
coPSSA - Constrained Parallel
Stretched Simulated Annealing

José Rufino∗†, Ana I. Pereira∗‡ and Jan Pidanic§
∗Polytechnic Institute of Bragança, Bragança, Portugal

†Laboratory of Instrumentation and Experimental Particle Physics, University of Minho, Braga, Portugal
‡Algoritmi R&D Centre, University of Minho, Braga, Portugal

§Faculty of Electrical Engineering and Informatics, University of Pardubice, Czech Republic
Email: rufino@ipb.pt, apereira@ipb.pt, Jan.Pidanic@upce.cz

Abstract—Parallel Stretched Simulated Annealing (PSSA)
solves unconstrained multilocal programming optimization prob-
lems in distributed memory clusters, by applying the Stretched
Simulated Annealing optimization method, in parallel, to multiple
sub-domains of the original feasible region. This work presents
coPSSA (constrained Parallel Stretched Simulated Annealing),
an hybrid application that combines shared memory based
parallelism with PSSA, in order to efficiently solve constrained
multilocal programming problems. We devise and evaluate two
different parallel strategies for the search of solutions to these
problems. Evaluation results from a small set of test problems
often reach superlinear speedup in the solution search time, thus
proving the merit of the coPSSA parallelization approach.

I. INTRODUCTION

Multilocal programming problems are numerical optimiza-
tion problems that may be found in many theoretical fields,
like reduction methods for solving semi-infinite programming
problems [7], [16], or in more practical scenarios, like ride
comfort optimization [2] and Chemical Engineering, specifi-
cally in the areas of process synthesis, design and control [3].

Multilocal programming problems may be unconstrained
or constrained. In the latter case, they are subject to (s.t.)
certain restrictions. More formally, a constrained multilocal
programming problem may be defined by the formulation (1):

max f(x)
s.t. hk(x) = 0, k ∈ E

gj(x) ≤ 0, j ∈ I
−bi ≤ xi ≤ bi, i = 1, . . . , n

(1)

where at least one of the n-dimensional functions f, hk, gj :
Rn → R is nonlinear, and E and I are index sets of equality
and inequality constraints, respectively. Since concavity is not
assumed, the nonlinear optimization problem can have many
global and local (non-global) maxima. Consider the feasible
region (search space) defined by R = {x ∈ Rn : −bi ≤ xi ≤
bi, i = 1, . . . , n ; hk(x) = 0, k ∈ E ; gj(x) ≤ 0, j ∈ I}.
Thus, the purpose of the maximization problem (1) is to find
all local maximizers, that is, all points x∗ ∈ R such that the
condition (2) holds for a vicinity Vε(x∗) with a positive ray ε:

∀x ∈ Vε(x∗) ∩R, f(x∗) ≥ f(x). (2)

It is also assumed that problem (1) has a finite number
of isolated global and local maximizers. The existence of
multi-solutions (local and global) makes this problem a great
challenge that may be tackled with parallel solving techniques.

The most common methods for solving multilocal opti-
mization problems are based on evolutionary algorithms, such
as genetic [1] and particle swarm [12] algorithms. Additional
contributions may be found in [6], [18], [20], [21]. Stretched
Simulated Annealing (SSA) was also proposed [13], combin-
ing simulated annealing and a stretching function technique,
to solve unconstrained multilocal programming problems.

In previous work [15], [17], Parallel Stretched Simulated
Annealing (PSSA) was presented (and successively refined)
as a parallel version of SSA, based on the decomposition
of the initial search domain in several sub-domains to which
SSA is independently applied by a set of processors. Several
domain decomposition and work assignment approaches were
explored, ranging from homogeneous data decomposition and
static work assignment, to heterogeneous data decomposition
and dynamic work assignment, leading to successively increas-
ing levels of numerical efficiency (here, the main contribution
of parallelization is not to decrease optima search times, but
to increase the number of optima found in a bounded time).

This paper discusses the solving of constrained multilo-
cal programming problems by coPSSA (Constrained PSSA),
an hybrid application that implements a numerical penalty
method, by combining shared memory parallelism with the
current PSSA implementation. In coPSSA, the penalty method
uses PSSA as an external software component, that must be
invoked every time certain penalty parameters are changed.
These parameters must be changed an unpredictable number
of times, before convergence to the problem solution(s) is
achieved. By splitting the parameters test space among se-
veral processors, it becomes possible to check, simultaneously,
several convergence paths, thus accelerating the solving of the
constrained problem. This translates in having several instances
of PSSA executing in parallel (one per convergence path being
tested), in a multi-master-slaves configuration. We evaluate two
different strategies for the decomposition of the parameters
test space (alternation and slicing). Both strategies are very
effective, performance-wise, leading to superlinear speedups
in search times for a small set of constrained test problems.

