

Towards Robustness and Self-Organization of ESB-based

Solutions using Service Life-cycle Management

Arnaldo António Pinto Pereira

Final project report submitted to the School of Technology and Management of

Bragança to obtain the degree of Master in Information Systems

Relatório final do trabalho de projeto apresentado à Escola Superior de Tecnologia

e Gestão de Bragança para obtenção do grau de Mestre em Sistemas de Informação

Supervised by / Orientado por

Prof. Doutor Paulo Leitão

Bragança

2014

Towards Robustness and Self-Organization of ESB-based

Solutions using Service Life-cycle Management

Arnaldo António Pinto Pereira

URL: www.ipb.pt/~arnaldo

E-mail: arnaldo@ipb.pt

Final project report submitted to the School of Technology and Management of

Bragança to obtain the degree of Master in Information Systems

Relatório final do trabalho de projeto apresentado à Escola Superior de Tecnologia

e Gestão de Bragança para obtenção do grau de Mestre em Sistemas de Informação

Supervised by / Orientado por

Prof. Doutor Paulo Leitão

Polytechnic Institute of Bragança
Campus de Santa Apolónia

5301-854 BRAGANÇA, PORTUGAL

December 2014

To my family, my girlfriend Prazeres and friends.

Acknowledgements

This work was supported by the European Union FP7 Programme under the ARUM project

No. 314056.

I would like to thank to the supervisor of this project, Professor Paulo Leitão, for the valu-

able guidance and advice, support and motivation. Completion of this work would not have

been possible without his help.

My gratitude also goes to my colleagues, Adriano, Filipe, Jonas, José and Nelson.

Finally a word of recognition to the School of Technology and Management of Bragança

for the availability and support given.

Abstract

Enterprise Service Bus (ESB) is a middleware infra-structure that provides a way to integrate

loosely-coupled heterogeneous software applications based on the Service Oriented Architec-

ture principles. The life-cycle management of services in such highly changing environments

is a critical issue for the component’s reuse, maintenance and operation.

This work introduces a service life-cycle management module that extends the traditional

functionalities with advanced monitoring and data analytics to contribute for the robustness

and self-organization of networks of clusters based on ESB platforms. The realization of this

module was embedded in the JBoss ESB, considering a sniffer mechanism to collect relevant

details of the service messages crossing the bus. A Liferay portal was created to display in-

formation related to the services’ health.

Keywords: Service Oriented Architecture, Enterprise Service Bus, Life-Cycle Management,

Robustness, Self-organization

Resumo

Um Barramento de Serviços (BS) é um middleware que oferece uma infraestrutura que per-

mite a integração de aplicações heterogéneas, com base nos princípios das Arquiteturas Orien-

tadas aos Serviços. A gestão do ciclo de vida dos serviços em tais ambientes altamente dinâ-

micos é um problema crítico com impacto na operação e manutenção do sistema, bem como

na capacidade de reutilização de componentes.

Este trabalho apresenta um módulo de gestão do ciclo de vida de serviços, que acrescenta

às funcionalidades tradicionais a monitorização avançada e a análise de dados, no sentido de

contribuir para a robustez e auto-organização de redes de agregados computacionais baseados

em plataformas BS. O módulo foi integrado no JBoss ESB e utilizou-se um sniffer para reco-

lher os detalhes das mensagens que se encontram a ser trocadas no barramento. Foi criado um

portal Liferay para apresentar a informação relativa à saúde dos serviços.

Palavras-chave: Arquitetura Orientada aos Serviços, Barramento de Serviços, Gestão do

Ciclo de Vida de Serviços, Robustez, Auto-organização

Contents

Acknowledgements v

Abstract vii

Resumo ix

List of figures xiii

List of tables xv

Acronyms xvii

1. Introduction 1

1.1. The Problem .. 2

1.2. Objectives and Contributions .. 2

1.3. Document Organization .. 3

2. Service Oriented Architecture and Enterprise Service Bus 5

2.1. SOA Principles .. 6

2.2. Service Oriented Multi-agent Systems .. 8

2.3. Web Services ... 10

2.4. Enterprise Service Bus .. 13

3. Life-cycle Management Module Specification and Implementation 17

3.1. Positioning in the ARUM Project ... 17

3.2. LCMM Architecture and Functions .. 19

3.2.1. Event Monitoring Component .. 20

3.2.2. Data Analysis Component .. 22

3.3. LCMM Contribute to Robustness and Self-organization .. 24

xii Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

3.4. LCMM Implementation and Operation ... 26

4. Results and Discussion 33

4.1. Experimental Setup ... 33

4.2. Peak on Demand Use Case .. 34

4.3. Inter-iESB Use Case .. 35

5. Conclusions and Future Work 39

5.1. Conclusions ... 39

5.2. Future Work .. 40

Bibliography 41

List of Figures

Figure 1: Common approaches for integrating SOA and MAS (adapted from [Mendes et al., 2009]).

 .. 9

Figure 2: SOA triangle with core Web services protocols [Mendes, 2011]. 11

Figure 3: Enterprise Service Bus architecture. ... 13

Figure 4: ESB message translation. .. 15

Figure 5: ARUM platform high level architecture (adapted from [Leitão et al., 2013]). 18

Figure 6: Architecture of the life-cycle management module. ... 20

Figure 7: Services provided by LCMM. .. 21

Figure 8: Algorithm for detecting patterns in the data analysis. .. 23

Figure 9: LCMM requested services. ... 24

Figure 10: Structural self-organization in a network of ESB clusters. 26

Figure 11: Screenshot of the LCMM user interface. .. 31

Figure 12: Detail of the LCMM user interface related to Data Analysis. 32

Figure 13: Failure rate evolution. ... 34

Figure 14: Degradation evolution. ... 35

Figure 15: JBoss ESB JMX Console with the deployed services in the first iESB. 35

Figure 16: JBoss ESB JMX Console with the deployed services in the second iESB. 36

Figure 17: Screenshot of Data Analysis component. ... 36

Figure 18: Services deployed in the second iESB after the system’s self-organization. 37

List of Tables

Table 1: Differences between MAS and SOA [Ribeiro et al., 2008]. .. 9

Table 2: Examples of W3C and OASIS standards. .. 13

Table 3: Some existing ESB products. ... 14

Table 4: Current and desirable features of JBoss ESB registry. .. 16

Table 5: Hardware and operating system. .. 33

Table 6: Versions of software components. ... 34

Acronyms

ACL Agent Communication Language

ADACOR Adaptive Holonic Control Architecture for Distributed Manufacturing Systems

ARUM Adaptive Production Management

BS Barramento de Serviços

CPAL-1.0 Common Public Attribution License Version 1.0

CPS Cyber-Physical Systems

DF Directory Facilitator

ESB Enterprise Service Bus

FIPA Foundation for Intelligent Physical Agents

FP7 7th Framework Programme for Research and Technological Development

GUI Graphical User Interface

ICT Information Communication Technology

iESB intelligent Enterprise Service Bus

IoT Internet of Things

IT Information Technology

JMS Java Message Service

KPI Key Performance Indicator

LCMM Service Life-cycle Management Module

LGPLv2.1 GNU Lesser General Public License, version 2.1

xviii Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

MAS Multi-Agent System

MES Manufacturing Execution System

OMG Object Management Group

QoS Quality of Service

REST REpresentational State Transfer

SAWSDL Semantic Annotations for WSDL and XML Schema

SOA Service Oriented Architecture

UDDI Universal Description, Discovery and Integration

UI User Interface

W3C World Wide Web Consortium

WS-BPEL Web Services Business Process Execution Language

WS-CDL Services Choreography Description Language

WSDL Web Service Description Language

XML eXtended Markup Language

Chapter 1

Introduction

The conceptualization of Internet of Things (IoT) paradigm and the implementation of com-

putational distributed systems reinforce the importance of the integration of heterogeneous

software applications across the enterprise Information Technology (IT) infrastructures. In

fact, according to a prediction report from Gartner on Application Integration [Gartner, 2012],

by 2016, midsize to large companies will spend 33% more on application integration than in

2013, and by 2018, more than 50% of the cost of implementing 90% of new large systems

will be spent on integration.

The advent of Service Oriented Architecture (SOA) [Erl, 2005] as a software paradigm for

distributed systems to integrate the enterprise IT infrastructures brought the concept of Enter-

prise Service Bus (ESB). An ESB is a software architecture model used for designing and

implementing the communication between interacting software applications in a SOA envi-

ronment. It is based on the idea to have a standard and structured middleware that offers a

way to connect and integrate loosely-coupled heterogeneous software components, named

services, reducing the complexity of application interfaces. In 2003, Gartner predicted that the

majority of large enterprises will have an ESB running to integrate their IT infrastructures in

the near future [Gartner, 2002]. Several ESB products are available in the form of commercial

and open source products, namely Oracle Service Bus, Mule ESB, Red Hat JBoss Enterprise

Application, TIBCO ActiveMatrix BusinessWorks and JBoss ESB.

