.04 
13Gg 23.5 352 623 Isorhamnetin 3-O-rutinoside tr 
14Gg 23.9 350 447 Kaempferol 3-O-glucoside 0.31 ± 0.05 
15Gg 24.9 354 477 Isorhamnetin 3-O-glucoside tr 
16Gg 26.3 350 489 Kaempferol O-acetylhexoside 0.11 ± 0.03 
17Gg 31.9 340 639 Quercetin O-glucuronide-O-hexoside 0.04 ± 0.01 
18Gg 32.2 276,342 475 Gomphrenol  3-O-hexoside 0.20 ± 0.01 
19Gg 33.7 278,342 517 Gomphrenol  3-O-(6-acetyl)-hexoside 0.39 ± 0.04 
20Gg 34.6 352 593 Kaempferol 3-O-(2-rhamnosyl)-hexoside 0.10 ± 0.01 
21Gg 35.0 348 623 Kaempferol O-glucuronide-O-hexoside 0.12 ± 0.03 

    Total phenolic acids 2.51 ± 0.01 
    Total flavonoids 3.77 ± 0.32 
    Total phenolic compounds 6.28 ± 0.31 

Peak Rt (min) λmax 
(nm) 

Molecular ion 
[M+H]+ (m/z) Tentative identification Quantification 

(mg/g inf) 
22Gg 27.3 550 697 Gomphrenin II tr 
23Gg 29.2 550 697 Gomphrenin II tr 
24Gg 30.0 550 727 Gomphrenin III 0.21±0.01 
25Gg 32.0 550 697 Isogomphrenin II 0.01±0.00 
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 tr- traces 

26Gg 33.4 548 727 Isogomphrenin III 0.35±0.01 
27Gg 34.9 516 683 17-Descarboxy-amaranthin tr 

    Total betacyanins 0.57±0.02 
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Table 3. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and 

quantification of phenolic compounds in infusion extracts of C. citratus (Cc) (mean ± SD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

nd- not detected 

Peak Rt (min) λmax 
(nm) 

Molecular ion 
[M-H]- (m/z) 

Tentative 
 Identification 

Quantification 
(mg/g inf) 

1Cc 7.9 326 353 5-O-Caffeoylquinic acid 1.21 ± 0.05 
2Cc 10.3 326 179 Caffeic acid 0.27 ± 0.01 
2aCc 10.8 324 179 Caffeic acid 0.77 ± 0.01 
3Cc 12.3 350 579 Luteolin 6-C-hexosyl-8-C-pentoside  0.70 ± 0.03 
4Cc 14.6 336 563 Apigenin 6-C-pentosyl-8-C-hexoside  1.76 ± 0.03 
5Cc 15.0 350 563 Apigenin 6-C-pentosyl-8-C-hexoside  0.53 ± 0.01 
6Cc 15.6 352 593 Luteolin 2’’-O-deoxyhexosyl-6-C-glucoside  13.12 ± 0.03 
7Cc 16.0 352 447 Luteolin 6-C-glucoside 0.35 ± 0.01 
8Cc 16.1 350 549 Luteolin 6-C-pentosyl-8-C-pentoside  1.75 ± 0.01 
9Cc 17.0 310 163 trans-p-Coumaric acid  nd 

10Cc 17.6 356 549 Luteolin 6-C-pentosyl-8-C-pentoside  0.17 ± 0.03 
11Cc 18.6 328 577 Apigenin 2’’-O-deoxyhexosyl-C-hexoside 0.99 ± 0.01 
12Cc 20.3 348 593 Luteolin 7-O-neohesperoside 5.31 ± 0.26 
13Cc 20.5 350 447 Luteolin 7-O-glucoside 2.07 ± 0.15 
14Cc 21.6 352 563 Luteolin 2’’-O-deoxyhexosyl-C-pentoside  6.21 ± 0.36 
15Cc 22.0 350 417 Luteolin 6-C-pentoside 0.24 ± 0.02 
16Cc 24.9 350 575 Luteolin 2’’-O-deoxyosyl-6-C-(6-deoxy-pento-hexos-ulosyl) 4.19 ± 0.47 
17Cc 27.4 352 577 Methyl-luteolin 2’’-O- deoxyhexosyl-6-C-hexoside. 0.28 ± 0.02 
18Cc 34.4 350 285 Luteolin  nd 
    Total phenolic acids 2.24 ± 0.07 
    Total flavonoids 37.66 ± 1.07 
    Total phenolic compounds 39.90 ± 1.14 



24	  
	  

 

Table 4.	  Theoretical versus experimental EC50 values of antioxidant activity of the infusion extracts prepared from P. tridentatum and C. citratus 

or G. globosa and C. citratus combined in different proportions (mean ± SD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The theoretical values were obtained considering summative contributions of the individual species. A- Additive effect: theoretical and experimental EC50 values reveal differences below 10%. S- Synergistic effect: 
experimental EC50 values are more than 10% lower than theoretical values. AN - antagonist effect: experimental EC50 values are more than 10% higher than theoretical values. 

