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Cluster Stability as a New Method to Assess 
Changes in Performance and its Determinant Factors 

Over a Season in Young Swimmers

Jorge E. Morais, António J. Silva, Daniel A. Marinho, Ludovic Seifert, and Tiago M. Barbosa

Purpose: To apply a new method to identify, classify, and follow up young swimmers based on their performance and its 
determinant factors over a season and analyze the swimmers’ stability over a competitive season with that method. Methods: 
Fifteen boys and 18 girls (11.8 ± 0.7 y) part of a national talent-identification scheme were evaluated at 3 different moments 
of a competitive season. Performance (ie, official 100-m freestyle race time), arm span, chest perimeter, stroke length, swim-
ming velocity, speed fluctuation, coefficient of active drag, propelling efficiency, and stroke index were selected as variables. 
Hierarchical and k-means cluster analysis were computed. Results: Data suggested a 3-cluster solution, splitting the swimmers 
according to their performance in all 3 moments. Cluster 1 was related to better performances (talented swimmers), cluster 2 
to poor performances (nonproficient swimmers), and cluster 3 to average performance (proficient swimmers) in all moments. 
Stepwise discriminant analysis revealed that 100%, 94%, and 85% of original groups were correctly classified for the 1st, 2nd, 
and 3rd evaluation moments, respectively (0.11 ≤ Λ ≤ 0.80; 5.64 ≤ χ2 ≤ 63.40; 0.001 < P ≤ .68). Membership of clusters was 
moderately stable over the season (stability range 46.1–75% for the 2 clusters with most subjects). Conclusion: Cluster stability 
is a feasible, comprehensive, and informative method to gain insight into changes in performance and its determinant factors in 
young swimmers. Talented swimmers were characterized by anthropometrics and kinematic features.
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Two of the most interesting research topics in the field of sports 
performance, and specifically in competitive swimming, are the 
identification of performance-determinant factors and performance 
modeling. Several research groups have focused on identifying the 
main performance determinants and how they interplay to improve 
performance. Performance of young swimmers is influenced by 
growth and maturation.1 Biological maturation may promote 
changes in their biomechanics, motor control, and energetics, 
which may affect their expertise achievement.2 Young swimmers 
experience different rates of development that progress according 
to their own time scale.3 For example, 2 structural-equation models 
reported that anthropometrics influence swimmers’ kinematics and 
hence their performance.4,5 The second topic of research interest is 
to model performance over time. The model enables a researcher or 
sports analyst to predict a subject’s performance at a given moment, 
for example, at a given age or competition (ie, mean stability, within-
subject analysis).6 Longitudinal assessments can also be carried 
out to understand the relative changes of performance among the 
main athletes (ie, normative stability, between-subjects analysis).1,7

New trends in sports performance and expertise should adopt 
a multidisciplinary approach to enhance our understanding of the 
athlete–environment relationship as exemplifying a complex and 
dynamic system in opposition to the traditional frameworks.8 In 
such a dynamic system, all expert athletes do not follow the same 
pathway to achieve a given performance.9,10 Keeping in view 
the complex and diverse nature of the scientific fields that play 
a role in performance, and despite the existence of an optimal 
pathway to expertise achievement, each athlete selects a custom-
ized path.10 Likewise, the performance of both adult/elite11–13 and 
young5 swimmers is determined by several domains. The partial 
contribution of each domain or determinant factor to performance 
will most likely change over time, not remain constant. However, 
until now, no research has been conducted on this aspect, at least 
in respect to young athletes, who are typically involved in such 
a complex and dynamic system, as has been done in the case of 
age-group swimmers.

Longitudinal and multidisciplinary designs should aid our 
understanding of the performance changes and the partial contri-
bution of each determinant factor over time in young swimmers. 
For an insight into this problem, 2 independent procedures must be 
selected (deterministic analysis and longitudinal/stability analysis). 
Identified with the deterministic analysis are the main factors acting 
on the swimmer’s performance at a given moment; in longitudinal 
analysis, changes of each selected variable are tracked down and 
followed up. As these 2 procedures are independent, it is challeng-
ing to establish any causality between them. For deeper insight on 
the relationship between these 2 analyses, it is worthwhile to merge 
the 2 into a single procedure. By doing so, it would be possible 
to learn about the changes in performance or determinant factors 
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over time, how these factors interplay at a given moment and over 
time, and what the main determinant factors are at a given moment. 
This procedure can be applied for both short and long time frames 
(eg, from a few weeks to several years) depending on the nature 
of the research.