The ESB solutions provide a distributed, modular and pluggable architecture, supporting

dynamic routing and mediation of services’ discovery, request and execution. The main bene-

fits of using an ESB platform is the increased flexibility and scalability, the interoperability

transparency and the existence of configuration rather integration coding. In fact, large-scale

distributed systems can benefit from an ESB middleware acting as a broker between the nu-

2 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

merous heterogeneous service providers/requesters, avoiding a potentially huge number of

point to point connections. However, the increased overhead and the possible slower commu-

nication speed are the main disadvantages of ESB solutions.

1.1. The Problem

One of the main functionalities of an ESB is to monitor and control the routing of messages

exchanged between services. The life-cycle management of deployed services, e.g., including

functions of monitoring and data analytics, is a crucial issue for the component reusing,

maintenance and monitoring [Wang et al., 2012], and in the context of ESBs, contributes to

increase the system robustness, reliability and fault-tolerance. In fact, the possibility to moni-

tor the performance of registered services and analyse the evolution of their behaviour, allows

to detect in advance the possible degradation or risk propagation, being possible to generate

warnings to implement proper corrective actions to mitigate the problem.

Currently, and related to the life-cycle management, the ESB platforms only provide basic

functions associated to the service registry and completely misses these kind of advanced

functionalities, leading to the need to have a life-cycle management functionality embedded in

the ESB that provides monitoring and data analytics of the registered services.

1.2. Objectives and Contributions

The objective of this work is to develop a life-cycle management module that may be embed-

ded in the traditional ESBs to provide advanced monitoring and data analytics of the regis-

tered and deployed services, contributing to achieve more robust, reliable and fault-tolerant

distributed SOA-based systems. Additionally, this functionality will also play an important

role in the self-organization of the network of software applications organized as clusters of

ESBs, in a dynamic and on-the-fly manner.

The ultimate goal of this work is the integration of this module in the final software delivera-

ble of ARUM (Adaptive Production Management)1 project that will be used in the final review

meeting that will be held at the Airbus industrial facility in Hamburg.

1 http://www.arum-project.eu/

Chapter 1. Introduction 3

1.3. Document Organization

This document is organized into five chapters, the first of which consists of this introduction

where the problem statement and objectives were defined. The rest of the work is organized

as follows:

Chapter 2 shows an overview of the state of the art about SOA and ESB, pointing to the

more technical aspects. Besides the description of SOA principles and the ESBs' characteris-

tics, it is presented a closer look in Service Oriented Multi-agent Systems and Web services.

Chapter 3 discusses the architecture of the intelligent enterprise service bus (iESB) devel-

oped under the ARUM project, and presents the specification of the life-cycle management

module as part of the iESB. The contribution of this module to achieve robustness and self-

organization is also detailed, as well as technical details related to the implementation of ex-

perimental prototype.

Chapter 4 discusses how the module contributes to achieve robustness and self-organization,

by presenting two experimental scenarios and analysing the achieved results.

At last, Chapter 5 rounds up the work with the conclusions and points out some future work.

Chapter 2

Service Oriented Architecture and En-
terprise Service Bus

IT infrastructure is suitable for the servicification by applying SOA approaches. Several suc-

cess examples can be reported related to the application of SOA principles, e.g., Amazon.com2

has gone from being an online retailer to be a dominant e-commerce platform by exposing

services to their partners using SOA [Harris, 2007]. In 2007, the use of SOA concepts allowed

the British Telecom3 to close down 800 systems [Lawson, 2011]. The Federal Aviation Ad-

ministration (FAA)4 used SOA and cloud computing for its National Airspace System, allow-

ing the implementation of the next generation of air traffic management systems [Hritz, 2012].

Beyond business applications, due to the promised agility and flexibility benefits, embed-

ded devices offering services in the context of Cyber-Physical Systems (CPS), namely in au-

tomation and manufacturing environments, are no novelty. In fact, as pointed out by [Mendes,

2011], SOA fits well with collaborative automation, “addressing distributed, modular and

reconfigurable automation systems whose behavior is regulated by the coordination of ser-

vices”.

This chapter includes a comprehensive summary of the state of the art related with SOA

and ESB. The option is to visit the central concepts without delays with historical considera-

tions, focusing the technical aspects.

2 http://www.amazon.com/
3 http://www.bt.com/
4 http://www.faa.gov/

6 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

2.1. SOA Principles

Browse by different contributions related to SOA can be a challenging job. Following the

popularity associated with SOA, there is an explosion of individual and institutional views

that try to encompass all concepts considered important. This is particularly evident observing

the contributions from the open standards organizations like OASIS5, the Object Management

Group (OMG)6, The Open Group7 [Kreger et al., 2009] and the World Wide Web Consortium

(W3C)8. Next lines present a high level overview of the SOA concepts, using as guidance the

contributes of those organizations.

The best way to frame the concept of SOA is starting to present the different definitions es-

tablished by the aforementioned organizations:

• “Service Oriented Architecture is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains. It provides a

uniform means to offer, discover, interact with and use capabilities to produce desired

effects consistent with measurable preconditions and expectations.” [OASIS, 2006]

• “Service-Oriented Architecture (SOA) is an architectural style that supports service-

orientation. Service-orientation is a way of thinking in terms of services and service-

based development and the outcomes of services.” [The Open Group, 2011a]

• SOA is “An architectural paradigm for defining how people, organizations and systems

provide and use services to achieve results.” [OMG, 2012]

• SOA is “A set of components which can be invoked, and whose interface descriptions can

be published and discovered.” [W3C, 2004a]

The same approach can be used for the concept of “service”, listing the different defini-

tions:

• Service is “The means by which the needs of a consumer are brought together with the

capabilities of a provider.” [OASIS, 2006]

5 https://www.oasis-open.org/
6 http://www.omg.org/
7 http://www.opengroup.org/
8 http://www.w3.org/

Chapter 2. Service Oriented Architecture and Enterprise Service Bus 7

• A service is a logical representation of a repeatable business activity that has a specified

outcome” (…) “and: Is self-contained; May be composed of other services; Is a “black

box” to consumers of the service”. [The Open Group, 2011a]

• “Service is defined as a resource that enables access to one or more capabilities. Here,

the access is provided using a prescribed interface and is exercised consistent with con-

straints and policies as specified by the service description. This access is provided us-

ing a prescribed interface and is exercised consistent with constraints and policies as

specified by the service description. A service is provided by an entity – called the pro-

vider – for use by others. The eventual consumers of the service may not be known to the

service provider and may demonstrate uses of the service beyond the scope originally

conceived by the provider.” [OMG, 2012]

• “A service is an abstract resource that represents a capability of performing tasks that

form a coherent functionality from the point of view of providers entities and requesters

entities. To be used, a service must be realized by a concrete provider agent.” [W3C,

2004a]

After processing the central documents of open standards organizations, it is clear that

SOA is a way to build distributed systems where the central piece is the concept of service

that service providers offers to service consumers. A service is the implementation of some

business logic made accessible through a well-defined interface (contract), hiding the imple-

mentation details.

Service consumers and providers must find themselves visible. Preconditions to visibility

are awareness, willingness (predisposition to interact) and reachability (participants must be

able to communicate with each other). Awareness prescribes that the service consumer must

have information that would lead to know of the service provider’s existence [OASIS, 2006].

Using discovery mechanisms, service consumers find the services they need, and interact di-

rectly with those services. These discovery mechanisms are not specified at this abstract level,

but two main approaches can be considered: using a registry or considering a peer-to-peer

solution [W3C, 2004b].

Services with more complexity can be composed by other services (in this context classi-

fied as atomic services). Two main types of composition are often distinguished: orchestra-

tion, in which one of the services schedules and directs the others [W3C, 2004a] and choreog-

8 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

raphy, in which the composed services interact and cooperate without the aid of a directing

service in a peer-to-peer way [W3C, 2005].

2.2. Service Oriented Multi-agent Systems

Notwithstanding the several interpretations, a possible definition for agent is [Leitão, 2009]:

“An autonomous component that represents physical or logical objects in the system, capable

to act in order to achieve its goals, and being able to interact with other agents, when it

doesn’t possess knowledge and skills to reach alone its objectives”. An agent exhibits auton-

omy and cooperation, and may have reasoning and learning capabilities. For instance, in the

manufacturing domain, an agent can represent a physical resource, such as a machine, a robot

or a pallet, or a logical object, such as a scheduler or an order. A Multi-Agent System (MAS)

can be defined as a set of agents that represent the objects of a system, capable of interacting,

in order to achieve their individual goals, when they don’t have enough knowledge and/or

skills to achieve individually their objectives [Leitão, 2009] (note that each agent has a partial

view of the system and none agent has a complete view of the system). These systems have

the capability to respond promptly and correctly to change, and differ from the conventional

approaches due to their inherent capabilities to adapt to emergence without external interven-

tion [Wooldridge, 2002].

