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The aim of this article has been to classify swimmers based on kinematics, hydrodynamics, and anthropometrics. Sixty-seven 
young swimmers made a maximal 25 m front-crawl to measure with a speedometer the swimming velocity (v), speed-fluctuation 
(dv) and dv normalized to v (dv/v). Another two 25 m bouts with and without carrying a perturbation device were made to esti-
mate active drag coefficient (CDa). Trunk transverse surface area (S) was measured with photogrammetric technique on land and 
in the hydrodynamic position. Cluster 1 was related to swimmers with a high speed fluctuation (ie, dv and dv/v), cluster 2 with 
anthropometrics (ie, S) and cluster 3 with a high hydrodynamic profile (ie, CDa). The variable that seems to discriminate better 
the clusters was the dv/v (F = 53.680; P < .001), followed by the dv (F = 28.506; P < .001), CDa (F = 21.025; P < .001), S (F = 
6.297; P < .01) and v (F = 5.375; P = .01). Stepwise discriminant analysis extracted 2 functions: Function 1 was mainly defined 
by dv/v and S (74.3% of variance), whereas function 2 was mainly defined by CDa (25.7% of variance). It can be concluded that 
kinematics, hydrodynamics and anthropometrics are determinant domains in which to classify and characterize young swim-
mers’ profiles.
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Talent identification in swimming is one of the most challeng-
ing tasks for researchers and sport analysts. Research on expertise, 
talent identification, and development has tended to be monodisci-
plinary.1 Traditional approaches focused on the role of one single 
scientific field or trait in expertise and talent identification, such 
as the relationship between anthropometrics and performance that 
was so popular in the 1970s and 1980s. However, several charac-
teristics (ie, scientific fields, domains, and variables) are related to 
performance. Hence, expertise and talent identification were started 
to be seen as a multidisciplinary phenomenon. Multiple test bat-
teries were implemented to identify talented athletes. Exploratory 
designs (notably comparison of cohort groups and correlational 
studies) were conducted to identify the scientific domains and 

independent variables that determine the performance. In con-
trast to more traditional approaches, a potentially more valuable 
conceptual framework for the classification of expertise and talent 
exists, understanding young athletes as multifactorial, complex, 
and dynamical systems. The potential for interaction between per-
formance determinants (ie, scientific fields, domains, and variables) 
provides the platform for different and diverse patterns of behavior 
to emerge on an individual basis.1 To do so, cluster analysis, consid-
ering several scientific disciplines, domains, and variables, might 
be a solution2 as movement variability should not be disregarded.3 
Nevertheless, one significant advantage of behavioral clustering is 
that no previous assumptions about the structure of the dataset are 
required to identify similar behaviors. This is a regular procedure 
in marketing and advertising, for instance, to identify consumer 
buying behaviors and thereafter create individual consumer cen-
tric strategies. Cluster solutions obtained come from “emergent 
behavior” and not from “pre-existing assumptions.” Thereafter 
with a classification system developed, it will be straightforward 
to identify, classify, and design intervention programs accordingly 
for these and for new athletes in the future.

Recently, a research trend has emerged to try understand the 
links among all the variables that determine the swimming per-
formance.4 Biomechanical characteristics (including kinematics, 
kinetics, and anthropometrics) play a major role (approx. 50–60%) 
in children’s swimming performance.5 So, the classification of 
young swimmers based on such characteristics can be a useful 
tool for talent identification and has never been attempted before.

Swimming is characterized as being an accelerated motion, 
where the changes in the acceleration within the stroke cycle can be 
assessed through the body’s intracyclic variations of the horizontal 
velocity (dv).6 So, Newton’s law of motion
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where F is the resultant force, m the body mass, and a the accelera-
tion can be conceptually changed to

                 

Pr D
dv

m

+=
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where dv is the speed fluctuation, Pr is the total propulsive force, D 
is the hydrodynamic drag force, and m is the swimmer’s body mass. 
It is the resultant vector sum of Pr by D that plays a main part in 
the dv throughout the swim, as m is fairly constant (neglecting the 
added mass that a swimmer carries out; to be strict, m = body mass 
+ added water mass).7 While actively swimming, D is a Newtonian 
force with the name of active drag (Da) and calculated as

                  (3)

where Da is the swimmer’s active drag, ρ the density of the water 
(assumed to be 1000 kg/m3), v the swimmer’s velocity, and S his/
her projected frontal surface area. From Equations 2 and 3, we 
find a theoretical relationship between kinematics (eg, dv and v), 
hydrodynamics (eg, CDa), and anthropometrics (eg, S). However, 
humans while performing a motor task (in this case, swimming) 
can select different strategies to reach the same outcome, as they 
might be considered “overdeterminate” systems; that is, there is the 
ability of elements that are structurally different to reach the same 
function or yield the same output.8 For the case of the Da, eventually 
young swimmers also adopt different, very unique, and individual 
approaches to change it.