As sports performance is a multidisciplinary phenomenon, 
multivariate data analysis (eg, cluster analysis) can be implemented 
to detect patterns within high-dimensional data sets. Cluster analysis 
is one such procedure that identifies homogeneous groups of sub-
jects. Subjects grouped in a specific cluster share several common 
characteristics but are very dissimilar to others not belonging to 
that cluster.14 This procedure has been mainly applied in scientific 
fields such as genetics,15 motor control,14,16 and psychology.17 A 
few studies have been conducted on adult/elite swimmers to clas-
sify coordination patterns,18 start patterns,19 and race analysis.20 
Cluster analysis can also be a feasible approach to identify and 
classify young athletes’ determinant performance factors at a 
given moment. Over and above that, changes of a subject from 
one cluster to another, and in evaluation moments, could enable 
one to understand the subject’s stability and the reason behind the 
subject’s performance change. Thus, a new method that combines 
cluster analysis with longitudinal design should be tested. This novel 
method based on cluster stability might provide us details about 
how determinant variables in isolation (ie, bivariate analysis) or in 
combination (ie, multivariate analysis) contribute to performance 
and how their partial contribution changes over time.

To our knowledge, no studies have been carried out on cluster 
stability in swimming or even sports performance, excepting for 1 
relating to nutrition.21 In that study, the authors developed a clus-
tering solution about dietary patterns and thereafter analyzed the 
changes in the stability of young subjects between cluster groups in 
a given time frame. This method of assessing cluster stability over 
time can be considered a breakthrough in sport sciences, notably in 
sports performance and swimming. By performing cluster analysis, 
it will be possible not only to classify young swimmers according 
to their performance and its main determinants but also to assess 
the stability of the cluster membership over time and thereby help 
coaches in following up the athletes and designing customized 
training.

The aims of this study were to apply a new method to identify, 
classify, and follow up young swimmers, based on their performance 
and its determinant factors over a season, and to analyze the swim-
mers’ stability over a competitive season with that method. We 
hypothesized that the new method would be feasible and informa-
tive to identify, classify, and follow up young swimmers and that 
there would be moderate to high stability in the cluster membership 
across the season.

Methods

Subjects

Thirty-three young swimmers (overall, 11.8 ± 0.7 y, 262.6 ± 74.3 
Fédération Internationale de Natation [FINA] points at short-course 
meters [SCM] 100-m freestyle, 47.0 ± 8.3 kg body mass, 156.2 
± 8.8 cm height; boys, n = 15, 12.3 ± 0.6 y, 227.9 ± 69.8 FINA 
points at SCM 100-m freestyle, 49.9 ± 9.3 kg body mass, 159.9 ± 
8.7 cm height; girls, n = 18, 11.7 ± 0.9 y, 291.1 ± 66.2 FINA points 
at SCM 100-m freestyle, 44.6 ± 6.7 kg body mass, 153.1 ± 7.8 cm 
height; Tanner stages 1–2 by self-report) participating on a regular 
basis in regional- and national-level competitions were evaluated. 

The sample included age-group national record holders, age-group 
national champions, and other swimmers who formed part of a 
national talent-identification scheme. At baseline, the swimmers had 
3.18 ± 0.52 years of training experience. The swimmers underwent 
5.59 ± 0.92 (ranging from 3 to 8 in the season, 90 min each ses-
sion) weekly training sessions including warm-up; recovery; slow, 
medium, and intense pace; technical drills; and dry-land strength 
and conditioning sessions (2 per week).

Coaches and/or parents and also the swimmers gave their con-
sent for the swimmers’ participation in this study. All procedures 
were in accordance with the Helsinki Declaration regarding human 
research. The University of Trás-os-Montes and Alto Douro ethics 
committee also approved the study design (ethics review: UTAD-
2011 to 219).

Study Design

A longitudinal research design of selected variables over 3 differ-
ent moments in the season was carried out. The swimmers were 
evaluated first in October (M1, the season’s first competition), then 
in March (M2, the winter’s main competition), and then in June 
(M3, the summer’s main competition). Variables that are regularly 
reported as having an effect on swimming performance1,4,5,9,11–13 
were selected. All pool-testing data collection was conducted with 
no swimmers in nearby lanes to reduce drafting or pacing effects.

