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New theories about dynamical systems highlight the multi-
factorial interplay between determinant factors to achieve higher
sports performances, including in swimming. Longitudinal research
does provide useful information on the sportsmen’s changes and
how training help him to excel. These questions may be addressed
in one single procedure such as latent growth modeling. The aim of
the study was to model a latent growth curve of young swimmers’
performance and biomechanics over a season. Fourteen boys
(12.33 ± 0.65 years-old) and 16 girls (11.15 ± 0.55 years-old) were
evaluated. Performance, stroke frequency, speed fluctuation, arm’s
propelling efficiency, active drag, active drag coefficient and power
to overcome drag were collected in four different moments of the
season. Latent growth curve modeling was computed to under-
stand the longitudinal variation of performance (endogenous vari-
ables) over the season according to the biomechanics (exogenous
variables). Latent growth curve modeling showed a high inter-
and intra-subject variability in the performance growth. Gender
had a significant effect at the baseline and during the performance
growth. In each evaluation moment, different variables had a
meaningful effect on performance (M1: Da, b = �0.62; M2: Da,
b = �0.53; M3: gp, b = 0.59; M4: SF, b = �0.57; all P < .001). The
models’ goodness-of-fit was 1.40 6 v2/df 6 3.74 (good-reason-
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able). Latent modeling is a comprehensive way to gather insight
about young swimmers’ performance over time. Different variables
were the main responsible for the performance improvement. A
gender gap, intra- and inter-subject variability was verified.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Talent identification, development, and follow-up are some of the major challenges that sports
researchers and practitioners still face nowadays. Swimming performance is characterized by the
multi-dimensional interplay of different scientific fields, where a highly complex interaction between
several variables exists (Barbosa et al., 2010). Cross-sectional studies reported relationships between
young swimmers’ performance, Energetics (Toubekis, Vasilaki, Douda, Gourgoulis, & Tokmakidis,
2011), Biomechanics (Morais et al., 2012) and Motor Control (Silva et al., 2013). Nevertheless, from
among all these scientific fields, Biomechanics plays a major role by explaining 50–60% of the perfor-
mance of young swimmers (Morais et al., 2012). Probably the partial contribution of each key factor to
performance may change across time, for example, over a season. However, until now no longitudinal
research has been conducted about it in sports performance. Moreover, longitudinal research should
help in gathering insight into: (i) how biomechanical variables interplay and affect performance; (ii)
the dynamical changes that happen at these early ages; (iii) the partial contribution of each determi-
nant factor over time.

For a long time sports research was based on the assumption that intra- and inter-subject var-
iability should be minimized. Nowadays, dynamic systems theory and non-linear approaches sug-
gest that variability should not be considered as a random error (Bideault, Herault, & Seifert, 2013).
Evidence has been gathered lately about this topic in adult/elite swimmers (Costa et al., 2013;
Komar, Sanders, Chollet, & Seifert, 2014) even though definitive answers are needed. Besides this,
little or almost nothing is known about it in young swimmers. Interestingly young sportsmen,
including swimmers, are supposed to be among the ones with a higher variability due to their
allegedly low expertise level. It seems that athletes with lower (such as young swimmers) and very
high expertise (including elite swimmers) levels are the ones with the highest variability (Seifert
et al., 2011).

Until now, classical research designs and data analysis procedures (e.g., analysis of variance and
regression models) selected on regular basis in sports performance were not helpful in gathering
insight about such highly dynamic and complex relationships. Latent growth curve modeling is a
structural equation modeling technique for longitudinal dataset. It is characterized by estimating
intra- and inter-subject growth trajectories, enabling researchers to predict future development
(Wu, Taylor, & West, 2009). Structural equation modeling also allows the quantification of how
much an exogenous variable contributes to an endogenous variable (Morais et al., 2012). Hence,
its potential to explain complex and dynamic changes as reported earlier should be explored. This
longitudinal data analysis procedure is reported on regular basis in Social Sciences such as Psychol-
ogy (Biesanz, West, & Kwok, 2003; Castellanos-Ryan, Parent, Vitaro, Tremblay, & Séquin, 2013). In
Sport Sciences a couple of papers can be found on physical fitness and health (Maia et al., 2003;
Park & Schutz, 2005) but it was never attempted in sports performance as much as we are aware
of.