 Individual samples   P. tridentatum (25%) + C. citratus (75%) P. tridentatum (40%) + C. citratus (60%) 

EC50 values (µg/mL) P. tridentatum  C. citratus  Theoretical  
value 

Experimental 
value Effect Theoretical 

value 
Experimental 

value Effect 

DPPH scavenging activity  50±1 1231±8 936±3 663±19 S (29%) 759±2 67±2 S (91%) 

Reducing power 105±2 762±10 598±4 474±10 S (21%) 499±3 181±3 S (64%) 

β-carotene bleaching inhibition 266±25 1510±79 1199±33 235±9 S (80%) 1013±29 209±18 S (79%) 

TBARS inhibition 93±4 428±14 345±6 261±19 S (24%) 294±5 147±4 S (50%) 

 Individual samples G. globosa  (25%) + C. citratus  (75%) G. globosa  (40%) + C. citratus  (60%) 

EC50 values (µg/mL) G. globosa  C. citratus  Theoretical 
value 

Experimental 
value Effect Theoretical 

value 
Experimental 

value Effect 

DPPH scavenging activity  4305±74 1231±8 1999±24 1927±67 A (4%) 2460±34 1651±23 S (33%) 

Reducing power 916±7 762±10 968±12 1029±20 AN (28%) 957±11 942±13 AN (14%) 

β-carotene bleaching inhibition 4079±31 1510±79 2152±34 797±30 S (63%) 2538±30 505±45 S (80%) 

TBARS inhibition 2496±5 428±14 989±7 1126±16 AN (19%) 1291±6 1005±64 S (20%) 
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Table 5. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and 
quantification of phenolic compounds in combined infusion extracts of P. tridentatum (Pt) and C. citratus (Cc) or C. citratus and G. globosa (Gg) 
(mean ± SD). 

Peak Rt (min) λmax 
(nm) 

Molecular ion 
[M-H]- (m/z) 

Tentative 
 identification 

Quantification  
(mg/g inf) 

P. tridentatum (40%) + C. citratus (60%) 
1Pt 4.8 290,sh340 465 Dihydroquercetin 6-C-hesoxide 28.73±0.16 
2Pt 6.0 292,sh346 465 Dihydroquercetin 6-C-hesoxide 2.48±0.01 
3Pt 7.4 290,sh340 479 Myricetin-6-C-glucoside 16.38±0.04 
2Cc 10.8 326 179 Caffeic acid 1.14±0.02 
3Cc 13.2 354 579 Luteolin 6-C-hexosyl-8-C-pentoside  0.53±0.04 
6Cc 15.3 352 593 Luteolin 2’’-O-deoxyhexosyl-6-C-glucoside  1.90±0.10 
9Cc 16.6 310 163 trans-p-Coumaric acid 3.28±0.04 
4Pt 18.6 356 609 Quercetin deoxyhexosyl-hexoside 0.74±0.03 
5Pt 18.8 356 609 Quercetin-3-O-rutinoside 2.60±0.03 
6Pt 19.8 354 463 Quercetin-3-O-glucoside (isoquercitrin) 8.16±0.02 
7Pt 20.2 352 463 Quercetin O-hexoside 4.41±0.12 
8Pt 21.1 260,sh312 431 Genistein 7-O-glucoside (genistin) 3.28±0.24 
14Cc 21.6 352 563 Luteolin 2’’-O-deoxyhexosyl-C-pentoside  0.96±0.02 
9Pt 22.3 262,sh308 461 5.5’-Dihydroxy-3’-methoxy-isoflavone-7-O-β-glucoside 2.98±0.06 
10Pt 24.6 260,sh332 431 Genistein-8-C-glucoside 1.61±0.13 
16Cc 24.8 350 575 Luteolin 2’’-O-deoxyosyl-6-C-(6-deoxy-pento-hexos-ulosyl) 0.97±0.01 
11Pt 26.0 256,sh322 505 Methylbiochanin A/methylprunetin O-hexoside 2.62±0.02 
17Cc 27.2 356 577 Methyl-luteolin 2’’-O- deoxyhexosyl-6-C-hexoside. 0.30±0.02 
12Pt 27.8 260,sh332 269 Genistein 2.82±0.04 
13Pt 28.6 262,sh336 341 Methylbiochanin A/methylprunetin derivative 1.55±0.10 
14Pt 29.0 252,sh328 607 Biochanin A O-hexoside-O-hexoside 1.08±0.11 
15Pt 31.7 258,sh340 445 Biochanin A 7-O-glucoside (sissotrin) 0.99±0.11 
16Pt 33.2 260,sh338 649 Biochanin A O-acetylhexoside-O-hexoside 0.49±0.02 
17Pt 34.8 260,sh338 491 Biochanin A O-hexoside 3.05±0.10 
18Pt 37.8 260,sh332 283 4’-O- Methylgenistein (biochanin A) 8.81±0.36 
20Pt 38.8 262,sh338 299 7-O-methylorobol 1.29±0.02 
21Pt 39.7 264,sh290 297 Methylbiochanin A/ methylprunetin 1.05±0.09 
    Total phenolic acids 4.41±0.02 
    Total flavonoids 99.77±0.92 
    Total phenolic compounds 104.18±0.94 
    G. globosa  (40%) + C. citratus  (60%)  