Performance-Data Collection

To assess swimming performance, the 100-m freestyle race time, 
recorded officially at regional or national SCM swimming pools (ie, 
25-m length) was selected. The time gap between data collection 
and the race was no more than 2 weeks.5

Anthropometric-Data Collection

Arm span (AS) was measured standing in the upright position with 
arms and fingers fully extended and abducted at 90°. The distance 
between the third fingertips of both hands was measured with a 
flexible anthropometric tape (RossCraft, Canada) (ICC = .98). Chest 
perimeter (CP) was measured with a flexible anthropometric tape 
(RossCraft, Canada) while the swimmer simulated a streamlined 
gliding (ie, hydrodynamic) position with both arms fully extended 
upward (ICC = .99).

Kinematic-Data Collection

Swimming velocity (v), stroke length (SL), and speed fluctuation 
(dv) were selected as kinematic variables. Swimmers performed 
a standardized warm-up of approximately 1000 m.22 Afterward, 
each swimmer performed 3 maximal 25-m trials in freestyle with a 
push-off start. Swimmers were advised to reduce gliding during the 
push-off. Between trials, the swimmers were allowed 30 minutes 
rest to ensure full recovery. For further analysis, the average value 
of 3 trials was considered (ICC = .96).

A speedometer cable (Swim speedometer, Swimsportec, 
Hildesheim, Germany) was attached to the swimmer’s hip. A 
12-bit-resolution acquisition card (USB-6008, National Instruments, 
Austin, TX, USA) was used to transfer data (f = 50 Hz) from the 
speedometer to a software interface in LabVIEW (v. 2009).23 Data 
were exported to signal-processing software (AcqKnowledge v. 
3.5, Biopac Systems, Santa Barbara, CA, USA) and filtered with a 
5-Hz-cutoff low-pass fourth-order Butterworth filter.
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v (m/s) was calculated as the time spent between the 5th and 
20th meters (ie, middle 15 m; v = d/t). SL (m) was calculated by 
dividing velocity with stroke frequency (SF) (SL = v/SF).24 SF was 
measured (cycles/min and then converted to Hz) by 2 expert evalu-
ators with a stroke counter (base 3). dv (in dimensionless units) was 
calculated with the coefficient of variation as reported elsewhere 
(dv = CV = SD/mean).12

Hydrodynamic-Data Collection

Coefficient of active drag (CDa) was computed using the velocity-
perturbation method.25 To calculate CDa, the following inputs are 
required: water density (being 1000 kg/m3), active drag force (given 
by the difference in swimming speed with and without perturbation 
buoy according to its resistance, Da = [Db × vb × v2]/[v3 – vb3]), v, 
and the swimmer’s projected frontal surface area (S).25 Each swim-
mer performed 2 extramaximal 25-m freestyle trials with a push-off 
start. The first trial was performed without the perturbation device 
and the second one with the perturbation device.26

v was assessed between the 11th and 24th meters from the start-
ing wall.26 The time spent to cover this distance was measured with 
a manual stopwatch (Golfinho Sports MC 815, Aveiro, Portugal) 
by 2 expert evaluators (ICC = .96). The evaluators followed the 
swimmer to a have a good line of sight when the swimmer passed 
the 2 distance marks.

The swimmers’ projected frontal surface area was measured 
using a photogrammetric technique,27 and their photographs taken 
with a digital camera (DSC-T7, Sony, Tokyo, Japan) in the trans-
verse plane from above. For the photographs, the swimmers stood 
on land, in the upright and streamlined position. In this position, 
the arms were fully extended above the head, one hand over the 
other, and the fingers also extended close together, while the head 
was in neutral position. They wore a regular textile swimsuit, cap, 
and goggles. On the camera shooting field, a calibration frame with 
0.945-m length was aside the swimmer at the shoulder level. The 
S was measured with area-measuring software (Udruler, AVPSoft, 
USA) after importing the digital picture (ICC = .97).