The rest of the paper is organized as follows: Section
2 revises our previous work on unconstrained optimization,
covering the SSA method and the PSSA parallel approach;
Section 3 presents the fundamentals of constrained optimiza-
tion and introduces the coPSSA application; Section 4 presents
the benchmarks scenario and the results of the evaluation; the
last section concludes and points directions for future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153413238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. UNCONSTRAINED OPTIMIZATION

A. Stretched Simulated Annealing (SSA)

Stretched Simulated Annealing (SSA) is a multilocal
programming method that solves unconstrained optimization
problems. Generically, these problems may be described as:

max
x∈X

ϕ(x), (3)

where ϕ : Rn → R is a given n-dimensional multimodal
objective function (a function with many local optima1) and
the feasible region is X , a compact set defined by X =
{x ∈ Rn : −bi ≤ xi ≤ bi, i = 1, ..., n}. The SSA method
solves a sequence of global optimization problems in order to
compute the local solutions of the maximization problem (3).
The objective function of each global optimization problem is
obtained by applying a stretching function technique [11].

Let x∗ be a solution of problem (3). The mathematical
formulation of the global optimization problem is as follows:

max
x∈X

Φl(x) ≡
{
φ̂(x) if x ∈ Vε(x∗)
ϕ(x) otherwise

(4)

where Vε(x∗) is the vicinity of solution x∗ with a ray ε > 0.

The φ̂(x) function is defined as

φ̂(x) = φ̄(x)− δ2[sign(ϕ(x∗)− ϕ(x)) + 1]

2 tanh(κ(φ̄(x∗)− φ̄(x))
(5)

where δ1, δ2 and κ are positive constants and φ̄(x) is

φ̄(x) = ϕ(x)− δ1
2
‖x− x∗‖[sign(ϕ(x∗)− ϕ(x)) + 1]. (6)

To solve the global optimization problem (4) the Simulated
Annealing (SA) method is used [5]. The Stretched Simulated
Annealing algorithm stops when no new optimum is identified
after r consecutive runs. For more details see [14], [15].

B. Parallel Stretched Simulated Annealing (PSSA)

The search for optima with SSA is an embarrassingly
parallel problem. SSA searches for solutions in a given do-
main by applying a stochastic algorithm ι consecutive times.
Augmenting ι increases the hit rate, but also the execution
times. An alternative is to keep ι constant and to generate a
partition of the initial search domain, consisting of disjoint
sub-domains where SSA is applied independently, once there
are no data dependencies involved. With a dedicated processor
per sub-domain, each sub-domain will take no more time to
search than the initial domain (in fact, the trend is to take less
time, once the search scope is smaller). Thus, with as many
processors as sub-domains, the numerical efficiency (number
of optima found) may improve without degrading performance.

The parallelization strategy above, based on a Data De-
composition approach, is the one adopted by PSSA, in three
variants that diverge on the way in which sub-domains are
defined and then assigned to processors. In PSSA-HoS (Homo-
geneous decomposition, Static assignment), sub-domains are
generated only once, have equal size and processors self assign
the same number of sub-domains. PSSA-HoD (Homogeneous

1See [4], [19] for plots of several reference functions of this kind.

decomposition, Dynamic assignment) differs from PSSA-HoS
in sub-domains being assigned to processors on-demand (thus
possibly in varying number). Finally, in PSSA-HeD (Het-
erogeneous decomposition, Dynamic assignment), the initial
homogeneous domain partition suffers a recursive adaptive re-
finement, leading to an unpredictable number of sub-domains,
of variable size, dynamically generated and processed (on-
demand), until certain stop criteria are met. Both PSSA-HoS
and PSSA-HoD have equal numerical efficiency, but the PSSA-
HoD variant is faster due to its workload auto-balancing.
PSSA-HeD typically finds more optima, but is also the slowest,
once it usually searches in many more sub-domains.