The service-oriented principles can be integrated with MAS to enhance some functionality

and to overcome some of its limitations, namely in terms of interoperability and IT-vertical

integration. Indeed agents are already present in standard documents of SOA (e.g., see [OA-

SIS, 2006]) and, at the same time, services are already part of the agents’ specification [FIPA,

2002a]. In spite of being based on the same concept of provide a distributed approach to the

system, MAS and SOA present some important differences, namely in terms of computational

requirements and interoperability (see [Ribeiro et al., 2008] for a deeply study). These differ-

ences (presented in Table 1) highlight the complementary aspects of the two paradigms, sug-

gesting the benefits of combining them.

MAS SOA

Well established methods to describe the

behaviour of an agent

Focus is on detailing the public interface
rather than describing execution details

Chapter 2. Service Oriented Architecture and Enterprise Service Bus 9

Agents denote social ability regulated by

internal or environmental rules
Social ability is not defined for SOA

Most implementations are optimized for

LAN use

Supported by Web related technologies and

can seamlessly run on the Internet

Reactive to changes in the environment
Reconfiguration often requires reprogram-

ming

Interoperability heavily dependent on com-

pliance with FIPA-like standards

Interoperability assured by the use of gen-

eral purpose web technologies

Heavy computational requirements
High performance without interoperability

constraints

Table 1: Differences between MAS and SOA [Ribeiro et al., 2008].

Traditionally, the combination of MAS and SOA paradigms can be performed in different

ways, as illustrated in Figure 1 [Mendes et al., 2009].

Figure 1: Common approaches for integrating SOA and MAS (adapted from [Mendes et al., 2009]).

The first traditional option, illustrated in Figure 1.a), considers gateways to translate the

semantics from the agents world to the services world. This involves translate entries on Di-

rectory Facilitator (DF) to/from Universal Description, Discovery, and Integration (UDDI)

registry entries. Equally translated are agents’ skills to/from Web Service Description Lan-

guage (WSDL) instances. Finally, message translation is offered between Agent Communica-

tion Language (ACL) messages and SOAP9 messages [Greenwood et al., 2007]. However,

9 Since version 1.2, is not an acronym. SOAP was originally an acronym for Simple Object Access Protocol.

10 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

using the described approach, the design of truly service-oriented multi-agent systems are far

from the real expected potential and benefits. Another option, illustrated in Figure 1.b), was

introduced by [Mendes et al., 2009] and is characterized by the use of a set of autonomous

agents that use the SOA principles, i.e. oriented by the offer and request of services, to fulfil

industrial systems goals. An important note is that these service-oriented agents do not only

share services as their main form of communication, but also complement their own goals

with external provided services.

2.3. Web Services

The W3C defines the concept of Web service (WS) and offers a family of WS-* standards to

support the implementation of concrete SOA applications using the Internet as communica-

tion path between service consumers and service providers. As stated in the Web Services

Glossary [W3C, 2004]: “A Web service is a software system designed to support interopera-

ble machine-to-machine interaction over a network. It has an interface described in a ma-

chine-processable format (specifically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP-messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related standards.” This inflexible

view, requiring a specific implementation, elides the existence of other alternative Web ser-

vices technologies like the Representational State Transfer (REST) [Fielding, 2000] approach

(to be seen at the end of this subsection).

As stated, W3C Web services use XML messages following the SOAP standard [W3C,

2007a] that defines the message structure and is the base of service interoperability (dealing

with requests and responses). The common grammar used to describe the Web services is

determined by the Web Services Description Language (WSDL) [W3C, 2007b]. A client con-

necting to a Web service reads the WSDL file to determine the available operations.

Web services awareness typically is achieved by using a registry. UDDI [OASIS, 2004]

provides the infrastructure required to publish and discover services. The concomitant use of

SOAP, WSDL and UDDI allows to implement the more usual interaction schema for Web

services, as shown in Figure 2.

Chapter 2. Service Oriented Architecture and Enterprise Service Bus 11

Figure 2: SOA triangle with core Web services protocols [Mendes, 2011].

Initially, a service provider requests the registration of a service into a UDDI registry service

using a SOAP message (1). A service requester searches the service (2) and the UDDI registry

sends a reference of the service (3). The requester calls the service using the reference (4). Then,

after acceptance of the request (5), the interaction to consume the service starts (6).

With the emergence of numerous embedded devices with processing capabilities and con-

nection to the Internet has become natural to think on their participation in SOA solutions. To

cope with that reality, the Devices Profile for Web Services (DPWS) framework defines a

minimal set of implementation constraints to enable secure Web service messaging, discov-

ery, description, and eventing on resource-constrained endpoints [OASIS, 2009].

Languages for the description of complex operations allowing the composition of atomic

Web services are available. When business processes are being exposed as Web services, the

creation of new composite services using orchestration mechanisms may be described using

the Business Process Execution Language (WS-BPEL) [OASIS, 2007]. On the other hand,

choreography compositions (peer-to-peer collaborations) can be described using a choreogra-

phy language like the Web Services Choreography Description Language (WS-CDL) [W3C,

2005].

The Semantic Web is an extension of current Web in which information is given with a

well-defined meaning, allowing the performance of cooperative work between computers and

people [Agarwal, 2012]. A step towards the Semantic Web is the use of Semantic Web ser-

vices [Rodrigues, 2013]. Despite WSDL does not include semantics in the description of Web

12 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

services, the Semantic Annotations for WSDL and XML Schema (SAWSDL)10 [W3C,

2007c] allows to add annotations to WSDL elements with additional semantic content.

More WS/SOAP-related standards are available from W3C and OASIS (see Table 2 with

examples) but will not be addressed in this work.

Standard Description Organization

Web Services Ad-
dressing 1.0 - Core

Provides transport-neutral mechanisms to address
Web services and messages.

W3C

Web Services Con-
text (WS-Context)
v1.0

Provides a definition, a structuring mechanism,
and service definitions for organizing and sharing
context across multiple execution endpoints.

OASIS

Web Services Dy-
namic Discovery
(WS-Discovery)

Defines a discovery protocol to locate services. In
an ad hoc mode of operation, probes are sent to a
multicast group, and target services that match
return a response directly to the requester.

OASIS

Web Services Fed-
eration Language
(WS-Federation)

Defines mechanisms to allow different security
realms to federate, such that authorized access to
resources managed in one realm can be provided
to security principals whose identities and attrib-
utes are managed in other realms.

OASIS

Web Services Pol-
icy 1.5 - Frame-
work

Provides a general purpose model and corre-
sponding syntax to describe the policies of enti-
ties in a Web services-based system.

W3C

WS-Reliability
v1.1

SOAP-based protocol for exchanging SOAP
messages with guaranteed delivery, no duplicates,
and guaranteed message ordering.

OASIS

Web Services Se-
curity v1.1.1

Set of documents addressing security issues relat-
ed with Web services.

OASIS

10 SAWSDL was based on W3C member submission Web Service Semantics (WSDL-S). Other submissions

related with Semantic Web services were not considered by the W3C, namely OWL-S (http://www.w3.org/

Submission/OWL-S/), WSMO (http://www.w3.org/Submission/2005/06/), and SWSF (http://www.w3.org/Submission/

SWSF/). WSMO-Lite (http://www.w3.org/Submission/2010/05/) is currently under consideration.

Chapter 2. Service Oriented Architecture and Enterprise Service Bus 13

WS-Trust v1.4 Provides a framework for requesting and issuing
security tokens, and to broker trust relationships.

OASIS

Table 2: Examples of W3C and OASIS standards.

REST principles can be used to implement an alternative to SOAP-based Web services, the

so called RESTful Web services, currently used by big enterprises like Yahoo, Google, and

Facebook [Rodriguez, 2008]. REST is an architectural style, initially proposed by [Fielding,

2000], where data and functionality are identified using Uniform Resource Identifiers (URIs).

All REST requests are stateless, meaning that they are independent of previous ones (no

memory) and contains all the necessary information to make themselves understood at the

destination. Data and functionality are collectively called resources. Resources are manipulat-

ed using a uniform interface considering the create, read/retrieve, update and delete opera-

tions, mimicking HTTP PUT, GET, POST and DELETE methods [Pautasso et al., 2008]. De-

spite requests always be stateless, server responses can be statefull, meaning that the response

to a request is labelled as cacheable or non-cacheable [Fielding, 2000].

