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ABSTRACT: The thermal effects of a localized fire bellow a concrete slab with the length of 10 m and 

the thickness of 30 cm is simulated. The nonlinear equation of heat transfer was solved by finite 

differences using an implicit scheme. The appropriate mesh size in the direction corresponding to the heat 

flux resulting from the fire was defined. The temperature results of the two dimensional simulation does 

not depend on the dimension of the mesh size in the horizontal direction (perpendicular to the heat flux).  
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1 STATEMENT OF THE PROBLEM 

The main objective of this work is the development of a scientific programming tool that allows 

modelling the temperature distribution inside a concrete slab subjected to a localized fire. This paper 

intends to analyse the effect of a car fire accident inside a compartment, made of concrete. When flash-

over is unlikely to occur, thermal effects of a localised fire should be taken into account [1]. 

To obtain the thermal effect of the localized fire, the heat released rate of a utilitarian car was used. The 

net heat flux incident on the exposed surface of concrete slab was also calculated according to the 

simplified formulas of Eurocode [1].  

The slab has a length of 10 m and a thickness of 30 cm, but the problem is reduced to the vertical 

section of the slab that is positioned above the axis of the flame. In this way we obtain a two dimensional 

domain, corresponding to a very flat rectangular area. Figure 1 represents the section of the compartment 

where the analysed area is at the top, where r corresponds to the horizontal distance to the vertical axe of 

the flame. 
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Figure 1: Geometry of the compartment. 

The temperature inside the plate is governed by the equation of heat transfer: 
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where k ,   and c  are, respectively,  the thermal conductivity, the specific mass and the specific heat of 

the concrete. The solution is nonlinear, because the material properties varies with temperature. Inside the 

slab we consider that x is the vertical direction, coincident with the main axis of the flame (z-axis in 

Figure 1), y is the horizontal direction, perpendicular to the axis of the flame. 
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The numerical solution of equation (1) is obtained by finite difference using implicit discretization 

schemes. The code is implemented in Matlab. This work follows a previous publication [2] which was 

addressed to solve the same problem using an explicit scheme. 

Section 2 is devoted to the description of the boundary conditions of the slab. Its definition is extremely 

important because it is through the boundary conditions that the effects of fire are transmitted to the slab. 

Thereafter, in section 3, we analyse the effect of mesh size in the parallel direction to the axis of the 

flame, where there is a large temperature gradient on the exposed surface. Section 4 shows the results of 

simulation in two dimensions covering the vertical section of the slab immediately above the axis of the 

flame. Section 6 finishes with some observations about the results obtained. 

2 BOUNDARY CONDITIONS 

The boundary conditions allow transfer to the slab the heat released by the localised fire. The Gasemi 

method was considered to setup the boundary conditions [1]. This method is applied when the flame is 

impacting the ceiling. The resulting heat flux ( h ) depends on the parameters illustrated in Figure 2 [1]. H 

(m) is the height of the compartment. D (m) is the is the diameter of the fire, r (m) is the horizontal 

distance between the vertical axis of the fire and the ceiling point where the heat flux is calculated,
hL  (m) 

is the horizontal flame length that depends on H and on Q, the rate of heat release of the fire.  

 

Figure 2: Geometry of the compartment [1]. 

The heat flux h  [W/m2] received by the exposed surface area at the level of the ceiling is given by: 
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The parameter y depends on the diameter D and on the heat release rate Q. For the heat release of the 

fire we have choose the typical curve that corresponds to a utility car. This curve as trapezoidal form with 

a maximum value equal to 18 MW that corresponds to a conservative value for the dimensioning [3].  

The net heat flux h  that affects the exposed surface of the slab along its entire length (from 0r   

to 5r  ), from the beginning ( 0t  ) to the end of the fire duration ( 1500t  s). The values of the net heat 

flux are represented in Figure 3 for different values of r. We consider also that he values of the heat flux 

are symmetric relatively to the axe o of the flame (see Figure 2). 

Additionally, the heat of the slab loosed by radiation and convection was also considered. In the 

exposed surface area the heat flux by radiation is calculated using equation (3),  

  
4 4273 293r m f mh       

 
  (3) 

where   represents  the configuration factor, 
m  is the surface emissivity of the member, f  is the 

emissivity of the fire,   is the Stephan Boltzmann constant and 
m  is the surface temperature of the 

member [°C]. In the unexposed and exposed surfaces of the slab, the convective heat flux is also 

calculated according to equation (4),  

  20c c mh      (4) 
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Figure 3: Net heat flux h  for different values of r. 

where 
c  is the coefficient of heat transfer by convection [W/m2K]. The insulation boundary condition 

was imposed on the left and right side of the slab.  