Efficiency-Data Collection

Efficiency variables were estimated from kinematic data. SI (m2/s) 
was calculated as the product of SL and v (SI = SL × v).28 The arm’s 
propelling efficiency (ηp, %) was also calculated, using v, SF, and the 
distance between the shoulder and the tip of the third finger during 
the insweep (m) as inputs.29 The shoulder-to-finger distance was com-
puted trigonometrically by measuring the arm’s length and consider-
ing the average elbow angles during the insweep of the arm pull.30

Statistical Analysis

Kolmogorov-Smirnov and Levene tests were used to analyze nor-
mality and homoscedasticity assumptions, respectively. Mean, SD, 
minimum, and maximum were calculated as descriptive statistics.

To increase confidence in the stability of the emergent profiles, 
2 clustering approaches were used: hierarchical cluster analysis 
(using the Ward linkage method with squared Euclidian distance 
measure to provide guidance as to the number of clusters repre-
sented in the data) and k-means (nonhierarchical) cluster analysis 
to compute the clusters and thus group the swimmers according to 
their similarities. k-means define a prototype in terms of a centroid 
(ie, the mean of a group of points), typically applied to objects in 
a continuous n-dimensional space. Standardized z-scores of the 

selected variables were calculated to compare data sets with dif-
ferent units and/or magnitudes.14

ANOVA was used to identify the variables having the high-
est influence in each cluster, and discriminant analysis (stepwise 
method) was used to validate them (P ≤ .05). Total eta-squared (η2) 
was selected as an effect-size index and interpreted as31 without 
effect if 0 < η2 ≤ .04, minimal if .04 < η2 ≤ .25, moderate if .25 < 
η2 ≤ .64, and strong if η2 > .64. Swimmers’ changes between clus-
ters were assessed by cross-tabulating cluster solutions at different 
moments. This kind of assessment enables calculation of the propor-
tion of swimmers remaining in the same cluster between pairs of 
moments and consequently the proportion of swimmers that changed 
between clusters.21 The distance between clusters informs about 
cluster similarities and dissimilarities. A higher distance between 
clusters means a higher dissimilarity.

Results
Overall, the anthropometric features increased between the first 
and last evaluation moments (body mass increased from 49.9 ± 
9.3 to 52.9 ± 9.1 kg in boys and from 44.6 ± 6.7 to 46.5 ± 6.2 kg in 
girls; height increased from 159.9 ± 8.7 to 162.9 ± 8.8 cm in boys 
and from 153.1 ± 7.8 to 155.6 ± 7.2 cm in girls). The coefficient 
of determination (R2) was selected to test several cluster solutions 
(from 1 to 9, ie, 1 < k < 9). A 3-cluster solution (k = 3) provided 
stable interpretations over the season.

The SI, v, and SL were the variables with the strongest (ie, 
η 2 > .64) and best discrimination effect (ie, highest F ratios) 
among the cluster solutions of all moments (Table 1). Cluster 1 
was characterized by high CP, AS, and SI (M1); CP and AS (M2); 
and AS, SI, and v (M3). Cluster 1 was also characterized by the 
best performance at all moments (labeled talented swimmers; ie, 
better-performing swimmers). Cluster 2 was characterized by high 
dv (M1 and M2) and ηp (M3). Cluster 2 was also characterized 
by the slowest performance at all moments (labeled nonprofi-
cient swimmers; ie, poorer-performing swimmers). Cluster 3 
was characterized by high CDa (M1); SI, ηp, and v (M2); and 
CP and AS (M3). Cluster 3 was also characterized by average 
performance at all moments (labeled proficient swimmers; ie, 
average-performing swimmers).

A comparison of the classification results of original (ie, the 
frequencies found in the data) and predicted (ie, the predicted fre-
quencies from the analysis) group memberships, according to the 
canonical discriminant functions obtained, and stepwise discriminant 
analysis reveal that 100%, 94%, and 85% of the original groups were 
correctly classified in M1, M2, and M3, respectively (.11 ≤ Λ ≤ .80, 
5.64 ≤ χ2 ≤ 63.40, .001 < P ≤ .68). Visual inspection of the territorial 
map of the 2 canonical discriminant functions reveals a good or very 
good compactness and separation at M1, M2, and M3 (Figure 1).