PSSA is written in C and runs on Linux, whether in shared-
memory multi-core workstations or in distributed-memory
clusters. This diversity of parallel execution environments is
possible because PSSA is a parallel application built on the
Message Passing paradigm, on top of an MPI [8] imple-
mentation. In this regard, PSSA follows the Single Program
Multiple Data (SPMD) execution model and operates in a
master-slaves configuration: slave MPI processes apply SSA in
sub-domains; a master process does coordination and optima
post-processing; with c CPU-cores reserved for PSSA, the MPI
process mapping we adopted assigns one core to the master
and the remaining c− 1 cores to the slaves (one per core).

III. CONSTRAINED OPTIMIZATION

A. Penalty Method with the l1 Penalty Function

In general, constrained optimization problems are harder
to solve than unconstrained optimization problems, specially
when the feasible region (problem domain) is not concave and
is very small when compared with the whole search space.

There are three main classes of methods to solve cons-
trained optimization problems [9], [22]: A) methods that
use penalty functions, B) methods based on biasing feasible
over infeasible solutions, and C) methods that rely on multi-
objective optimization concepts. In this work constraints are
handled using a class A method with the l1 penalty function.
The l1 penalty function is a technique [10] defined by

P (x, µ) = f(x)− 1

µ

∑
k∈E

|hk(x)|+
∑
j∈I
dgj(x)e+

where µ is a positive penalty parameter that decreases to zero.
A lower bound µmin is defined and the update is as follows:

µk+1 = max
{
τµk, µmin

}
(7)

where k represents the iteration, µmin ≈ 0 and 0 < τ < 1.

To solve the constrained optimization problem (1), the
penalty method solves a sequence of unconstrained problems
using the l1 penalty function defined by

max
x∈X

P (x, µk). (8)

The problem (8) is solvable using the PSSA method. It
is possible to prove that the sequence of solutions {x∗(µk)},
from (8), will converge to the solution x∗ of (1) [10], [14].

The penalty method stops when the successive solutions are
similar, or a maximum number of iterations (K) is reached.

B. Constrained PSSA (coPSSA)

As stated in the previous section, the penalty method will
need to invoke the SSA method, possibly many times, until
convergence is reached. In this work, we explore the coupling
of the penalty method with PSSA, our parallel SSA imple-
mentation. When designing the interaction between the two,
the decision was to keep PSSA as a self-contained application
and to develop a separate application (coPSSA), that acts as
a client of the PSSA application. Thus, from the perspective
of the coPSSA application, PSSA is regarded as an external
software component, with well-defined inputs and outputs,
that is spawned when necessary. We believe that this modular
design (in opposition to a single, monolithic application) will
facilitate the integration of further optimization techniques.

Figure 1 is a representation of the coPSSA application and
its interactions with the PSSA application.

t1

. . .

t2

penalty search tasks

tP-1

PSSAP

m

s

...

s

. . .

mpiexec

mpiexec

. . .

t3

tP f1

PSSA1

m

s

...

s

coPSSA

fP

mpi tasks

mpi tasks

Fig. 1. coPSSA and its interactions with PSSA (tp are coPSSA search tasks;
m and s are PSSA tasks (master and slaves); fp are result files from PSSA).

The coPSSA application is feed with several parameters: i)
an identifier of the test problem f(x), ii) the base initial value
µ0 for µ, iii) the number P of simultaneous search tasks, iv)
the strategy to be used to decompose the µ test space, iv) a
base MPI hostfile, and v) some parameters to forward to PSSA.

The coPSSA application is itself a parallel application,
based on the conventional multi-process approach and System
V IPC mechanisms2, that forks P search tasks. Each one of
these tasks will solve problem (8), a certain number of times,
each time with a different value of µk. Overall, the test space
for µk comprises K different values, defined by (7). These
values are auto-assigned by the search tasks in two possible
different ways: a) alternation; b) slicing. In both ways the test
values are evenly assigned to the tasks, as next explained.

Let tp be a search task, with p = 1, 2, ..., P ; let µk be
a test value, with k = 1, 2, ...,K; let w = K div P be the
uniform width (i.e., KmodP = 0)3 of a test sub-space of µk.

With alternation, a task tp will test µk if p−1 = k mod P .
For instance, with P = 4 tasks, and K = 100 test values, task
t1 will test µ1, µ5, ...; task t2 will test µ2, µ6, ...; and so on.

With slicing, a task tp will test µk if k ∈ {kpleft, ..., k
p
right},

where kpleft = (p−1)×w+1 and kpright = p×w. For instance,

2This classical approach is enough for a prototype level application.
Alternatives like POSIX threads or OpenMP may be explored in the future.