2.4. Enterprise Service Bus

SOA systems can be realized by an ESB that provides a layer on top of an implementation of

an enterprise messaging system [Ziyaeva et al., 2008], as shown in Figure 3.

Figure 3: Enterprise Service Bus architecture.

14 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

Several ESB products are available, in the form of commercial and open source products

(see Table 3), offering a variety of choices.

Product Url Licensing

JBoss ESB http://jbossesb.jboss.org/ LGPLv2.1

Microsoft Azure Service Bus
https://azure.microsoft.com/en-

us/services/service-bus/
Commercial

Mule ESB http://www.mulesoft.org/ CPAL-1.0

Oracle Service Bus

http://www.oracle.com/technetwork

/middleware/service-

bus/overview/index.html

Commercial

Petals ESB http://petals.ow2.org/ LGPLv2.1

Red Hat JBoss Enterprise Appli-

cation

http://www.redhat.com/en/technolo

gies/jboss-middleware/application-

platform

Commercial

TIBCO ActiveMatrix Business-

Works

http://www.tibco.com/products/aut

omation/application-

integration/activematrix-

businessworks/default.jsp

Commercial

WebSphere Enterprise Service

Bus

http://www-

03.ibm.com/software/products/en/w

sesb

Commercial

Table 3: Some existing ESB products.

Interoperability between heterogeneous systems requires information exchange. To be able

to communicate, each participant must understand the contents of incoming messages. Writ-

ing “glue code” to deal with the translation of data between systems is a case by case ap-

proach, since the inclusion of a novel system originates writing more “glue code”. This ap-

proach is time consuming and constitutes a major problem when dealing with solutions that

needs to scale. To deal with the translation of messages, ESB solutions provide specialized

adapters (Figure 4) offering the possibility of linking heterogeneous systems.

Chapter 2. Service Oriented Architecture and Enterprise Service Bus 15

Figure 4: ESB message translation.

In addition to protocol translation, other typically desirable capabilities of ESBs include,

without being exhaustive, Web service integration, process orchestration (typically via WS-

BPEL), hot deployment, versioning, lifecycle management and security (e.g. message encryp-

tion) [DiMaggio et al., 2012]. Conceptually, when using an ESB, everything is either a ser-

vice (not necessarily a Web service) or a message being sent between services. Synchronous

and asynchronous communications between services is available, the latter being the most

convenient to implement SOA compliant solutions.

It is recognized the importance of SOA type solutions to provide monitoring and manage-

ment capabilities at service level [Wang et al., 2012]. Currently the ESB platforms only pro-

vide basic functions associated to the service registry (see Table 4 with an example for a con-

crete solution) and completely misses more advanced functionalities.

Feature Description
JBoss ESB

support

Inquiry capabilities
Allows to perform searches in order to find a

service.
Yes

Publication capabilities Allows the publication of services. Yes

Replication capabilities
Permits the copy of information between

UDDI nodes.
Yes

Registry federation
Allows to interconnect different ESB regis-

tries.
Yes

Security policy
Permits the use of authentication tokens for

accessing services.
Yes

Subscription
Enables subscribers to “subscribe” to a UD-

DI registry, so they will receive information
Yes

16 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

on changes made to the registry.

Life-cycle monitoring and

management of deployed

services

If services fail or move elsewhere, their

EPRs that may reside within the registry will

remain until they are explicitly updated or

removed by an administrator.

No

Table 4: Current and desirable features of JBoss ESB registry.

At service level, an OASIS candidate standard specifies the following sub quality factors:

response time, maximum throughput, availability, accessibility and successability (see [OA-

SIS, 2012] for more details). Service life cycle is also discussed in a W3C note [W3C, 2004c].

Despite being good starting points to establish some KPIs (Key Performance Indicators) and

to describe some of the possible states for a service, complementing the monitoring and man-

agement capabilities with more advanced features allowing to detect in advance the possible

degradation or risk propagation is a step forward.

Chapter 3

Life-cycle Management Module Specifi-
cation and Implementation

ARUM is a collaborative project within the European Commission “Factory of the Future”

initiative and is funded under the 7th Framework Programme. The project addresses the de-

velopment of novel Information Communication Technology (ICT) solutions to handle new

challenges in the ramp-up production of complex and highly customized products, such as

aircraft and shipbuilding industries. This chapter addresses the specification and implementa-

tion of the Life-cycle Management Module, enlightening its contribution to fulfil the ARUM

project objectives.

3.1. Positioning in the ARUM Project

The ARUM project focus is on the development of mitigation strategies to respond faster to

unexpected events and the implementation of systems and tools for the decision support in planning

and operation. For this purpose, the ARUM platform comprises an intelligent ESB (iESB), which

enriches the traditional ESBs with a plethora of advanced modules, and provides a common infra-

structure for the integration of heterogeneous planning and scheduling tools (e.g., using the

MAS principles) and legacy systems, as illustrated in Figure 5. The main modules deployed in the

iESB are the Ontology service, Data Transformation Service, Sniffer, Node Management, and Life-

Cycle Management (note that only the latter is the responsibility of the author of this work).

The Ontology service module is responsible to gather the pieces of data from various lega-

cy systems, e.g., MES (Manufacturing Execution System) and ERP (Enterprise Resource

Planning), via the data transformation service, aggregate and store it in the local triple store

18 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

and then provide it on request to other services. Aiming to provide a common and explicitly

defined semantics of data, it was developed a set of OWL (Web Ontology Language)-based

ontologies for the description of production processes, shop floor topologies, resources and

their availability, scheduling strategies and disruption events [Inden et al., 2013].

Figure 5: ARUM platform high level architecture (adapted from [Leitão et al., 2013]).

The Data transformation service module is responsible for gathering data from legacy sys-

tems. The raw data, received from gateways using the legacy system specific interfaces and

communication protocols, is transformed into the ontological format (RDF – Resource Descrip-

tion Framework) using the OWL-based ontologies provided in the Ontology service.

The Sniffer module is responsible for capturing the flow of messages across the ESB and

related to the registered services, to support the monitoring and understanding of the overall

state of the system especially in a distributed environment with multiple interacting services

[Vrba et al., 2014].

The Node Management module supports the distributed management of iESB instances, al-

lowing the inter-connection among several ESBs [Marín et al., 2013].

The Dashboard acts as a user interface (UI), providing the user with the means for admin-

istration and monitoring of the overall ARUM solution (including all deployed tools). It

means for example the deployment of services, monitoring their parameters and health, visu-

Chapter 3. Life-cycle Management Module Specification and Implementation 19

alizing the message flow and statistics. The dashboard leverages the web portal technology,

which is a specially designed web page on which the information is displayed within dedicat-

ed user interface components – the portlets.

The Life-cycle management module performs the life-cycle monitoring and analysis of the

health of the services that are deployed within the iESB, supporting the dynamic, online and

on-the-fly actions to mitigate the degradation of their performance. This module will be deep-

ly analysed during the rest of this document.

3.2. LCMM Architecture and Functions

The Life-cycle Management Module (LCMM) performs the continuous monitoring and data

analytics of the services that are deployed within the iESB, allowing to dynamically be aware

of the current state and health of the services and to perform on-the-fly actions to increase the

services’ performance. In particular, the main features provided by the LCMM module are:

• Monitoring of the registered services’ health, providing on-line information related to

different KPIs, such as the failure rate and the occupancy.

• Detection of the registered services/tools that are not operating properly and analysis of

trend and patterns on the services’ performance, e.g., the detection of the degradation in

the service quality.

• Analysis of the risk propagation in case of service quality degradation.

• Suggestion of actions to maintain the system’s robustness and stability.

The LCMM module interacts with the Sniffer module to get data related to the exchanged

messages and the UI Dashboard to support the interaction with the user and particularly to

display the monitored info related to the health of registered services according to pre-defined

KPIs, as illustrated in Figure 6. Internally, the module comprises the Event Monitoring, Data

Analysis and local database.

20 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

Figure 6: Architecture of the life-cycle management module.

The interaction between the Event Monitoring and Data Analysis components allows to

trigger a more detailed data analytics and also to provide feedback regarding the adjustment

of the pooling rate for a specific service.

3.2.1. Event Monitoring Component

The Event Monitoring component performs mainly the collection of the data related to the

exchanged messages across the bus and the monitoring of the services’ health. Since the

Sniffer module is continuously sniffing the messages crossing the ESB and feeding its

database with the gathered information, the Event Monitoring component can request this

data using a proper and dynamic polling mechanism that is parameterized according to the

service frequency and priority. In fact, the polling time is adjusted according to the service

usage frequency, i.e. short polling time if the service is usually requested or larger time if

rarely requested. Also, an event-driven mechanism can be used to collect the data from the

Sniffer module, but this alternative can only be used if the Sniffer module provides the

subscription functionally.