Traditionally, sports performance research is based on the uni-
versalistic perspective. Data analysis is conducted considering the 
sample or the group’s main trend (eg, average differences, average 
variations, etc.). As a consequence, the individuality of each subject 
is “diluted” by the main trend of the overall sample and considered 
as “noise.” The assessment of individual trends and behaviors is a 
fair novelty in swimming.9 Accordingly, to the best of our knowl-
edge, a classification of young swimmers based on their individual 
biomechanical characteristics has never been attempted. The aim 
of this technical note has been to develop a classification system 
for young talented swimmers based on kinematical, hydrodynamic, 
and anthropometrical characteristics.

Methods
Sixty-seven young swimmers (34 girls and 33 boys, 12.83 ± 1.26 
years old, 159.29 ± 8.569 m of height, 49.40 ± 9.22 kg of body 
mass, and 1–2 Tanner stages) with at least 4 years of experience in 
competitive swimming, participating on regular basis in regional- 
and national-level competitions volunteered as subjects.

Each subject swam a maximal 25-m front-crawl trial with a 
push-off start. A speedometer cable (Swim speedometer, Swims-
portec, Hildesheim, Germany) was attached to the swimmer’s hip.10 
The speedometer was placed in the forehead wall of the swimming 
pool, about 0.2 m above the water surface. A software’s interface 
in LabVIEW (v. 2009) was used to acquire (f = 50 Hz), display, 
and process pairwise velocity-time data online during the trial. To 
transfer data from the speedometer to the software application, a 

12-bit resolution acquisition card (USB-6008, National Instruments, 
Austin, Texas, USA) was used. Thereafter, data were exported to 
signal-processing software (AcqKnowledge v. 3.5, Biopac Systems, 
Santa Barbara, USA) and filtered with a 5-Hz cut-off low-pass 4th-
order Butterworth filter.10 This apparatus allowed measuring the 
mean swimming velocity within the stroke cycle (v). Considering 
the theoretical background (ie, Equation 2, but more details on this 
can be obtained elsewhere4), intracyclic variation of the horizontal 
velocity of the hip (dv) was measured as:10

 

                                                                                     (4) 
 

where dv is the intracyclic variation of the horizontal velocity of 
the hip, v the mean swimming velocity, vi the instant swimming 
velocity, Fi the acquisition frequency, and n the number of observa-
tions. Thereafter, dv was also normalized to the swimming velocity 
(dv/v). It should be considered that there is an overestimation of 
approximately 7% analyzing the center of mass forward velocity 
based on the hip’s assessment.11

Da was calculated with the velocity perturbation method.12 Each 
swimmer performed two other maximal 25-m trials at front crawl 
(with and without carrying the perturbation device). Swimming 
velocity was assessed at 13m (between 11th and 24th m from the 
push-off wall). The time spent to cover this distance was measured 
with a manual stopwatch (Golfinho Sports MC 815, Aveiro, Portu-
gal) by two expert evaluators (ICC = 0.97), and the mean value was 
used for further analysis. Da was calculated as follows.12

 
  (5)

where Da is the swimmer’s active drag at maximal velocity, Db the 
resistance of the perturbation buoy, and vb and v the swimming 
velocities with and without the perturbation device, respectively. 
The drag of the perturbation buoy was obtained from the manufac-
turer’s technical description (ie, buoy-drag characteristics and its 
velocity).12 Active drag coefficient (CDa) was calculated by chang-
ing Equation 3 to

                                                                                     (6) 

where ρ is the density of the water (assumed to be 1000 kg/m3), 
Da the swimmer’s active drag, v the swimmer’s velocity, and S the 
swimmer’s projected frontal surface area.

S was measured with a photogrammetric technique;7,13 taking 
pictures of the swimmers with a digital camera (DSC-T7, Sony, 
Tokyo, Japan) in the transverse plane from above.13 Subjects were 
on land, standing in the upright and hydrodynamic position wear-
ing a regular textile swim body suit, a cap, and goggles.7 On the 
camera’s shooting field, a calibration frame with 0.945 m length 
was placed side by side with the swimmer at the shoulder level. S 
was measured from the subject’s digital photo with specific area-
measuring software (Udruler, AVPSoft, USA).

Swimming performance was also assessed, measuring the 
time of the 100-m freestyle event during an official short-course 
competition at regional or national level. The time gap between 
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biomechanical data collection and the 100-m freestyle race was 
less than two weeks.14

Two clustering approaches to increase confidence in the sta-
bility of the emergent profiles were used: (i) hierarchical cluster 
analysis using Ward’s linkage method with the squared Euclidean 
distance measure to provide guidance as to the number of clusters 
represented in the data; (ii) k-means (nonhierarchical) cluster 
analysis. Standardized z scores (ie, normalization process allowing 
the comparison of datasets with different units and/or magnitudes) 
of the selected variables were used in the clustering analysis. To 
identify the variables with the highest influence in each cluster, 
a cluster’s ANOVA and discriminant analysis (stepwise method) 
tests were computed (P < .05). MANOVA using cluster group as 
the independent variable and swimmers’ characteristics (ie, gender 
and swim performance) were also computed (P < .05).