As regards cluster membership over the course of the season 
(see Table 2), it can be seen that cluster 2 (nonproficient swimmers) 
had the highest stability (70.6–75% of the swimmers stayed in this 
cluster, at M2 v sM3 and M1 vs M2, as well as M1 vs M3), followed 
by cluster 1 (talented swimmers; 46.1% at M1 vs M3 to 61.5% at 
M1 vs M2) and finally by cluster 3, which had the least stability 
(proficient swimmers; from 0% at M2 vs M3 to 25% at M1 vs M2). 
Overall, there was thus moderate stability in cluster membership, 
as the 2 clusters with more subjects presented a stability ranging 
roughly from 45% to 75%.

Table 2 also shows the distance between cluster centers. At all 
moments, swimmers in cluster 3 (proficient swimmers) were closer 
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to swimmers in cluster 1 (talented swimmers). However, from M1 
to M3, the distance between cluster 3 (proficient swimmers) and 
cluster 2 (nonproficient swimmers) decreased from 3.091 to 1.851 
(ie, higher similarity). At the same time, the distance between cluster 
3 (proficient swimmers) and cluster 1 (talented swimmers) increased 
from 2.728 to 4.474 (ie, higher dissimilarity). This suggests that 
during this time frame the proficient swimmers could not reach a 
par with the talented swimmers, but at the time the nonproficient 
ones were able to close the gap with the proficient counterparts.

Discussion
The aim of this study was to describe and apply a new procedure 
to identify, classify, and analyze cluster stability of young swim-
mers over a competitive season. The main finding was that cluster 

stability is a feasible, comprehensive, and informative method to 
gain insight into young swimmers’ changes over time. Another 
important finding is that talented swimmers are characterized by 
anthropometrics and kinematic features.

The main goal of cluster analysis is to find similar trends 
within a data set (young swimmers in this case). Participants or 
traits in the same cluster are similar to each other, while those in 
other clusters are as dissimilar as possible.14 A hierarchical model 
was used to define the number of clusters to retain with an R2 
method, as suggested earlier.19 Afterward, k-means solution was 
tested to compute the clusters and thereby grouped the swimmers 
according to their similarities. Cluster analysis may be considered 
challenging because it might be difficult to form distinguished and 
equally dimensioned clusters (for this research, the sample sizes 
of the cluster solutions were fairly even), and it may not consider 

Table 1 Performance and Its Determining Factors for Swimmers Classified in Each Cluster Assessed at Baseline 
(Moment 1), Midseason (Moment 2), and End-Season (Moment 3)

Cluster 1 Cluster 2 Cluster 3

F P η2Mean ± SD z Mean ± SD z Mean ± SD z

Moment 1 (n = 13) (n = 8) (n = 12)

 arm span (cm) 166.9 ± 9.6 0.81 149.8 ± 9.3 –0.73 153.6 ± 5.4 –0.39 13.1 <.001 .40

 chest perimeter (cm) 83.6 ± 3.4 0.92 72.8 ± 4.5 –0.91 75.9 ± 3.4 –0.38 23.8 <.001 .50

 stroke length (m) 1.69 ± 0.17 0.80 1.13 ± 0.20 –1.24 1.46 ± 0.11 –0.04 28.0 <.001 .66

 swimming velocity (m/s) 1.38 ± 0.11 0.80 0.91 ± 0.16 –1.34 1.21 ± 0.08 0.02 38.5 <.001 .76

 speed fluctuation (dimensionless) 0.09 ± 0.03 0.03 0.10 ± 0.04 0.29 0.08 ± 0.02 –0.23 0.6 .517 .10

 active drag coefficient (dimensionless) 0.31 ± 0.08 –0.19 0.23 ± 0.08 –0.68 0.45 ± 0.20 0.67 6.5 .004 .38

 propelling efficiency (%) 30.47 ± 2.93 0.63 22.46 ± 4.39 –1.14 27.97 ± 2.86 0.07 14.6 <.001 .57

 stroke index (m2/s) 2.36 ± 0.36 0.88 1.06 ± 0.32 –1.30 1.78 ± 0.22 –0.09 43.6 <.001 .75

 performance (s) 71.17 ± 5.91 –0.75 83.67 ± 5.11 1.00 77.57 ± 4.44 0.14 14.5 <.001 .49