The reasoning engine, embedded in this component, processes the gathered and historical

information in order to support the health monitoring of registered services by calculating

several pre-defined KPIs, namely in terms of performance and status, that will be exposed as

monitoring services to the user, namely through the UI dashboard. Examples are the detection

if the registered services are not alive by identifying not answered messages and behaviours

that not follows the service patterns.

Chapter 3. Life-cycle Management Module Specification and Implementation 21

Considering that ܶ = :௜݈݋݋ݐ} ݅ = 1, … , is the set of tools connected to the ESB and each {ܯ

tool offers a set of services ௜ܵ = :ij݁ܿ݅ݒݎ݁ݏ} ݆ = 1, … ௜ܰ}, the LCMM module provides a

plethora of services aiming to monitor several KPIs, as detailed as follows (also illustrated in

Figure 7):

Figure 7: Services provided by LCMM.

• getFailureRate: provides the failure rate of a service, calculated as follows, where fij is

the number of failures of the serviceij with reference to the last n requests of this service: ܴܨ௜௝ = ௜݂௝݊ (1)

• getDegradation: provides the information related to the degradation of the response time

of a service j of the tool i (δij). The degradation is the comparison of the response time of

the last two events. ܦ௜௝ = ௜௝௧ߜ − ௜௝(௧ିଵ) (2)ߜ

• getServiceOccupancy: provides the information related to the occupancy of a service.

The Service Occupancy (SOij) of a service j running in the tool i is defined as the ratio of

the overall time tij that the service is being used with the overall time Δi of the software

tool deployed on the system: ܵ ௜ܱ௝ = ௜߂௜௝ݐ (3)

• getToolOccupancy: provides the information related to the occupancy of a tool. The

Tool Occupancy (TOi) is defined has the ratio of the time ti that a given tool i is being

22 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

used (independent of the overlapping of services in the tool) with the overall time Δi of

the tool deployment on the system, as illustrated as follows: ܶ ௜ܱ = ௜߂௜ݐ (4)

• getToolOverallDemand: provides the information related to the load of a tool within the

overall ESB load. This load is the ratio of the number ri of requests to the services

running in tool i and the total number of requests to all tools, represented as follows: ܱܶܦ௜ = ∑௜ݎ ௞ெ௞ୀଵݎ (5)

• overallStatus: provides the overall service status considering all evaluation parameters,

namely the failure, degradation and occupancy, weighted according to pre-defined

values. This can be defined as a health scale, where 0 means “good”, 1 means a potential

“risk” or “problem”.

This component can also implement a pre-risk analysis allowing to determine potential

situations of service/tool failure. In this way, when a set of conditions are met, such as the

presence of historical problematic tools or the warnings coming from the evolution of service

KPIs, the component can signalize the critical service(s) and take more pro-active measures,

such as changing the warning threshold values. Beside this action enabling the early

signalling of potential hazardous situations, it additionally allows an anticipated taking of

known actions that permit to overcome the potential situation.

3.2.2. Data Analysis Component

The Data Analysis component aims to perform advanced reasoning, and particularly data

analytics, over the historical and current collected information related to the deployed

services. In fact, the functions provided by this component include:

• Analysis of trends to detect deviations or patterns in the quality and performance of the

service.

• Analysis of correlation among the execution of different services (also including the

correlation considering services deployed in other ESBs belonging to the same network).

• Analysis of the impact and risk propagation related to the degradation of a service.

Chapter 3. Life-cycle Management Module Specification and Implementation 23

The implementation of these functionalities may consider the use of data mining

techniques [Witten et al., 2011], namely clustering algorithms. Clustering is a technic used to

find, in an automatized way, hidden patterns in big quantities of data. Based on the k-means

clustering algorithm presented in [Kanungo et al., 2002], Figure 8 illustrates a strategy

integrated in LCMM to perform data analytics to discover the set of services that presents

more risk of abnormal behaviour.

Figure 8: Algorithm for detecting patterns in the data analysis.

A periodic or trigger event causes the Data Analysis component to start reading the values

collected by the Event Monitoring component in local database. The algorithm prescribes

choosing k arbitrary readings as the cluster centres. All readings are assigned to the most

similar centre based on the calculation of Euclidean distance between the read values. A next

step is related to the calculation of the most central point for each cluster (not necessarily

equal to the initial choice for the centre). Then, it is performed a new reassigning of all values

in conformity with the new centres. Finally, the services in the cluster with the worst centre

are signalized as services with possible degraded performance, and in this way will require a

close monitoring.

The output of these functions is the generation of warnings to the user, e.g., providing

useful information about the state and risk of a specific service and also suggesting the

execution of proper actions, such as unregistering the service (e.g., when the service is not

being used), re-starting of a tool (e.g., when the service is degraded or not responding) or

creating one clone (e.g., when the service/tool is too busy). These actions can also be

24 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

performed automatically, under well controlled conditions. In this case, as also illustrated in

Figure 9, and aiming to support the operation of the LCMM module, several services

provided by other modules in the iESB may be requested, namely amIAlive (to verify if the

service is alive), unregister (to unregister services by accessing the ESB Register Service),

relaunch (to restart the service provided by the tool) and clone (to clone a service/tool, e.g.,

when a service/tool is too busy). Note that the use of these services may require some kind of

privilege access to external tools.

Figure 9: LCMM requested services.

Learning is an important piece of the LCMM module, supporting the discovery in advance

of potential problems and the definition of the actions to be implemented when a risk is

detected (as well as in the adaptation of the warning threshold values). The LCMM module

should also consider self-monitoring and self-analysis in order to avoid its chaotic behaviour,

e.g., acting as a “cancer” deploying very rapidly services/tools and consequently overloading

the system.

3.3. LCMM Contribute to Robustness and Self-
organization

The implementation of the LCMM functionalities is a step forward to achieve intelligence in

the ESB platform and in this way to achieve an iESB. More concretely, this module may

contribute to achieve robustness, reliability, fault-tolerance and self-organization in this kind

of distributed systems, i.e. those based on the ESB middleware.

Robustness can be defined as the capability of a control system to remain working correctly

Chapter 3. Life-cycle Management Module Specification and Implementation 25

and relatively stable, even in presence of disturbances [Pereira et al., 2013]. Additionally, an

important issue is the system fault-tolerance, i.e. the capability to detect and tolerate internal

failures, in order to continue performing their operations without the need for an immediate

intervention. Being more tolerant, the downtime is reduced, and being able to detect and

diagnosis, the repair process is speed-up, increasing the robustness and productivity of

manufacturing systems [Leitão, 2011].

In such kind of distributed systems, based on offering and requesting services, the

inexistence of central nodes makes these systems more robust than the traditional centralized

systems, by eliminating the single point of failure problem. In fact, more decentralization

provides additional reliability due to the implicit redundancy and diversity and the non-

dependency of central control nodes [Pereira et al., 2013]. However, the existence of a

middleware infra-structure to integrate the IT software applications based on services can

somehow restrict the robustness and reliability of such systems. Note that reliability is the

ability of a system or component to perform its required functions under stated conditions for

a specified period of time. In this way, the LCMM module ensures the increase of robustness

and reliability by permitting an automatic discovery of problematic services, e.g., the ones

that may be failing, not responding properly or overloaded, and take/suggest appropriate

actions, such as launching a parallel service of the one that is identified to be near of failure,

to mitigate the possible problems.

Additionally, the LCCM module can greatly contribute as an underlying mechanism to

support self-organization at two levels: at service level or at iESB level. On the first case, the

LCCM module can act as a referee, issuing warning signals for the deployed services,

preventing erratic behaviour (e.g., when a tool is sending over the limit service requests). In

this case, and if the appropriate behaviour actions are implemented in the affected tool, the

tool can change its internal behaviour accordingly. A second example can be found in a tool

that has reduced utilization. In this case, and if a redundant tool is presented, the LCMM can

advise the less used tool to change into low profile mode or to, at the limit, un-plug itself from

the system, as seen in Figure 10 (hexagonal service).

At iESB level, the information mined by the LCMM can be used by the self-organization

mechanism as a way to internally (re)arrange structurally the iESB, by adding, modifying or

removing services (ellipse service in Figure 10), or (re)arranging the relations and constitution

of clusters in an inter-iESB perspective. This structural self-organization level allows the

26 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

dynamic clustering of iESBs, arranging themselves accordingly, aiming an uniform service

performance distribution where the performance of each individual iESB is increased by the

decrease of individual service/tool overload and failure rate.