Results
Coefficient of determination (R2) was used to test several cluster 
solutions (from 1 to 9; ie, 1 < k < 9). The three-cluster solution 
(k = 3) was the one with the highest power with lower gains after 
the 4th cluster (R2 = .709) (Figure 1). Descriptive statistics revealed 
a moderate-large variation of all selected variables (Table 1).

ANOVA statistics revealed significant variations in all tested 
variables (Table 2). Cluster 1 was characterized by high values of 
speed fluctuation (ie, dv and dv/v). Cluster 2 was characterized 
by high value of anthropometrics (ie, S). Cluster 3 was associ-
ated with the high hydrodynamic profile (ie, CDa). The variable 
that seems to discriminate the clusters better was the dv/v (F = 
53.680; P < .001), followed by dv (F = 28.506; P < .001), CDa 
(F = 21.025; P < .001), S (F = 6.297; P < .01), and v (F = 5.375;  
P = .01). MANOVA showed a nonsignificant multivariate effect 
of gender and swimming performance in cluster groups (ΛWilks’s 
= 0.808; ΛPillai’s = 0.194; P = .08).

The stepwise discriminant analysis extracted two functions 
including the dv/v, CDa and S (Figure 2). Function 1 is mainly 
defined by dv/v and CDa explaining 74.3% of variance (Λ= 0.179; 
χ2(6) = 104.976; P < .001); function 2 is mainly defined by CDa 
and S explaining 25.7% of variance (Λ = 0.569; χ2(2) = 34.359; 
P < .001):

 Function 1 = 0.170⋅S – 0.750⋅CDa + 1.487⋅dv/v – 0.009     (7)

 Function 2 = –0.684⋅S + 0.920⋅CDa + 0.591⋅dv/v + 0.025  (8)

Regarding data validation, 89.2% of the original group were 
correctly classified (Table 3), with classification functions as fol-
lows:

 Cluster 1,  
 kinematics = 44.198⋅S – 2.852⋅CDa + 4.604⋅dv/v – 41.280      (9)

 Cluster 2,  
 anthropometrics = 49.082⋅S – 0.305⋅CDa + 2.752⋅dv/v – 28.175 
                                                                                                (10)

 Cluster 3,  
 hydrodynamics = 37.788⋅S + 17.963⋅CDa + 2.195⋅dv/v – 24.175 
                                                                                                 (11)

Discussion
The aim of this research was to develop a classification system for 
young talented swimmers based on kinematical, hydrodynamic, 
and anthropometrical characteristics. Three clusters, based on dv 
and dv/v (cluster 1, labeled “kinematics”), S (cluster 2, labeled 
“anthropometrics”), and CDa (cluster 3, labeled “hydrodynamics”), 
were obtained. The stepwise discriminant analysis extracted two 
functions including the dv/v, CDa, and S, explaining 74.3% and 
25.7% of the variance, respectively.

Traditionally, talent identification research is based on the 
identification of variables that might be related to the performance 
during childhood and adulthood. Several authors conducted explor-
atory studies to identify some of those variables with potential to 
predict the swimming performance.15–17 This exploratory research 
involves, most of the times, the design of cohort or correlational 
studies. Researchers applied bivariate tests to know the empirical 
relationship between two variables (one of these is the performance). 
Kinematics (as happens for cluster 1),18,19 anthropometrics (cluster 
2),20 and hydrodynamics (cluster 3)21 are highly related with young 
swimmers’ performance. However, swimming performance is a 
multifactorial phenomenon where several variables play a role. 
Hence, one of the main limitations in this exploratory research is 
that it does not consider the interaction and/or the relationships 
between all the variables involved.

To solve this limitation, deterministic models were developed, 
with structural equation modeling, to explain the relationships 
between performance and determinant variables in young swim-
mers. Structural equation modeling is a mathematical procedure 
for testing and estimating causal relationships of several variables. 

Table 1 Descriptive statistics of the selected variables

v
(m/s)

dv
(%)

dv/v
(a.u.)