3 SETUP OF THE GRID SIZE IN ONE DIMENSION 

The numerical solution of equation (1) in one dimension was solved along the vertical direction that 

corresponds to the axis of the flame ( 0r  in Figure 1). The grid size by finite differences was defined 

using an implicit scheme as described by Patankar [4].  

  

Figure 4: Temperatures across the slab on the axe of the flame obtained with 20.5 10x    m.  

  The grid size was set up with a uniform value and then the variation effect was analysed. Figure 4 shows 

the variation of the temperature across the slab on the axis of the flame at different times, obtained with 
2

0.5 10x


   m. The maximum temperature is near to 700 ºC and occurs in the exposed side of the slab. 

During fire development, temperature inside the slab increases as well as the maximum temperature at the 

exposed side. When fire approaches the end and the incident heat flux is almost zero, the temperature of 

the exposed surface is lower than the temperature inside the slab. Figure 5 represents the temperature 

solution with a grid size five times smaller. 

  Results of Figures 4 and 5 show that the problem is sensitive to the dimension of the spatial grid. If grid 

size x  is reduced to 10-3 m the temperature curves are shifted to higher values (see Figure 5). This 

sensitivity is probably due to the high temperature gradient near the exposed side of the slab. Due to the 

thermal conductivity of the concrete there is a large temperature difference between the exposed side and 

the neighbouring points. Smaller values of the grid size x  allows to better capture the temperature 

variation near the exposed side. As can be seen in Figure 5, this seems to be linear in the beginning of the 

fire. 
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Figure 6 shows the temperature evolution of the exposed surface of the slab for different grid size. As 

we can observe, smaller values of x  lead to temperature curves with higher values. But values of x  

smaller than 10-3 m are responsible just for slight increases in temperature.  

The results obtained with 310x   m are satisfactory. However, in order to reduce the computational 

effort, a grid with variable step was implemented. This grid size was modified by a factor   higher than 

1.0 to increase the grid where there is no significant temperature gradient 

 
1 .i ix x     (5) 

Figure 7 contains the evolution of the temperature at the bottom of the slab resulting from different grid 

with different values of the step factor . As comparison it is also included the curve resulting from the 

discretization with a constant step 310x   m. The values obtained with 1.4   are very close to the 

values obtained with a constant step 310x   m and enables a considerable reduction in terms of 

computational work because it reduces the total number of operation and the requirements of memory 

storage. From now on, the grid size will be described by equation (5) using 1.4  . 

 

 

Figure 5: Temperatures across the slab on the axis of the flame obtained with 310x   m. 

 

Figure 6: Temperatures at the bottom of the slab on the axis of the flame, for different values of x .  

4 TWO DIMENSIONAL SIMULATION 

To determine the temperature field in the cross section of the slab located on the axis of the flame, an 

implicit scheme described by Patankar [4] was used. The Cartesian coordinates are y as the horizontal 

direction and x as the vertical direction (similarly to the resolution in one dimension).  

  We verify that the step size in the horizontal direction ( y ) does not affect the results. Figure 8 presents 

the temperature field inside the slab at t=1300 s, obtained with 0.1y  m and 0.5y  m. We can 

observe that the temperature distribution obtained with the two different mesh sizes are very close to each 

other. 
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Figure 7: Temperatures at the bottom of the slab on the axis of the flame, for different step factor . 

 

  

0.1y  m and 1300t  s  0.5y  m and 1300t  s 

Figure 8: Temperatures inside the slab at t = 1300 s, for different values of y .  

 

  

Figure 9: Evolution of the temperature inside the slab.  

  In Figure 9 we show the temperature distribution within the slab in two different time instants ( 400t  s 

and 1600t  s) of the fire. The highest temperatures occur always near the edge in contact with the 

flames. Most of the slab remains at low temperatures and little affected by heat.  

5 CONCLUSIONS 

The solution of heat transfer equation in a concrete slab subject to a localized fire is a very sensitive 

problem due to the high temperature gradients existing in the exposed surface. Because of the low 

conductivity of the concrete there is a large temperature gradient between the exposed surface boundary 

of slab and the neighbouring points. Large values of the grid size in this direction can lead to erroneous 

results. 

Due to the geometry of the slab section, with a length much larger than its height, the temperature 

inside propagates mainly in the vertical direction. The variation of the horizontal discretization step 

affects very little the results. The problem can be reduced to a set of one-dimensional problems. 
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