Figure 10: Structural self-organization in a network of ESB clusters.

The aforementioned insights are drawn from the ADACOR2 control architecture. In the

proposed architecture, the individual behaviour of the entities [Barbosa et al., 2013a] are

dynamically changed, aiming a smooth evolution of the system, while a more drastic

evolution is achieved through the change of the entities relations [Barbosa et al., 2013b].

Similarly to what is achieved in the ADACOR2 approach, by combining these two self-

organization levels, the LCMM module will enable the achievement of a self-organized and

evolvable iESB system, once the overall system is able to adapt itself internally and

structurally to system demand fluctuations, internal services disruption or to iESB node

change.

Additionally, and also as indicated in the ADACOR2 control architecture, the LCMM must

undergo with a nervousness controller in order to avoid entering in a chaotic process when

taking decisions. This stabilization mechanism will prevent intermittent service/tool stop or

launch as also the constant (re)arrangement of the iESB clustering.

3.4. LCMM Implementation and Operation

The proposed LCMM was developed and deployed as a JBoss ESB service, encapsulating its

business logic into a set of Java classes. JBoss ESB [DiMaggio et al., 2012] is an ESB solu-

Chapter 3. Life-cycle Management Module Specification and Implementation 27

tion maintained under the umbrella of JBoss Community11 and intends to provide an open

source option for the construction of systems based on SOA principles.

The main constitutive part of the LCMM service is a chain of “Actions”. Basically, in the

JBoss ESB framework, an “Action” is a Java class that allows the ESB services to carry out

their tasks:

These tasks are realized after the processing of the data referring to the exchange of messages

between the registered services in the ESB. To accomplish that, it was implemented a connec-

tion to the Sniffer’s database, which is implemented using a MySQL database. Then a snap-

shot is created for each service and tool:

11 https://www.jboss.org/

package pt.ipb.arum.lcmm;
...
public class LcmmAction extends AbstractActionLifecycle {
 ...
 public Message process(Message message) {
 Message esbMessage =
 MessageFactory.getInstance().getMessage();
 esbMessage.getBody().add(engine.getSnapshots());
 return esbMessage;
 }
}

public Snapshot(String toolName, String serviceName) {
 this.timeStamp = new Timestamp(System.currentTimeMillis());
 this.toolName = toolName;
 this.serviceName = serviceName;
 this.failureRate = failureRate();
 this.degradation = degradation();
 this.serviceOccupancy = serviceOccupancy();
 this.toolOccupancy = toolOccupancy();
 this.serviceOverallDemand = serviceOverallDemand();
 this.toolOverallDemand = toolOverallDemand();
}

28 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

For example, below are shown some details of the implementation of failureRate method

used to create a snapshot.

The Weka12 solution, a data mining and machine learning API, was used to implement the

Data Analysis component.

12 http://www.cs.waikato.ac.nz/ml/weka/

private double failureRate() {
 ResultSet resultSet;
 int requests = 0;
 int replies = 0;
 double res = 0.0;
 try {
 resultSet =
 SnifferDB.getInstance().query("select count(*) ...");
 ...
 requests = resultSet.getInt(1);
 ...
 try {
 resultSet =
 SnifferDB.getInstance().query("select count(*) ...");
 ...
 replies = resultSet.getInt(1);
 ...
 if(requests != 0) {
 res = ((requests - replies) * 1.0) / (requests * 1.0);
 }
 return res;
}

...
 InstanceQuery instanceQuery = new InstanceQuery();
 instanceQuery.setDatabaseURL("jdbc:sqlite:./lcmm.db");
 instanceQuery.setQuery("select ...");
 Instances instances = instanceQuery.retrieveInstances();
...
 SimpleKMeans simpleKmeans = new SimpleKMeans();
...

Chapter 3. Life-cycle Management Module Specification and Implementation 29

The LCMM integrates with the ESB by using a configuration file, jboss-esb.xml that

appears below in a partial view:

The user interface, supporting the visualization of the data resulting from the processing

operation of the LCMM service, was developed as a web-based application that can be ac-

cessed via web browser. This web-based application was built on the Liferay Portal13 [Sarang,

2009] as a portlet. One of the central pieces used to construct the portlet was the Highcharts

13 http://www.liferay.com/

<?xml version="1.0"?>
<jbossesb parameterReloadSecs="5"
...
 <providers>
 <jms-provider connection-factory="ConnectionFactory"
 name="JMS">
 <jms-bus busid="serviceJMSChannel">
 <jms-message-filter dest-name="queue/lcmm_ESB_request"
 dest-type="QUEUE" />
...
 <services>
 <service category="ARUM-Admin" description="ARUM Life-Cycle Manage-
ment Module"
 name="LCMM">
 <listeners>
 <jms-listener busidref="serviceJMSChannel" name="ESBListener" />
 </listeners>
 <actions>
 <action class="pt.ipb.arum.lcmm.LcmmAction" name="LcmmAction"
 process="process" />
 <action name="notificationAction"
class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK" />
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyTopics">
 <topic jndiName="topic/lcmm_JMS_topic" />
...

30 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

3.014, which is a charting library written in HTML5 and JavaScript, allowing, among others,

to build dynamic charts. Next javascript code shows the instantiation of the overall status

chart:

The communication between the LCMM service and the Liferay portlet is achieved by us-

ing the Java Message Service (JMS). The JMS specification describes the exchange of mes-

sages between Java programs, in particular for the use in publish-subscribe solutions. Going

into details, it is used a JMS topic, allowing the delivery of messages to multiple subscribers:

14 http://www.highcharts.com/

<script type="text/javascript">
(function($){ //overallStatus
 $(function(){
 ...
 $('#overallStatusChart').highcharts({
 xAxis:{categories:[
 'Failure Rate',
 'Degradation',
 'Occupancy',
 'Overall Demand'],tickmarkPlacement:'on',lineWidth:0},
 ...
})(jQuery);
...

<?xml version="1.0"?>
<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">
 <queue name="lcmm_ESB_request">
 <entry name="queue/lcmm_ESB_request"/>
 </queue>
 <topic name="lcmmtopic">
 <entry name="topic/lcmm_JMS_topic"/>
 </topic>
</configuration>

Chapter 3. Life-cycle Management Module Specification and Implementation 31

Figure 11 illustrates a screenshot showing an overview of four KPIs related to the evolu-

tion of two services, namely the failure rate, the degradation, the occupancy and the overall

demand.

Figure 11: Screenshot of the LCMM user interface.

For each KPI, a chart with their evolution is shown. In the case of occupancy index, it is pre-

sented a joint view of services and tools. The continuous monitoring of these KPIs allows to

32 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

detect problems and to trigger warnings for the implementation of proper actions that will

mitigate their possible negative impact.

The part of the GUI related to the Data Analysis presents a table, as can be seen in Figure

12. The entries of each KPI for each service are presented in the form value [trend]. The

trend reflects the evolution of the indexes comparing with the previous instant and it is a value

in the set {equal, up, down}.

Figure 12: Detail of the LCMM user interface related to Data Analysis.

The “Actions” button, presented in the last column, allows to perform some administrative

tasks linked to the service to which it relates. The options “Visible” / “Not visible” allow the

user to decide whether to visualize the KPIs curves of the service in the Event Monitoring

part. The “Remove” option permits to instruct the Node Management module to unregister /

undeploy the service from the iESB. The "Clone" option instructs the Node Management

module to trigger the installation of a new instance of the service in another iESB with the

consequent removal of the service in the current iESB. These two features enable the system

to self-organize when the “Automatic” mode is activated. The default option is the “Manual”

mode. The column “Admin” allows to view the current state of the administrative options

enabled for each of the services. More details and screenshots are presented in Chapter 4.

Chapter 4

Results and Discussion

This chapter presents two experimental use cases which demonstrate the advantages of the

use of the LCMM towards the system’s robustness and self-organization. The first one is a

proof of concept that was presented and validated by the ARUM partners in the second year

meeting review. In the second use case, it is possible to appreciate more advanced features of

the module, namely the use of LCMM’s Data Analysis Component to achieve structural self-

organization in an ecosystem constituted by two iESBs.

4.1. Experimental Setup

The use cases were executed on a PC with the characteristics listed in Table 5.

Component Description

Processor Intel Core i5-3317U

Total memory 4 GB

Operating system Windows 8 x64

Table 5: Hardware and operating system.

The used software components were the ones listed in Table 6.

Component Version

Java 1.6 update 41

34 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

Ant 1.8.4

JBoss AS 6.1.0.Final

JBoss ESB 4.12

Liferay portal 6.1.1 GA2

Table 6: Versions of software components.