S
(m2)

CDa

(dimensionless)
100 m

freestyle (s)
Mean 1.27 9.32 7.45 0.70 0.31 71.30

1 SD 0.19 2.73 2.47 0.13 0.15 6.12

Minimum 0.81 4.57 3.63 0.51 0.14 58.44

Percentile 25 1.15 8.00 5.85 0.62 0.20 67.02

Percentile 50 1.30 9.00 6.96 0.69 0.27 71.07

Percentile 75 1.38 10.05 8.66 0.75 0.39 76.40

Maximum 1.71 21.20 15.04 1.24 1.05 81.12

Note. v, swimming velocity; dv, speed fluctuation; dv/v, speed fluctuation normalized to swimming velocity; S, trunk transverse 
surface area; CDa, active drag coefficient.
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It is known that performance depends on energetics, kinematics, 
and efficiency;14 while kinematics is influenced by anthropometrics 
and kinetics.5 So, the interaction among these domains and how it 
determines the performance should be considered.

Nevertheless, besides exploratory and causality designs, a 
further step is given in this research as it is now possible to classify 
new swimmers engaged in talent identification programs in a very 
straightforward way. Based on the discriminant analysis, it is possible 
to classify other swimmers in a given cluster solution according to 
the functions or the equations extracted. After collecting dv/v, CDa, 
and S data, new swimmers can be classified through the scores of 
the discriminant functions (equations 7 and 8) or the classification 

functions (Equations 9–11). The scores of Equations 7 and 8 are used 
as coordinates in a Cartesian system (x, y; function 1; function 2) to 
define the position of the new swimmer in the territorial map (Figure 
2). As it presents the region frontier and the centroid of the cluster 
solutions, it becomes visually possible to inspect to which cluster 
the new athlete is allocated. Another analytical procedure to classify 
swimmers is to use Equations 9 to 11. From the three equations, 
the one with the highest score refers to the cluster where the new 
swimmer should be allocated to and “labeled.” In this sense, research 
and talent identification test batteries with young swimmers should 
consider a few variables from each one of these three domains and 
the application of the procedure described in this article.

Table 3 Cross-tabulation of group membership and distance between centers

Predicted
Cluster 1 Cluster 2 Cluster 3 Total

Original, n (%) Cluster 1 12 (66.6) 4 (33.3) 0 (0) 16 (100)

Cluster 2 0 (0) 33 (100) 0 (0) 33 (100)

Cluster 3 0 (0) 4 (23.5) 13 (76.5) 17 (100)

Ungrouped 1 (50) 0 (0) 0 (0) 1 (100)

Cross-validation, n (%) Cluster 1 12 (66.6) 4 (33.3) 0 (0) 16 (100)

Cluster 2 0 (0) 33 (100) 0 (0) 33 (100)

Cluster 3 0 (0) 3 (17.6) 14 (82.4) 17 (100)

Ungrouped 1 (50) 0 (0) 0 (0) 1 (100)

Distance between centers Cluster 1 — 2.555 3.142 —

Cluster 2 2.555 — 1.764 —

Cluster 3 3.142 1.764 — —

Figure 2 — Territorial map of the two canonical discriminant functions.
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Classification of subjects happens on a regular basis in other 
scientific fields, such as in health sciences to classify patients 
with a given disease, syndrome, or condition.22 As in those fields, 
classification is useful so that: (i) practitioners would no longer 
need to produce a detailed explanation of the main outcomes (in 
this case, the performance and its determinant factors) but would 
rather classify it more broadly as being one of a few types; (ii) it 
would enable design training (ie, intervention) programs accord-
ing to each category; (iii) it would make communication between 
practitioners quicker and easier. The three cluster solutions obtained 
(ie, cluster 1—kinematics, cluster 2—anthropometrics, and cluster 
3—hydrodynamics) seem to be (i) easily identifiable in the field 
by practitioners; (ii) meaningful in terms of classification/diagno-
sis for coaches and sports analysts as well as; (iii) helpful in the 
design of more individualized training (ie, intervention) programs. 
For instance, a given swimmer is classified as being part of cluster 
3 (hydrodynamics) after running the tests and the classification 
system. This means that his profile is mainly determined by a 
high CDa. So, coaches could design an intervention program for 
him focused on technique drills, feedback with specific visual and 
kinesthetic cues with the goal to improve such trait.

However, some limitations should be observed: (i) overall 
performance depends on other domains not considered here (eg, 
genetics, strength and conditioning, physiology). It is well accepted 
that young swimmers training should have main focus on their 
coordination/technical enhancement and less on the energetic/physi-
ological workout; (ii) the classification procedure reported here is 
only suitable for talent identification of young swimmers. Some care 
should be exercised when applying this model to adolescent and 
adult/elite swimmers; (iii) others have proposed accurate but more 
complex and time-consuming procedures for talent identification.23

It can be concluded that kinematics (cluster 1), anthropometrics 
(cluster 2), and hydrodynamics (cluster 3) are determinant to clas-
sify and characterize young talented swimmers. With this technical 
note, we were able to report a quick, straightforward, affordable, 
and practical procedure for young swimmers’ assessment and 
classification.
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