Moment 2 (n = 8) (n = 17) (n = 8)

 arm span (cm) 173.1 ± 9.2 1.20 155.1 ± 6.4 –0.52 159.7 ± 8.1 –0.08 15.2 <.001 .77

 chest perimeter (cm) 86.5 ± 3.6 0.97 77.5 ± 4.5 –0.47 80.6 ± 6.4 0.03 13.1 <.001 .40

 stroke length (m) 1.30 ± 0.17 0.66 1.04 ± 0.10 –0.64 1.30 ± 0.19 0.70 43.9 <.001 .49

 swimming velocity (m/s) 1.16 ± 0.23 0.87 0.85 ± 0.06 –0.66 1.10 ± 0.16 0.54 74.4 <.001 .53

 speed fluctuation (dimensionless) 0.11 ± 0.05 0.32 0.10 ± 0.03 –0.01 0.10 ± 0.02 –0.29 0.1 .918 .07

 active drag coefficient (dimensionless) 0.302 ± 0.08 0.16 0.26 ± 0.09 –0.31 0.30 ± 0.11 0.50 2.9 .066 .14

 propelling efficiency (%) 22.71 ± 3.88 0.20 20.03 ± 2.12 –0.46 21.88 ± 4.02 0.77 39.3 <.001 .29

 stroke index (m2/s) 1.55 ± 0.50 0.80 0.89 ± 0.13 –0.63 1.46 ± 0.40 0.55 72.0 <.001 .51

 performance (s) 64.72 ± 4.88 –1.23 75.91 ± 3.98 0.61 72.18 ± 6.02 –0.07 13.4 <.001 .61

Moment 3 (n = 6) (n = 18) (n = 9)

 arm span (cm) 176.6 ± 7.4 1.41 156.6 ± 7.1 –0.55 162.3 ± 10.1 0.17 14.7 <.001 .61

 chest perimeter (cm) 89.2 ± 3.3 1.17 79.2 ± 5.76 –0.46 82.9 ± 6.1 0.14 8.4 .001 .43

 stroke length (m) 1.69 ± 0.15 1.17 1.34 ± 0.20 –0.36 1.41 ± 0.19 –0.05 25.2 <.001 .38

 swimming velocity (m/s) 1.49 ± 0.09 1.30 1.13 ± 0.16 –0.44 1.22 ± 0.18 0.02 58.3 <.001 .48

 speed fluctuation (dimensionless) 0.10 ± 0.02 0.24 0.09 ± 0.02 0.03 0.08 ± 0.02 –0.23 0.1 .953 .05

 active drag coefficient (dimensionless) 0.52 ± 0.34 0.91 0.30 ± 0.12 –0.22 0.32 ± 0.09 –0.14 7.8 .002 .23

 propelling efficiency (%) 29.13 ± 1.35 0.57 26.49 ± 3.91 –0.11 26.92 ± 3.83 –0.16 33.1 <.001 .09

 stroke index (m2/s) 2.54 ± 0.29 1.39 1.54 ± 0.40 –0.44 1.76 ± 0.44 –0.03 64.1 <.001 .52

 performance (s) 61.63 ± 2.90 –1.46 73.43 ± 3.92 0.60 68.64 ± 3.36 –0.23 9.4 .001 .13
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the hypothetical relationships between variables (in this study, 
discriminant variables of the clustering solutions are meaning-
ful for swimming researchers and practitioners). An interesting 
and novel idea is to combine cluster analysis with longitudinal 
analysis. This is based on the reasoning that after developing a 
cluster solution, it will analyze the membership changes over time 
(ie, cluster stability). To the best of our knowledge, this approach 
has not been attempted so far in sports science. However, the 
current study proves it to be a feasible and informative way to 
gain insight into performance changes over time and the partial 
contribution of the determinant factors, or at least a set of factors, 
at a given moment.