For the first use case one instance of the iESB was launched and for the second one two

iESBs were launched.

4.2. Peak on Demand Use Case

In this use case, two services were deployed into the iESB: the “ontology service” and the

“publish service”. The first was implemented to leave unanswered 1/5 of the requests and the

second to fail 1/10 of the requests. Each of the services has been requested by a client every

second. After 40 requests, the “publish service” began to fail 3/20 times and the requests doubles.

Figure 13: Failure rate evolution.

As showed in Figure 13, the failure rate of the “ontology service” converges to 20%, stabi-

lizing around this value. Observing the evolution of the failure rate curve of “publish service”,

it is possible to verify that, between 17:46:10 and 17:46:50, the failure rate is increased from

10% to 15%. In parallel (seeing the chart in Figure 14), it is possible to observe a degradation

of the response time of the “ontology service” and “publish service” after 17:46:00, which

may be explained by a peak on the demand using the bus.

Chapter 4. Results and Discussion 35

Figure 14: Degradation evolution.

However, both services recover after a while as shown by the negative values in the chart.

The continuous monitoring of these KPIs allows to detect these problems and to trigger warn-

ings for the implementation of proper actions that will mitigate their negative impact.

4.3. Inter-iESB Use Case

The objective of the second use case is to demonstrate the use of Data Analysis component.

Two instances of the iESB were launched and joined using the Node Management module

present in each of them. In the first iESB, 30 services were deployed, as illustrated in Figure 15.

Figure 15: JBoss ESB JMX Console with the deployed services in the first iESB.

36 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

The services si, i = 10, 20, 30 have been conditioned to fail 1/10 of the requests and for the

other services were not forced any failure. For each service has sent a request every second. In

the second iESB were running the natives services along with the LCMM and the Node Man-

agement module (see Figure 16).

Figure 16: JBoss ESB JMX Console with the deployed services in the second iESB.

After letting the system to evolve for 10 minutes, it was made the screenshot of the LCMM

module shown in Figure 17.

Figure 17: Screenshot of Data Analysis component.

Chapter 4. Results and Discussion 37

It should be noted that the occupancy is increasing for the most problematic service (i.e.

service 30) and that the automatic mode option was selected in order to be the system to ad-

dress the recovery from problematic situations. In automatic mode, after detecting a problem,

the LCMM sends messages to the Node Management module whenever appropriate. One of

the possible requests is the uninstall of a service within a node (in this case in the first iESB)

and the installation/registration of the service in another available node (in this case the sec-

ond iESB). The Node Management module deploys and undeploy the packages containing the

files of services by copy/delete involving the file system and the deployment folder of the

nodes.

After setting the automatic mode for the most troublesome service, the system was allowed

to evolve further 5 minutes. Figure 18 shows a detail of the list of services deployed on the

second iESB. As can be seen, the service30 is now installed/registered in the second iESB.

Figure 18: Services deployed in the second iESB after the system’s self-organization.

This demonstrates the ability of the LCMM to detect problematic situations and trigger ac-

tions in Node Management module, allowing the system's self-organization in an automated

way.

Chapter 5

Conclusions and Future Work

The use of ESB middleware allows to implement distributed systems that integrate loosely-

coupled heterogeneous IT infra-structures. ESB provides several functionalities, namely the

monitor and control of the routing of messages exchanged between software applications that

expose their functionalities using services. Related to the life-cycle management of services,

the ESB usually only provides basic functions associated to the service registry and complete-

ly misses advanced functionalities (e.g., data analytics).

5.1. Conclusions

This document described a service life-cycle management module that extends the traditional

ESB features to provide advanced monitoring capabilities and data analytics to the registered

services, contributing to achieve more robust and self-organized SOA-based systems.

The proposed module was implemented as a JBoss ESB service, using Java, and the user

interface was developed as a web-based application built on the Liferay Portal. Several func-

tions were implemented allowing to monitor the health of services according to pre-defined

KPIs and also to detect trend and patterns in the service performance.

The experimental implementation allowed a proof of concept, by exploring two use cases

related to the ARUM project. In the first one, it was observed the effect of a peak on demand

and their detection by LCMM, enlightening the utility of the Event Monitoring component. In

the second use case, it was observed the system's self-organization induced by LCMM after

the detection of the services with less performance. Both use cases demonstrate the usefulness

of LCMM to make the system more robust and self-organized.

40 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

5.2. Future Work

Approaching the end of the ARUM research project in late 2015, the partners’ planning and

scheduling tools will be finished and more data obtained in the real context will be available.

Richer scenarios will be used in the ARUM Final Review Meeting that will be held at the

Airbus industrial facility in Hamburg. This will allow the creation of other experimental use

cases. On the other hand, the availability of more historical data will allow to perform mas-

sive tests using the developed module.

Another issue is related to the implementation of more powerful data mining techniques

supporting the data analytics performed by the LCMM’s Data Analysis Component. In paral-

lel, the development of learning techniques will allow the system to make autonomous deci-

sions in an automated manner.

The FIPA Quality of Service (QoS) Ontology [FIPA, 2002b] provides basic vocabulary for

QoS related with the FIPA Message Transport Service [FIPA, 2002c]. Taking FIPA QoS as

starting point, will be developed an ontology encompassing the KPIs presented in LCMM’s

Event Monitoring Component.

Bibliography

[Agarwal, 2012] P. R. Agarwal, “Semantic Web in Comparison to Web 2.0”, in Third Inter-

national Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 558-563,

2012.

[Barbosa et al., 2013a] J. Barbosa, P. Leitão, E. Adam, D. Trentesaux, “Self-Organized Ho-

lonic Multi-agent Manufacturing System: The Behavioural Perspective”, in Proceedings of

the IEEE International Conference on Systems, Man, and Cybernetics (SMC’13), pp.3829-

3834, 2013.

[Barbosa et al., 2013b] J. Barbosa, P. Leitão, E. Adam, D. Trentesaux, “Structural Self-

organized Holonic Multi-Agent Manufacturing Systems”, in Industrial Applications of Holon-

ic and Multi-Agent Systems (HoloMAS’13), Lecture Notes in Computer Science, vol. 8062,

Springer pp. 59-70, 2013.

[DiMaggio et al., 2012] L. DiMaggio, K. Conner, M. B. Kumar and T. Cunningham, JBoss

ESB Beginner's Guide. Packt Publishing, 2012.

[Erl, 2005] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and Design.

Prentice-Hall, 2005.

[Fielding, 2000] Roy Thomas Fielding, Architectural Styles and the Design of Network-

Based Software Architectures [Ph.D. Dissertation]. University of California, Irvine, 2000.

[FIPA, 2002a] Foundation for Intelligent Physical Agents (2002). FIPA Abstract Architecture

Specification [Online]. Available at: http://www.fipa.org/specs/fipa00001/. [Accessed: Novem-

ber 2014].

[FIPA, 2002b] Foundation for Intelligent Physical Agents (2002). FIPA Quality of Service On-

tology Specification [Online]. Available at: http://www.fipa.org/specs/fipa00094/. [Accessed:

November 2014].

42 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

[FIPA, 2002c] Foundation for Intelligent Physical Agents (2002). FIPA Agent Message

Transport Service Specification [Online]. Available at: http://www.fipa.org/specs/fipa00067/.

[Accessed: November 2014].

[Gartner, 2002] Gartner, Inc. Predicts 2003: Enterprise Service Buses Emerge. 2002.

[Gartner, 2012] Gartner Inc. Predicts 2013: Application Integration. 2012.

[Greenwood et al., 2007] Dominic Greenwood, Margaret Lyell, Ashok Mallya, and Hiroki

Suguri, “The IEEE FIPA approach to integrating software agents and web services”, in Pro-

ceedings of the 6th international joint conference on Autonomous agents and multiagent sys-

tems (AAMAS '07), pp 1412-1418, 2007.

[Harris, 2007] Robin Harris (2007). SOA done right: the Amazon strategy [Online]. Available:

http://www.zdnet.com/article/soa-done-right-the-amazon-strategy/. [Accessed: December 2014].

[Hritz, 2012] Michael Hritz (2012). SOA, Cloud and Services Technology In the FAA National

Airspace System [Online]. Available: http://www.infoq.com/presentations/SOA-Cloud-Services-

FAA?utm_source=infoq&utm_medium=related_content_link&utm_campaign=relatedConten

t_presentations_clk. [Accessed: November 2014].

[Inden et al., 2013] U. Inden, N. Mehandjiev, L. Mönch, P. Vrba, “Towards an Ontology for

Small Series Production”, Mařík, V., Martinez Lastra, J. L., Skobelev P. (eds): Industrial Ap-

plications of Holonic and Multi-Agent Systems, Springer Verlag Berlin-Heidelberg, LNCS

8062, pp. 128-139, 2013.