3This assumption is only to ease this formal discussion. The coPSSA imple-
mentation handles properly non-uniform decomposition when K mod P 6= 0.

with P = 4 tasks, and K = 100 test values, task t1 will test
µ1, µ2, ..., µ25; task t2 will test µ26, µ27, ..., µ50; and so on.

Prior to invoking PSSA, a coPSSA search task properly
assembles the related command line string. This string includes
the mpiexec MPI launcher (that will spawn several instances
of the PSSA executable) and several parameters. Some of these
replicate parameters initially supplied to the coPSSA applica-
tion, that are just being forwarded to PSSA; these include the
identifier of the test problem f(x), the specific PSSA variant
to execute (HoS, HoD or HeD) and the granularity g of the
initial homogeneous partition of the search domain performed
by PSSA. Other parameters are specific of each search task,
whether fixed, like MPI related parameters, or variable during
the task lifetime, like µk. The MPI parameters specify the
number and location of the PSSA instances to execute, every
time the search task spawns PSSA; this configuration is derived
from the base MPI hostfile that is initially given to the coPSSA
application; basically, the execution slots of the base MPI
hostfile are evenly divided among the coPSSA search tasks,
originating specific and disjoint hostfiles, one per search task.
The crafted command string is then submitted to the system
primitive. A coPSSA search task will then block while PSSA
executes; when it finishes, its results are collected from a file.

The problems (multimodal objective functions) testable
by PSSA are all implemented in a specific module which,
until know, included only unconstrained problems. In order
to support the work of this paper, it was necessary to augment
that module with the implementation of functions f(x) and
P (x, µ), for each constrained problem tested. This was the
only extension that was necessary to make, in the original
PSSA code, in order to support the case study of this paper.

After each PSSA execution, its results are analyzed to
verify if they fulfill certain convergence criteria. If they haven’t
converged, and the search task has not yet exhausted its µk
values, the task will inspect a shared memory flag (visible by
all search tasks, and protected by a semaphore) before moving
on to its next µk; if the flag has been changed from its neutral
initialization value, then it will hold the identifier (PID) of
another task that has already converged, in which case the
current search task aborts. If the results of the current iteration
have converged, the shared memory flag will also be inspected;
if the flag has not yet been modified, than the search task is
the first one to converge, in which case changes the flag to
its PID and stops the search; if the flag was already modified,
some other task converged first, and so the task will abort.

IV. EVALUATION

A. Setup

Evaluation took place in a commodity cluster of 8 worker
nodes, with one Intel Core-i7 4790K 4.0GHz quad-core CPU
per node, running Linux ROCKS version 6.1.1, with the Gnu
C Compiler (GCC) version 4.4.7 and OpenMPI version 1.5.4.

In all tests, coPSSA was executed in a separate cluster host
(its frontend), with the number of search tasks ranging from 1
to 8 (despite the frontend having also a quad-core CPU, we did
not detect any overloading when executing 8 coPSSA search
tasks). PSSA executions took place in the 8 worker nodes;
these offer a total of 32 CPU-cores, fully specified in the base

MPI hostfile supplied to coPSSA, that are used, four at a time,
to service the PSSA execution requests of each coPSSA task;
thus, each PSSA execution always consumed 4 cores, with 1
core for the master process, and 3 cores for slave processes.
In order to fully exploit the 3 slave cores, the number of sub-
domains processed by PSSA was defined to be no less (and
as close as possible) than 3; for 2-dimensional problems, like
the ones we tested, this is achieved with a granularity g = 0.5,
that generates 4 sub-domains [15]. The PSSA variant used was
always the HoD variant, once it is the fastest and uses a fixed
number of sub-domains (4, in our evaluation scenario).

We have tested both strategies proposed (alternation
and slicing) for the decomposition of the µk space.
All tests shared the constrained parameters K = 100,
µ0 = 1.0 and τ = 0.7. The constrained problems selected
for the tests were the 2-dimensional problems G8 and
G11 from [4]. Specific (P)SSA numerical parameters
were r = 5, σ1 = 1.5, σ2 = 0.5 and κ = 0.05.

B. Results

Number of Search Tasks

1 2 3 4 5 6 7 8

S
ea

rc
h

 T
im

es
 (

se
co

n
d
s)

0

10

20

30

40

50

60

70

Ta

Ts

[Problem G8]

Fig. 2. Problem G8 - Search times with alternation (Ta) and slicing (Ts).