Therefore, the aim of this study was to model a latent growth curve of young swimmers’ per-
formance and biomechanics over a season. It was hypothesized that latent growth curve modeling
would explain performance improvement. Different exogenous variables would have a higher
contribution on the performance enhancement throughout the season with a significant gender
effect.
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2. Methods

2.1. Subjects

Thirty young swimmers, including 14 boys: 12.33 ± 0.65-y, 284.85 ± 67.48 FINA (Fédération Inter-
nationale de Natation) points at the short-course meter (i.e., 25-m length swimming pool) 100-m free-
style; and 16 girls: 11.15 ± 0.55-y, 322.56 ± 45.18 FINA points at the short-course meter 100-m
freestyle were recruited. All swimmers were in Tanner stages 1–2 by self-report at baseline
(Tanner, 1962). The sample included age-group national record holders and champions. The swim-
mers were part of a national talent ID scheme. At the beginning of the research the swimmers had
3.40 ± 0.56 years of training experience. Fig. 1 reports the external training load over the season. Coa-
ches, parents, and/or guardians consented and the athletes assented their participation on this study.
All procedures were in accordance to the Helsinki Declaration regarding Human Research. The Univer-
sity of Trás-os-Montes and Alto Douro Ethic Committee also approved the study design (ethic review:
UTAD-2011-219).

2.2. Study design

The research design (Fig. 2) included repeated measures of kinematic and hydrodynamic variables
in four different moments over one season (i.e., longitudinal research). Testing sessions happened
immediately before the beginning of the season (baseline-M1), 4 weeks later (first competition-
M2), in the middle of the season (24th week-M3) and at the end of the season (38th week-M4). Data
collection procedures were carried out in the same conditions at all times (e.g., the same swimming
pool, lane, time of day).

2.3. Theoretical model

Theoretical model (Fig. 3) was designed to include kinematic, hydrodynamic, and performance,
controlling the gender effect. Stroke frequency (SF), intra-cyclic speed fluctuation (dv) and propelling
efficiency (gp) were selected as kinematic outcomes. As for hydrodynamics, active drag (Da),
coefficient of active drag (CDa) and power to overcome drag (Pd) were selected. Literature reports that
Fig. 1. Training volume per week (in km) throughout the season. # – evaluation moments (Mi); A0 – warm-up and recovery
pace; A1 – slow pace; A2 – moderate pace (aerobic capacity); A3 – intense pace (aerobic power).



Fig. 2. Study design scheme. M – moment; Wk – week; # – week’s number.

Fig. 3. Theoretical model. VAR (1, 2, 3 and 4) – exogenous variable in M1, M2, M3 and M4, respectively; PERF (1, 2, 3 and 4) –
performance in M1, M2, M3 and M4, respectively; ICEPT – intercept effect; SLOPE – slope effect; Gender – gender effect; b xi,yi –
beta value for regression model between exogenous (xi) and endogenous (yi) variables; exi – disturbance term for a given
variable; xi ? yi – variable yi depends from variable xi.
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kinematics and hydrodynamics determine young swimmers’ performance (Morais et al., 2012). Stroke
frequency, speed fluctuation, and arm’s propelling efficiency (i.e., kinematics), active drag, coefficient
of active drag, and power to overcome drag (i.e., hydrodynamics) are some of the variables that have a
strong relationship with young swimmers’ performance and therefore were selected on regular basis
in swimming research (Marinho et al., 2010; Morais et al., 2012; Silva et al., 2013).

Swimming performance was chosen as the main outcome (endogenous variable; i.e., dependent
variable being predicted), because the primary goal of coaches and swimmers is to enhance the per-
formance. Kinematic and hydrodynamic variables are the exogenous variables (i.e., independent vari-
ables that predict the main outcome). The interpretation of this kind of approach is based on: (i) the
variables included (inserted inside squares); (ii) the paths (i.e., arrows; an arrow between two
variables means that one variable determines the other); (iii) beta values (i.e., these suggest the
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contribution of one variable to the other; when the origin variable increases by one unit the destina-
tion variable increases by the amount of the beta value); (iv) residual errors and/or determination
coefficient (represents the variable predictive error or the variable predictive value, respectively, in
the linked ellipse), and (v) the latent variables (inserted in ellipses) are the no-observed (i.e., the slope
analyzes the endogenous variable growth and variability; the intercept analyzes the variability in the
baseline).