[Kanungo et al., 2002] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silver-

man, A.Y. Wu, “An Efficient k-means Clustering Algorithm: Analysis and Implementation”,

in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, n.7, pp. 881-892,

2002.

[Kreger et al., 2009] H. Kreger, J. Estefan (2009). Navigating the SOA Open Standards Land-

scape Around Architecture, Joint White Paper from OASIS, OMG, and The Open Group

[Online]. Available at: https://www.oasis-open.org/committees/download.php/32911/wp_soa_

harmonize_ d1.pdf. [Accessed: November 2014].

Bibliography 43

[Lawson, 2011] Loraine Lawson (2011). Data-driven Decisions a Best Practice, but Still Not

Mainstream [Online]. Available: http://www.itbusinessedge.com/cm/blogs/lawson/the-three-

best-examples-of-successful-soas/?cs=16305. [Accessed: November 2014].

[Leitão, 2009] P. Leitão, “Agent-based Distributed Manufacturing Control: A State-of-the-art

Survey”, in International Journal of Engineering Applications of Artificial Intelligence, 22(7):

979-991, 2009.

[Leitão, 2011] P. Leitão, “A Holonic Disturbance Management Architecture for Flexible Man-

ufacturing Systems”, in International Journal of Production Research, vol. 49, n.5, pp 1269-

1284, 2011.

[Leitão et al., 2013] P. Leitao, J. Barbosa, P. Vrba, P. Skobelev, A. Tsarev, D. Kazanskaia,

“Multi-agent System Approach for the Strategic Planning in Ramp-up Production of Small

Lots”, in IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 4743-

4748, 2013.

[Marín et al., 2013] C. A. Marín, L. Mönch, L. Liu, N. Mehandjiev, G. V. Lioudakis, D. Ka-

zanskaia, V. Chepegin, “Application of Intelligent Service Bus in a Ramp-up Production Con-

text”, CAiSE 2013; June 17-21 2013, Valencia, Spain.

[Mendes et al., 2009] J. M. Mendes, P. Leitão, F. Restivo and A. W. Colombo, “Service-

oriented Agents for Collaborative Industrial Automation and Production Systems”, in Pro-

ceedings of the 4th International Conference on Industrial Applications of Holonic and Multi-

Agent Systems (HoloMAS’09), V. Marik, T. Strasser and A. Zoitl (eds), LNAI 5696, Springer,

pp. 1-12, 2009.

[Mendes, 2011] J. M. Mendes, Engineering Framework for Service-oriented Automation Sys-

tems [Ph.D. Dissertation]. Faculdade de Engenharia da Universidade do Porto, Porto, 2011.

[OASIS, 2004] OASIS (2004). UDDI Version 3.0.2 [Online]. Available at: http://www.uddi.org/

pubs/uddi_v3.htm. [Accessed: November 2014].

[OASIS, 2006] OASIS (2006). Reference Model for Service Oriented Architecture 1.0 [Online].

Available at: http://docs.oasis-open.org/soa-rm/v1.0/. [Accessed: November 2014].

[OASIS, 2007] OASIS (2007). Web Services Business Process Execution Language Version

2.0 [Online]. Available at: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. [Accessed:

November 2012].

44 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

[OASIS, 2009] OASIS (2009). Devices Profile for Web Services Version 1.1 [Online]. Available

at: http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.docx. [Accessed: No-

vember 2012].

[OASIS, 2012] OASIS (2012). Web Services Quality Factors Version 1.0 [Online]. Available

at: http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.doc. [Ac-

cessed: December 2012].

[OMG, 2012] Object Management Group (2012). Service Oriented Architecture Modeling Lan-

guage (SoaML), Version 1.0.1 [Online]. Available at: http://www.omg.org/spec/SoaML/1.0.1/

[Accessed: November 2012].

[Pautasso et al., 2008] C. Pautasso, O. Zimmermann, F. Leymann, “RESTful Web Services

vs. “Big” Web Services: Making the Right Architectural Decision”, in Proceedings of the

17th international conference on World Wide Web (WWW '08), pp. 805-814, 2008.

[Pereira et al., 2013] A. Pereira, N. Rodrigues, J. Barbosa, P. Leitão, “Trust and Risk Man-

agement Towards Resilient Large-scale Cyber-Physical Systems”, in Proceedings of the IEEE

International Symposium on Industrial Electronics (ISIE’13), May 28-31, Taipei, Taiwan,

2013.

[Ribeiro et al., 2008] L. Ribeiro, J. Barata, P. Mendes, “MAS and SOA: Complementary Au-

tomation Paradigms”, in IFIP International Federation for Information Processing, vol. 266,

Springer Boston, pp. 259-268, 2008.

[Rodrigues, 2013] N. Rodrigues, “Towards Interoperability with Ontologies and Semantic

Web Services in Manufacturing Domain”, in Doctoral Symposium in Informatics Engineering

- DSIE'13, pp. 129-137, 2013.

[Rodriguez, 2008] A. Rodriguez (2008). RESTful Web services: The basics [Online]. Availa-

ble at: http://www.ibm.com/developerworks/library/ws-restful/. [Accessed: December 2014].

[Sarang, 2009] P. Sarang, Practical Liferay: Java-based Portal Applications Development.

Apress, 2009.

[The Open Group, 2011a] The Open Group (2011). Using TOGAF to Define and Govern Service-

Oriented Architectures [Online]. Available at: https://www2.opengroup.org/ogsys/jsp/publications/

PublicationDetails.jsp?publicationid=12390. [Accessed: November 2014].

Bibliography 45

[The Open Group, 2011b] The Open Group (2011). The Open Group Service Integration Ma-

turity Model (OSIMM), Version 2 [Online]. Available at: https://www2.opengroup.org/ogsys/

jsp/publications/PublicationDetails.jsp?publicationid=12450. [Accessed: November 2014].

[Vrba et al., 2014] P. Vrba, P. Kadera, M. Myslík, M. Klíma, “JBoss ESB Sniffer - Message

Flow Visualization for Enterprise Service Bus”, in Proceedings of the IEEE International

Symposium on Industrial Electronics (ISIE’14), 2014.

[W3C, 2004a] World Wide Web Consortium (2004). Web Services Glossary [Online]. Avail-

able at: http://www.w3.org/TR/ws-gloss/. [Accessed: November 2014]

[W3C, 2004b] World Wide Web Consortium (2004). Web Services Architecture [Online].

Available at: http://www.w3.org/TR/ws-arch/. [Accessed: November 2014]

[W3C, 2004c] World Wide Web Consortium (2004). Web Service Management: Service Life

Cycle [Online]. Available at: http://www.w3.org/TR/wslc/. [Accessed: December 2014]

[W3C, 2005] World Wide Web Consortium (2005). Web Services Choreography Description

Language Version 1.0 [Online]. Available at: http://www.w3.org/TR/ws-cdl-10/. [Accessed:

November 2014]

[W3C, 2007a] World Wide Web Consortium (2007). SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition) [Online]. Available at: http://www.w3.org/TR/soap12-part1/.

[Accessed: November 2014]

[W3C, 2007b] World Wide Web Consortium (2007). Web Services Description Language (WSDL)

Version 2.0 Part 1: Core Language [Online]. Available at: http://www.w3.org/TR/wsdl20.

[Accessed: November 2014]

[W3C, 2007c] World Wide Web Consortium (2007). Semantic Annotations for WSDL and

XML Schema [Online]. Available at: http://www.w3.org/TR/sawsdl/. [Accessed: November

2014]

[Wang et al., 2012] B. Wang, X. Zhou, G. Yang, Y. Lou, “Service Lifecycle Management in

Distributed JBI Environment”, Web Information Systems and Mining, Lecture Notes in

Computer Science, Volume 7529, pp 431-438, 2012.

[Witten et al., 2011] H. Witten, Eibe Frank, and Mark A. Hall, Data Mining: Practical Ma-

chine Learning Tools and Techniques (3rd ed.). Morgan Kaufmann Publishers, San Francisco,

2011.

46 Towards Robustness and Self-Organization of ESB-based Solutions using Service Life-cycle
Management

[Wooldridge, 2002] M. Wooldridge, An Introduction to Multi-Agent Systems. John Wiley &

Sons, 2002.

[Ziyaeva et al., 2008] G. Ziyaeva, Eunmi Choi, Dugki Min, “Content-Based Intelligent Rout-

ing and Message Processing in Enterprise Service Bus”, in International Conference on Con-

vergence and Hybrid Information Technology, ICHIT '08, pp.245-249, 2008.