Figures 2 and 3 plot the search times with alternate (Ta)
and sliced searching (Ts), for problems G8 and G11, respec-
tively. Two important conclusions may readily be derived from
these figures: i) in general, having more search tasks helps to
decrease the solutions search times, for both problems, and
for both search approaches; however, for problem G8, with
slicing there’s none (or very small) benefit in having more than
3 search tasks; moreover, for problem G11, search times may
even increase in both approaches (smoothly with alternation,
more dramatically with slicing), although well bellow the
search time of a single task; ii) no approach (alternation vs
slicing) is a clear winner; with problem G8, slicing provides
the best search times; with problem G11 the fastest approach is
alternation; this opposite behavior, coupled with unpredictable
surges in search times when running more search tasks, shows
how difficult it is to develop search techniques that perform
reasonably well with a broad set of constrained problems.

Although we do not show the values of µk that lead
to convergence, another interesting observation derived from

Number of Search Tasks

1 2 3 4 5 6 7 8

S
ea

rc
h

 T
im

es
 (

se
co

n
d
s)

0

40

80

120

160

200

240

280

320

360

Ta

Ts

[Problem G11]

Fig. 3. Problem G11 - Search times with alternation (Ta) and slicing (Ts).

our experiments is that those values may vary considerably,
depending on the search approach (alternation vs slicing), and
on the number of search tasks. This is easily explainable.
Suppose that, with a single search task, which consecutively
tests µ1 to µ100, the µk that leads to convergence is µ3; it
may happen that, with slicing and two tasks (the first one
testing µ1 to µ50, and the second one testing µ51 to µ100), the
second task reaches convergence first, for instance, with µ52; it
may also happen that, with alternation and two tasks (the first
one testing µi, where i is odd, and the second one testing µj ,
where j is even), the first task is now unable to converge with
µ3, simply because the convergence test, that also depends
on the previous µk tested, considers µ1 as the preceding µk,
instead of µ2 (which now belongs to the second search task).

Despite the nature of the search process, that may introduce
some uncertainty on the search times, it is indisputable that the
parallelization techniques used by coPSSA introduce important
performance gains. This may be clearly recognized by the
parallel search efficiency achieved with more than one search
task, that is often of superlinear nature – see Figures 4 and 5.

Number of Search Tasks

1 2 3 4 5 6 7 8

S
ea

rc
h

 E
ff

ic
ie

n
cy

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Ea

Es

[Problem G8]

Fig. 4. Problem G8 - Search efficiency with alternat. (Ea) and slicing (Es).

Number of Search Tasks

1 2 3 4 5 6 7 8

S
ea

rc
h

 E
ff

ic
ie

n
cy

0

1

2

3

4

5

6

7

8

Ea

Es

[Problem G11]

Fig. 5. Problem G11 - Search efficiency with alternat. (Ea) and slicing (Es).

In Figures 4 and 5, Ea and Es measure the parallel search
efficiency with alternation and slicing, respectively. Generi-
cally, the efficiency E with P search tasks is EP = SP /P ,
where SP is the speedup achieved with P search tasks; in
turn, SP = T1/TP , where T1 is the search time with one task,
and TP is the search time with P tasks. Thus, E measures
how well-utilized the search tasks are in solving the problem.
A value E > 1.0 translates into a situation were efficiency is
superlinear. We may observe that, in problem G8, efficiencies
varies between ≈ 0.6 and ≈ 1.6, but are mostly bellow 1.0.
However, in problem G11 superlinear efficiency is the norm
(with a single exception, for sliced search with 7 search tasks).

Again, we note that performance gains may vary drama-
tically, for different constrained problems. Clearly, more tests
are necessary, with a broader set of problems (though other
results, not discussed here, seem to validate our approach).

V. CONCLUSION

In this paper we have presented coPSSA, an hybrid ap-
plication that solves constrained optimization problems, by
integrating a numerical penalty method with a parallel solver
of unconstrained problems (PSSA). Two types of parallelism
were explored: shared-memory parallelism, to split the test
space of a penalty parameter, and distributed-memory paral-
lelism, to test the possible convergence to the problem solution
with each parameter value. In addition, two different strategies
were compared (alternation and slicing), to assign the penalty
parameter values by the search tasks. Although conducted
with a limited set of numerical problems, our preliminary
evaluation of coPSSA shows clear performance gains with
regard to search times (including superlinear efficiencies). The
same evaluation, however, showed that no search strategy
(alternation or slicing) is always the best: depending on the
problem properties, one may converge faster than the other.