It was possible to extract the following details from the model: (i) the direct effect (i.e., contribu-
tion) of an exogenous variable to the endogenous one (i.e., performance) in each evaluation moment;
(ii) the longitudinal growth of the endogenous variable; and (iii) the gender influence at the baseline
values (intercept) and also in the endogenous variable growth (i.e., slope).

2.4. Performance data collection

The official short course 100-m freestyle race was chosen as performance variable. The time gap
between each the race and data collection took no longer than 15-days.

2.5. Kinematics data collection

Swimmers were instructed to perform three maximal trials of 25-m at front-crawl with push-off
start. Between each trial they had a 30-min rest to ensure full recovery. For further analysis the aver-
age value of the three trials was calculated (ICC = 0.96).

Kinematic data was collected with a mechanical technique (Swim speedo-meter, Swimsportec, Hil-
desheim, Germany). A 12-bit resolution acquisition card (USB-6008, National Instruments, Austin,
Texas, USA) was used to transfer data (f = 50 Hz) to a customized software (LabVIEW� interface,
v.2009) (Barbosa et al., 2010). Data were exported to a signal processing software (AcqKnowledge
v.3.9.0, Biopac Systems, Santa Barbara, USA) and filtered with a 5 Hz cut-off low-pass 4th order But-
terworth filter. Speed fluctuation was computed as (Barbosa et al., 2010):
dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðv i � �vÞ2F i=n

q
P

iv iF i=n
ð1Þ
where dv is the speed fluctuation, v is the mean velocity, vi is the instant velocity, Fi is the absolute
frequency and n is the number of observations per stroke cycle. Two expert evaluators measured
the SF with a stroke counter (base 3) and then converted to SI units (ICC = 0.98). The gp was estimated
as (Zamparo, Pendergast, Mollendorf, Termin, & Minetti, 2005):
gp ¼
v � 0:9

2p � SF � l

� �
� 2
p

� �
� 100 ð2Þ
where gp is the arm’s propelling efficiency, v is the velocity, SF is the stroke frequency and l is the dis-
tance between shoulder and tip of the 3rd finger during the insweep.

2.6. Hydrodynamics data collection

The Velocity Perturbation Method was selected to assess the hydrodynamic variables (Kolmogorov
& Duplisheva, 1992). Swimmers performed two extra maximal trials of 25-m at front crawl with push-
off start (one trial with and the other without carrying on the perturbation device). Swimming velocity
was assessed between the 11th and 24th m from the starting wall (Marinho et al., 2010). The time
spent to cover this distance was measured with a manual stopwatch (Golfinho Sports MC 815, Aveiro,
Portugal) by two expert evaluators (ICC = 0.97). The evaluators followed the swimmer to a have a good
line of sight when the swimmer passed the two distance marks. The Da was estimated as (Kolmogorov
& Duplisheva, 1992):
Da ¼
Dbvbv2

v3 � v3
b

ð3Þ
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where Da is the swimmers’ active drag at maximal velocity, Db is the resistance of the perturbation
buoy provided by the, vb and v are the swimming velocities with and without the perturbation device.
The CDa was calculated as (Kolmogorov & Duplisheva, 1992):
CDa ¼
2 � Da

q � S � v2 ð4Þ
where CDa is the active drag coefficient, q is the water density (assumed to be 1000 kg m�3), v is the
velocity and S is the swimmers’ projected frontal surface area. The Pd was obtained from (Kolmogorov
& Duplisheva, 1992):
Pd ¼ D � v ð5Þ
where Pd is the power to overcome drag, D is the drag and v is the velocity.
2.7. Statistical procedures

The normality and homoscedasticity assumptions were analyzed with the Shapiro–Wilk and the
Levene tests, respectively. Descriptive statistics included the calculation of the mean, median, mini-
mum, maximum and one standard deviation.

Latent growth curve modeling was used to compute the longitudinal variation of the swimmers’
performance over the season. This technique is characterized by estimating intra-individual (repre-
sented by the growth parameters; i.e., intercept and slope for growth) in the inter-individual (differ-
ences between subjects) growth trajectories (Wu et al., 2009). The intercept and slope are latent
variables, which means that they are not directly observed but rather inferred. The intercept deter-
mines where the participants’ baseline is and how they differ in that specific moment, showing the
inter-individual differences between the participants at the baseline, corresponding to M1 in this
model). The slope is the average rate of growth, related to the variation throughout a time-frame. It
shows the hypothetical differences between the observed moments, and if an inter-individual vari-
ability exists or not.