The 3-cluster solution (k = 3) was the one that showed the high-
est power, besides allowing for stable data interpretation. Marginal 
gains were observed after the fourth cluster (k ≥ 4). Cluster 1 was 
labeled talented swimmers; cluster 2, nonproficient swimmers; and 
cluster 3, proficient swimmers, because performance was the main 
discriminant variable across all the clusters at all moments. Cluster 
2 was related to poor performances and high dv. There is evidence 
to show that a high dv is related to an increase in energy cost.12 For 
the swimmers in cluster 2, one might consider that their impaired 
performance is related to a high dv. Cluster 1 is related to better 
performance, anthropometrics (high AS and CP), and therefore to 
kinematics (high SI and v). Indeed, young swimmers’ performance 
is highly related to anthropometric features.9 Thus, it seems that a 
few swimmers (from cluster 1) might rely more on their genetics 
and intrinsic characteristics (ie, anthropometrics) than on external 
conditions (ie, training and improving technique) to enhance their 
performance. Cluster 3 was associated with a set of variables from 
different domains (ie, anthropometric, kinematic, hydrodynamic, 
and efficiency). For the swimmers of this cluster, the anthropomet-
rics by themselves cannot explain their performance. Hence, another 
way to achieve better performance is to rely more on intervention 
programs (ie, training sessions and technique improvements) than 
on genetics.

The main novelty of this research was that it assessed cluster 
stability over time. Cluster analysis was developed to deal with 
problems in data mining when investigators needed to identify 
patterns in high-dimensional data sets14 such as those associated 
with talent identification and follow-up. Discriminant analysis was 
used for cluster validation.32 Good to very good cluster separation 
and compactness are verified by visual inspection of the territorial 
map (Figure 1). Cross-validation is a comparison of the classifica-
tion results of original data (ie, the frequencies of groups found 
in the data) and those predicted (ie, the frequencies of groups 
predicted from analysis) according to the canonical discriminant 
functions obtained. Cross-validation revealed that, over the season, 
cluster membership was correctly classified in 100%, 94%, and 
85% of the subjects (ie, very good prediction). Cluster validity 
can also be assessed with bootstrapping,33 normalized Hubert-Γ.34 
Cross-tabulation is a feasible and straightforward way to assess 
participants’ changes between clusters across time.21 The num-
bers of participants that remain, are added, or are removed from 
a cluster are calculated.

Across the 3 clusters, most outcomes between M1 and M3 
showed improvement. A similar trend was reported by others for 
anthropometric, biomechanics, and efficiency parameters.1,2 One 
might consider that improvement over time would happen in a linear 
or a near-linear fashion in children. However, although there was 
improvement in performance throughout the season (ie, from M1 
to M2 to M3), several determinant factors showed impairment. It 
seems that such nonlinear changes have not been reported so far for 

Figure 1 — Territorial map of the 2 canonical discriminant functions in 
(A) moment 1, (B) moment 2, and (C) moment 3. Group centroid 1, talented 
swimmers; group centroid 2, nonproficient swimmers; group centroid 3, 
proficient swimmers.
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age-group swimmers. However, such changes were reported in the 
case of adult or elite counterparts.7 Thus, it seems that the deter-
minant factors play a major role in contributing to performance at 
a given moment. This can be related to the designed periodization 
model, because age-group swimming, just as most youth sports, 
is designed with classic periodization models. Such models are 
based on 1 or 2 major peaks per season, 1 of them being the main 
competition. Therefore, coaches will be building up fitness (ie, 
energetics, as well as strength and conditioning) and improving 
techniques as they approach the main competition. Because the 
main competition comes at the end of the season, coaches probably 
consider that swimmers do not need to be in their best shape in the 
middle of the season, or, at least, they may rely more on a given set 
of determinant factors to improve their performance. Hence, near 
future research projects should consider selecting a few energetic 
variables to control the role of the energetic build-up over the season 
in age-group swimmers, as happens on a regular basis with adult 
and elite counterparts.

Moderate stability (ie, moderate change in cluster member-
ship) was observed across the season. Cluster 1 (talented swim-
mers) presented moderate stability (46.1–61.5%, even though the 
membership decreased from 13 to 6 swimmers). Cluster 3 (pro-
ficient swimmers) showed low to moderate stability (0–25% and 
membership decrease from 12 to 9 swimmers). Overall, cluster 
membership of talented and proficient swimmers seems to have 
decreased over the season. Cluster 2 (nonproficient swimmers) 