In the future, we intend to refine this work, by solving more
constrained problems (including problems with more than 2
dimensions) and by studying the effect of the variation of other
parameters (like τ) on the time to converge to the solution.

More efficient mechanisms (above the file system) to exchange
results between PSSA and coPSSA will also be explored.

REFERENCES

[1] Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for
the global optimization of multimodal functions, Journal of Heuristics,
6, 191–213 (2000).

[2] Eriksson, P., Arora, J.: A comparison of global optimization algorithms
applied to a ride comfort optimization problem, Structural and Multidis-
ciplinary Optimization, 24, 157–167 (2002).

[3] Floudas, C.: Recent advances in global optimization for process syn-
thesis, design and control: enclosure of all solutions, Computers and
Chemical Engineering, 963–973 (1999).

[4] Hedar, A.-R.: Global Optimization Test Problems, http://www-optima.
amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar files/TestGO.htm .

[5] Ingber, L.: Very fast simulated re-annealing, Mathematical and Computer
Modelling, 12, 967–973 (1989).

[6] Kiseleva, E. , Stepanchuk, T.: On the efficiency of a global non-
differentiable optimization algorithm based on the method of optimal
set partitioning, Journal of Global Optimization, 25, 209–235 (2003).

[7] León, T., Sanmatı́as, S., Vercher, H.: A multi-local optimization algo-
rithm, Top, 6(1), 1–18 (1998).

[8] Message Passing Interface Forum - http://www.mpi-forum.org/.
[9] Michalewicz, Z.: A survey of constraint handling techniques in evolu-

tionary computation methods. Proceedings of the 4th Annual Conference
on Evolutionary Programming pp. 135-155 (1995)

[10] Nocedal, J., Wright, S.: Numerical Optimization, Springer Series in
Operations Research, Springer (1999).

[11] Parsopoulos, K., Plagianakos, V., Magoulas, G., Vrahatis, M.: Objective
function stretching to alleviate convergence to local minima, Nonlinear
Analysis, 47, 3419–3424 (2001).

[12] Parsopoulos, K., Vrahatis, M.: Recent approaches to global optimization
problems through particle swarm optimization, Natural Computing, 1,
235–306 (2002).

[13] Pereira, A. I., Fernandes, E. M. G. P.: Constrained Multi-global Op-
timization using a Penalty Stretched Simulated Annealing Framework,
Numerical Analysis and Applied Mathematics, AIP Conference Proceed-
ings, 1168, 1354–1357 (2009).

[14] Pereira, A. I., Ferreira, O., Pinho, S. P., Fernandes, E. M. G. P.:
Multilocal Programming and Applications, Handbook of Optimization,
Edited by I. Zelinka, V. Snasel and A. Abraham, Intelligent Systems
series, Springer-Verlag, 157–186 (2013).

[15] Pereira, A.I., Rufino, J.: PSSA: A. Pereira, J. Rufino, Solving Mul-
tilocal Optimization Problems with a Recursive Parallel Search of the
Feasible Region, ICCSA 2014, LNCS 8580, 2014, pp 154-168, Springer
International Publishing, 2014.

[16] Price, C.J., Coope, I.D.: Numerical experiments in semi-infinite pro-
gramming, Computational Optimization and Applications, 6, , 169-189
(1996).

[17] Ribeiro, T., Rufino, J., Pereira, A.I.: PSSA: Parallel Stretched Simulated
Annealing, Numerical Analysis and Applied Mathematics, AIP Confer-
ence Proceedings, 1389, 783–786 (2011).

[18] Salhi, S., Queen, N.: A Hybrid Algorithm for Identifying Global
and Local Minima When Optimizing Functions with Many Minima,
European Journal of Operations Research, 155, 51–67 (2004).

[19] Surjanovic, S., Bingham, D.: Virtual Library of Simulation Experiments:
Test Functions and Datasets, http://www.sfu.ca/∼ssurjano .

[20] Tsoulos I., Lagaris, I.: Gradient-controlled, typical-distance clustering
for global optimization, www.optimization.org (2004).

[21] Tu, W. , Mayne, R.: Studies of multi-start clustering for global opti-
mization, International Journal Numerical Methods in Engineering, 53,
2239–2252 (2002).

[22] Wang, Y., Cai, Z., Zhou, Y., Fan, Z.: Constrained optimization based
on hybrid evolutionary algorithm and adaptive constraint-handling tech-
nique. Struct. Multidiscip. Optim. 37, 395-413 (2008)