The effect between exogenous (SF, dv, gp, Da, CDa, and Pd) and endogenous (performance) variables
was also considered. Endogenous variable is the one being predicted and the growth rate analyzed.
Exogenous variables are the ones with a direct effect on performance in each evaluation moment.
Path-flow analysis model was used to estimate the linear regression standardized coefficients
between exogenous and endogenous variables. Standardized regression coefficients (b) were selected,
and the significance of each one assessed with Student’s t test (P 6 .05).

The models’ goodness-of-fit were measured with the ratio Chi-square/degrees of freedom (v2/df)
(Wheaton, 1987). As a rule of thumb if: 5 < v2/df the model has a poor adjustment; 2 < v2/df 6 5 rea-
sonable adjustment; 1 < v2/df 6 2 good adjustment; v2/df � 1 very good adjustment.
3. Results

Performance improved between the first (M1, 72.05 ± 5.33 s) and last (M4, 66.13 ± 5.16 s) evalua-
tion moments. Da and Pd showed the highest variations across the season (Table 1). Some selected
variables (gp, Da, CDa and Pd) increased in a non-linear fashion way.

In M2 and M3, performance achieved 59% (P < .001) and 99% (P < .001) of the last evaluation (M4)
(Fig. 4). The slope variance was significant for all models, suggesting a heterogeneous growth rate of
the performance and hence an inter-subject variability for the pooled sample (i.e., boys plus girls). The
dv model was the one presenting the highest slope (b = 6.56; P = .003). The intercept variance was sig-
nificant for all models computed, suggesting an inter-subject variability at the baseline for the pooled
sample and gp showed the highest intercept (b = 28.15; P < .001). Overall it seems that each partici-
pant had its own and unique growth rate suggesting a high inter-subject variability.

Gender had a significant effect on the performance growth with significant paths to intercept and
slope for all models (Fig. 4). Both gp and CDa models presented the highest significant paths (b = 0.94;
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P < .001). Data showed that boys presented better performances than girls. The Pd model had the high-
est significant path (b = 0.86; P < .001).

All selected variables presented a significant direct effect on performance at least in one evaluation
moment (Fig. 4). In M1 the Da presented the highest direct effect on performance (b = �0.62; P < .001;
by each 1N increase, performance improved 0.62 s). In M2 was once again the Da (b = �0.53; P < .001),
in M3 the gp (b = 0.59; P < .001) and in M4 the SF (b = �0.57; P < .001). Hence, swimmers relied on dif-
ferent exogenous variables to enhance performance in different moments of the season.
Fig. 4. Growth confirmatory models for performance and effects of the selected variables. (A) SF – stroke frequency; (B) dv –
speed fluctuation; (C) gp – arm’s propelling efficiency; (D) CDa – active drag coefficient; (E) Da – active drag; (F) Pd – power to
overcome drag; ICEPT – intercept effect; SLOPE – slope effect; Gender – gender effect; exi – disturbance term for a given
variable; xi ? yi – variable yi depends from variable xi.



Table 1
Descriptive statistics for selected kinematic and hydrodynamic variables in each evaluation moment.

PERF [s] SF [Hz] dv [dimensionless] gp [%]

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Mean 72.05 68.91 66.44 66.13 0.85 0.84 0.86 0.86 0.09 0.09 0.08 0.08 30.21 30.38 33.13 31.03
1 SD 5.33 5.43 5.33 5.16 0.09 0.08 0.10 0.08 0.02 0.03 0.02 0.01 2.94 2.94 4.55 5.13
Median 72.02 69.32 67.43 66.66 0.83 0.83 0.83 0.83 0.09 0.09 0.08 0.08 30.47 30.78 32.12 30.73
Minimum 60.30 57.03 58.01 57.36 0.67 0.70 0.72 0.73 0.06 0.06 0.06 0.05 25.16 24.24 26.00 24.12
Maximum 81.00 79.12 76.85 76.06 1.05 0.99 1.07 1.03 0.16 0.17 0.14 0.10 35.80 35.06 44.99 53.06

Da [N] CDa [dimensionless] Pd [W]

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Mean 45.84 71.01 83.25 75.62 0.40 0.49 0.58 0.50 68.65 99.04 116.93 109.62
1 SD 27.76 33.70 37.30 36.96 0.22 0.17 0.26 0.22 47.12 49.90 53.83 57.08
Median 34.29 58.36 70.85 77.05 0.34 0.48 0.51 0.46 49.22 81.72 97.36 107.25
Minimum 22.20 26.64 22.20 20.66 0.16 0.22 0.18 0.18 31.34 36.55 30.44 24.00
Maximum 139.53 167.33 172.93 189.52 1.41 0.89 1.28 1.32 241.54 229.86 244.27 295.41