Peak Rt (min) λmax 
(nm) 

Molecular ion 
[M-H]- (m/z) 

Tentative 
 identification 

Quantification  
(mg/g inf) 

1Cc 7.9 324 353 5-O-Caffeoylquinic acid 1.32±0.15 
2Cc 10.3 326 179 cis Caffeic acid 0.94±0.05 
2aCc 10.8 324 179 trans Caffeic acid 2.15±0.01 
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tr- traces 

2Gg 12.8 324 355 trans-Ferulic acid hexoside 0.60±0.06 
4Cc 14.6 332 563 Apigenin 6-C-pentosyl-8-C-hexoside  0.63±0.04 
5Cc 15.0 350 563 Apigenin 6-C-pentosyl-8-C-hexoside  0.55±0.01 
6Cc 15.6 350 593 Luteolin 2’’-O-deoxyhexosyl-6-C-glucoside  3.88±0.02 
7Cc 16.0 350 447 Luteolin 6-C-glucoside 1.12±0.03 
8Cc 16.1 350 549 Luteolin 6-C-pentosyl-8-C-pentoside  2.70±0.19 
4Gg/9 Cc 16.7 310 163 trans-p-Coumaric acid 4.39±0.15 
11Cc 18.6 350 577 Apigenin 2’’-O-deoxyhexosyl-C-hexoside 0.37±0.05 
7Gg 19.0 326 193 trans-Ferulic acid 1.73±0.08 
8Gg 19.1 358 609 Quercetin 3-O-rutinoside 0.23±0.03 
10Gg 20.0 354 463 Quercetin 3-O-glucoside 0.24±0.01 
12Cc 20.5 348 593 Luteolin 7-O-neohesperoside 1.79±0.12 
13Cc 20.8 350 447 Luteolin 7-O-glucoside 0.35±0.03 
14Cc 21.7 348 563 Luteolin 2’’-O-deoxyhexosyl-C-pentoside  1.77±0.06 
14Gg 22.5 348 447 Kaempferol 3-O-glucoside 0.48±0.01 
16Cc 24.9 352 575 Luteolin 2’’-O-deoxyosyl-6-C-(6-deoxy-pento-hexos-ulosyl) 1.07±0.02 
17Cc 27.4 350 577 Methyl-luteolin 2’’-O- deoxyhexosyl-6-C-hexoside 0.37±0.01 
    Total phenolic acids 11.13±0.27 
    Total flavonoids 15.56±0.74 
    Total phenolic compounds 26.69±1.00 

Peak Rt (min) λmax 

(nm) 
Molecular ion 
[M+H]+ (m/z) Tentative identification Quantification 

(mg/g inf) 
22Gg 27.1 550 697 Gomphrenin II tr 
23Gg 28.9 550 697 Gomphrenin II tr 
24Gg 29.8 550 727 Gomphrenin III 0.08±0.01 
25Gg 31.9 550 697 Isogomphrenin II tr 
26Gg 33.2 548 727 Isogomphrenin III 0.09±0.01 
27Gg 34.7 516 683 17-Descarboxy-amaranthin tr 
    Total betacyanins 0.17±0.02 