presented high stability (70.6–75% and membership increase from 
8 to 18 swimmers). This increase is related to the movement (ie, 
selection) of some swimmers from clusters 1 and 3 to cluster 2, 
because they could not maintain high performance levels. It should 
be noted that all swimmers improved their performances from 
M1 to M3 (ie, within-subject comparison). Notably, 2 subjects 
moved straight from cluster 1 to cluster 2 between 2 evaluation 
moments. Such events can be attributed to anthropometrics and 
maturation changes or academic commitments, in addition to 
other factors. However, it is not surprising that no swimmer 
could move straight from cluster 2 to cluster 1. The change of a 
swimmer from a high-stability cluster to a relatively low-stability 
cluster implies that the swimmer could not improve his or her 
performance as much as the others did (ie, between-subjects 
comparison). Thus, with fine-tuning of the cluster membership, 
the number of talented swimmers may dwindle. Some talented 
swimmers, at some point, who fail to stay in that cluster drop to 
the proficient cluster, and, similarly, those in the proficient cluster 
move to the nonproficient cluster. With this, the typical pyramid 
shape of the selection process was verified in M3 and, in a way, 
in M2 also. At the base of the pyramid were the nonproficient 
swimmers (n = 18), in the middle the proficient swimmers (n = 
9), and at the top the talented swimmers (n = 6). Holistic research 
encompassing motor control, training (ie, sports periodization), 
biomechanics, and physiology can, in the near future, bring more 
insight into this phenomenon.

Table 2 Number of Swimmers Reclassified in Each Cluster Between 
Baseline (M1) and Midseason (M2), Between M2 and End-Season (M3), 
and Between M1 and M3 and Distances Between Cluster Centers for 
Each Pairwise Comparison of Clusters at Each Moment

Cluster 1 Cluster 2 Cluster 3

n % n % n %

Cross-tabulations

 M1 vs M2 Cluster 1 8 61.5 0 0 0 0

 Cluster 2 2 15.4 6 75 9 75

 Cluster 3 3 23.1 2 25 3 25

 M2 vs M3 Cluster 1 4 50 0 0 2 25

 Cluster 2 0 0 12 70.6 6 75

 Cluster 3 4 50 5 29.4 0 0

 M1 vs M3 Cluster 1 6 46.1 0 0 0 0

Cluster 2 2 15.4 6 75 10 83.3

Cluster 3 5 38.5 2 25 2 16.7

Distance between centers

 M1 Cluster 1 — 5.101 2.728

 Cluster 2 5.101 — 3.091

 Cluster 3 2.728 3.091 —

 M2 Cluster 1 — 5.076 3.330

 Cluster 2 5.076 — 3.308

 Cluster 3 3.330 3.308 —

 M3 Cluster 1 — 5.870 4.474

Cluster 2 5.870 — 1.851

Cluster 3 4.474 1.851 —
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Practical Implications

The technique presented here is an important step to identify, clas-
sify, and follow up young athletes. This technique allows assess-
ment of changes in performance over time and evaluating how the 
assessment can be related to changes in the partial contribution of 
the determinant factors, or at least a set of factors. We showcase 
this procedure with young swimmers, although it can be applied 
across several sports, ages, and competitive levels (ie, including 
adult and elite athletes).

Performance, particularly in competitive swimming, is a 
multidimensional phenomenon characterized by a highly complex 
interplay between several variables. We were able to successfully 
classify young swimmers based on anthropometrics, kinematics, 
hydrodynamics, and efficiency. It was also possible to determine if 
their performance depended more on intrinsic (ie, anthropometrics 
and biological development) or extrinsic (ie, technique enhance-
ment and training) factors. However, we found that the main fac-
tors explaining performance change over time. Hence, the main 
determinant factors, or set of factors, explaining the performance 
at any given moment might not hold for the preceding or following 
moment. By adopting this procedure, coaches and sports analysts 
will also gain insight on the possible drop rate or at least the likeli-
hood of changes in cluster membership over time. This technique 
enables sports practitioners to design customized training sessions 
for each group. Another potential use for this method is to clas-
sify swimmers who are more likely to be responsive to training or 
intervention programs. Therefore, one might check if they are more 
likely to keep progressing their performance after the growth and 
maturation period or not. This same procedure can be selected in 
the near future for talent identification.

Conclusion
Cluster stability is a feasible, comprehensive, and informative 
method to gain insight into young swimmers’ changes over time. 
They can be classified into different clusters, based on their 
performance and determinant factors. Overall, over the course of 
the season, we found that stability was moderate and that the con-
tribution of each performance determinant factor, or set of factors, 
may change over time.
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