Mi – evaluation moment; PERF – performance; SF – stroke frequency; dv – speed fluctuation; gp – arm’s propelling efficiency; Da – active drag; CDa –active drag coefficient; Pd – power to
overcome drag.
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The models’ goodness-of-fit ranged between 1.40 6 v2/df 6 3.74 (i.e., good-reasonable). The CDa

model showed highest goodness-of-fit (v2/df = 1.40; good adjustment) and the SF the lowest one
(v2/df = 4.41; reasonable adjustment).
4. Discussion

The main aim of this study was to model a latent growth curve of swimming performance and its
relationship with biomechanics over time to gather insight about the partial contribution of each fac-
tor and the gender effect. In the first two moments, hydrodynamics was the major contributor to per-
formance and in the last two, kinematics. The model was also able to detect a gender gap and a high
intra- and inter-subject variability. Therefore, over a season, different determinant factors had a main
influence on the performance enhancement for both boys and girls. Besides that, each one of them
selected a unique strategy to enhance performance.

Cross-sectional studies showed that young swimmers’ performance is highly influenced by kine-
matics and hydrodynamics (Morais et al., 2012). However, longitudinal follow-up studies that
included these variables neglected the inter- and intra-subject changes (Lätt et al., 2009). At least
for adult swimming it was pointed out that intra-subject changes are not residual variance and it
should not be disregarded in the overall analysis (Connaboy, Coleman, Moir, & Sanders, 2010; Costa
et al., 2013). The same idea was shared earlier by others for motor control (Komar et al., 2014) and
kinematics changes (Figueiredo, Seifert, Vilas-Boas, & Fernandes, 2012; Seifert, Barbosa, & Kjendlie,
2010; Seifert, Leblanc, Chollet, & Delignières, 2010). Latent growth curve modeling is able to estimate
intra- and inter-subject variability. Variance analysis showed significant differences between swim-
mers at the baseline and during the performance growth. Residual variances tend to be neglected
by other data analysis techniques (e.g., analysis of variance and multi-linear regressions). At least clas-
sical techniques are less sensitive to such residual variances. However, those variances are of major
interest in latent growth curve modeling (Voelkle, 2007). A main finding of this research was that
young swimmers presented a high intra- and inter-subject variability suggesting that each one has
a very unique strategy to excel.

Latent growth curve modeling provides the amount of performance that is achieved in intermedi-
ate moments. Between M1 and M2 performance reached 59% of its final value in M4. Between com-
petitive seasons, young swimmers have a break period impairing their energetics and kinematics
(Moreira et al., 2014). The improvement between M1 and M2 might be related with the first meso-
cycle that is characterized by a fairly high volume after the summer break (Fig. 1). Afterwards, perfor-
mance improved 39% (between M2 and M3) and 1% (between M3 and M4). Hence, as the major
competition of the season is approaching, improvements are less sharp and meaningful. Similar trend
is reported for adult/elite swimmers. Building-up for the major competition, adult swimmers are get-
ting closer from their reserve upper-limits, and it is more challenging for any further improvement
(Costa et al., 2013).

A gender gap was also identified at the baseline and during the performance growth. There is a very
solid body of knowledge about the gender differences for peri- and post-pubertal athletes (Seifert,
Barbosa et al., 2010; Seifert, Leblanc et al., 2010). Literature reports that boys have a higher dv, Da,
and SF than girls (Barbosa et al., 2010). Therefore longitudinal structural equation modeling was suc-
cessful in identifying the well-known gender gap. In this sense, the technique used is also sensitive
enough whenever pooled data (both genders) is computed.

Swimming is characterized by the multi-dimensional interplay of different variables that will influ-
ence the performance. One might claim that the partial contribution of each exogenous variable to the
endogenous one will change over time. That is, the partial contribution of each variable will not be
constant over time. However, until now as much as we are aware no paper reported or quantified such
phenomenon. Structural equation modeling is very sensitive to such changes and can be used to learn
about it. In M1 and M2, Da was the main performance determinant. Between M1 and M2 periodization
included the highest volume of the season (Fig. 1). The goals of those meso-cycles were to build-up
energetics (mainly aerobic capacity) and improve technique. It was reported that training based on
technical drills and kinesthetic feedbacks improved young swimmers’ hydrodynamics and
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performance (Havriluk, 2006). Da is strongly related to swimming velocity (Eq. (3)). Hence, the
increase in speed and therefore in performance lead to a higher Da. CDa had a minor influence on per-
formance growth. So, it can be speculated that the performance enhancement during this time frame
might be more related to energetic build-up and less to technique enhancement.

In M3, gp had the highest direct effect on the performance. Between M2 and M3 periodization was
characterized by a decrease in total volume (Fig. 1). These meso-cycles were more focused on techni-
cal parameters (enhancing stroke mechanics). This explains why on average the swimmers achieved
the highest gp in M3. Since long there has been a discussion whether young swimmers training should
rely more on energetics or efficiency. Cross-sectional confirmatory models suggested that 50–60% of
performance in these age-groups is related to biomechanics and technique enhancement (Morais
et al., 2012). In M4, SF was the variable presenting the highest direct effect on performance. Between
M3 and M4 periodization included an increase in the aerobic power and aerobic capacity sets (Fig. 1).
This was coupled with a slight increase of the dry-land training sessions that included strength power
routines. For adolescent sprint swimmers, an association was found between high muscular strength
parameters and an increase in SF (Girould, Maurin, Dugué, Chatard, & Millet, 2007). At least in adult
swimmers aerobic power paces are related to customize SF-stroke length relationships (McLean,
Palmer, Ice, Truijens, & Smith, 2010; Wakayoshi, D’Acquisito, Cappert, & Troup, 1995). Therefore, to
swim at aerobic power sets a fairly constant and high stroke length with a high SF is needed. To be
able to optimize this SF-stroke length relationship dry-land power training is a must.

It was attempted in one of the earliest models to include anthropometrics variables to control the
potential confounding factor of the maturation and growth. However, after running the model, we
failed to obtain significant results and a reasonable adjustment. Because we track down and follow-
up subjects in Tanner 1–2, one might consider that most of them are yet pre-pubescent and therefore
one single year is not enough to verify significant changes in biological maturation. With this we are
not suggesting that they are not in a process of biological development but only that because they did
not reach any spur, it is more challenging to have anthropometrics as a determinant factor. However,
later one, that is, swimmers in the following Tanner stages this is more obvious (Falk, Bronshtein,
Zigel, Constantini, & Eliakim, 2004; Jurimae et al., 2007). Overall, in M1 and M2 hydrodynamics
(i.e., Da) was the major contributor to performance while in M3 and M4 was the kinematics (gp

and SF, respectively). Therefore, the main determinant at a given moment is related to the periodiza-
tion model designed. It is possible to design models that are more based on energetics (M1 and M2) or
technique (M3 and M4). A model that relies more on energetics allows a very quick and sharp
improvement, but on the other hand the efficiency is compromised and increases the odds of an early
burn-out. A model that is based on the technique is more time-consuming and performance enhance-
ment might take some time to happen. However, a proper technique will be needed for further
improvement reaching adulthood, when most of the periodization is energetically oriented (e.g.,
Schnitzler, Seifert, Chollet, & Toussaint, 2014). Besides, it is at these early ages that the motor learning
mechanisms of any skill is more effective. Considering the pros and cons of each approach, an age-
group coach should consider to compromise both (energetics build-up and technique enhancement)
but putting more focus on the technique and efficiency if the athlete’s career is to be seen in the
long-run. Hence, it seems that many of the changes in performance can be attributed to the type of
training that swimmers were undergoing at the time of each data collection. This could be useful
for coaches as it shows that technical parameters are the most determinant ones in the young swim-
mers’ performance improvement. They can apply these technical drills according to their macro-
cycles, avoiding the athletes to burn out with high amounts of training workloads, especially close
to the main events.
5. Conclusion

Latent modeling is a comprehensive way to gather insight about young swimmers’ performance
over time. This was showcased with young swimmers engaged in a national talent ID scheme. Differ-
ent variables were responsible for the performance improvement over the season. A significant intra-
and inter-subject variability was verified. These findings suggest that a very unique and customized
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strategy is used by each swimmer to excel. Overall it seems that young swimmers coaches’ should put
the focus on the hydrodynamic profile and also on the stroke mechanics (i.e., technical ability) to
enhance the performance, notably sprinters. Moreover the performance main determinants are also
related to the training periodization.
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