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Abstract

In this thesis, we prove a one-to-one correspondence between C1+ smooth conjugacy

classes of circle diffeomorphisms that are C1+ fixed points of renormalization and C1+

conjugacy classes of Anosov diffeomorphisms whose Sinai-Ruelle-Bowen measure is

absolutely continuous with respect to Lebesgue measure. Furthermore, we use ratio

functions to parametrize the infinite dimensional space of C1+ smooth conjugacy

classes of circle diffeomorphisms that are C1+ fixed points of renormalization. We

introduce the notion of γ-tilings and we prove a one-to-one correspondence between

(i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure

absolutely continuous with respect to the Lebesgue measure, (ii) affine classes of γ-

tilings and (iii) solenoid functions. The solenoid functions give a parametrization of

the infinite dimensional space consisting of the mathematical objects described in the

above equivalences.
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Resumo

Nesta tese provamos a existência de uma correspondência bijetiva entre classes de

conjugação C1+ diferenciáveis de difeomorfismos da circunferência que são pontos

fixos de renormalização e classes de conjugação C1+ diferenciáveis de difeomorfismos

de Anosov cuja medida SRB é absolutamemte contínua relativamente à medida de

Lebesgue. Mais ainda, usando funções rácio, exibimos uma parametrização do espaço

de dimensão infinita das classes de conjugação C1+ diferenciáveis de difeomorfismos da

circunferência que são pontos fixos de renormalização. Introduzimos a noção de γ-tiling

e provamos a existência de uma correspondência bijetiva entre (i) classes de conjugação

C1+ diferenciáveis de difeomorfismos de Anosov cuja medida SRB é absolutamemte

contínua relativamente à medida de Lebesgue, (ii) classes afins de γ-tilings e (iii)

funções solenoide. As funções solenoide parametrizam os espaços de dimensão infinita

dos objetos matemáticos descritos nas equivalências anteriores.
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Chapter 1

Introduction

D. Sullivan and E. Ghys linked Anosov diffeomorphisms with diffeomorphisms of the

circle through the observation that the holonomies of Anosov diffeomorphisms give

rise to C1+ circle diffeomorphisms that are C1+ fixed points of renormalization (see

Cawley [7]). Here, we prove that this observation gives a one-to-one correspondence

between C1+ smooth conjugacy classes of circle diffeomorphisms that are C1+ fixed

points of renormalization and C1+ conjugacy classes of Anosov diffeomorphisms with

a Sinai-Ruelle-Bowen (SRB) measure that is absolutely continuous with respect to

Lebesgue measure (see [3–5,23,26] and Chapter 13 of the book [36]).

Although in general an Anosov diffeomorphism admits a great abundance of invariant

measures, there is at most one that is absolutely continuous with respect to Lebesgue

measure and, when it exists, this measure is particularly significant for describing

the statistical properties of the dynamics. Therefore the question of when an Anosov

diffeomorphism has such a measure has been much studied. For an Anosov diffeo-

morphism f : M → M on a compact Riemannian surface M , Sinai [39] proved that

the existence of such an absolutely continuous invariant measure is equivalent to the

condition |det dfn(x)| = 1 for every periodic point x with period n. Furthermore,

Sinai [39] showed that for every C1+ Anosov diffeomorphism f : M → M there is a

unique f -invariant probability measure ρ, called the SRB measure, such that for every

open set A ⊂M ,

lim
n→∞

λ(f−nA) = ρ(A)

where λ denotes the Lebesgue measure on M . Moreover, if f has an absolutely

continuous invariant measure then this measure is the SRB measure. Since f−1 is

12



CHAPTER 1. INTRODUCTION 13

Anosov, f−1 also has a SRB measure which we denote by ρ−. In general, ρ− 6= ρ.

However, Sinai [39] proved that ρ− = ρ is a necessary and sufficient condition for the

existence of an absolutely continuous invariant measure. Pinto, Rand and Ferreira [36]

relate the SRB measures with stable and unstable ratio functions by showing that the

ratio functions determine the SRB measure conditional to stable and unstable local

leaves and vice-versa.

On the other hand, the stable and unstable ratio functions associate an affine structure

to each stable and unstable leaf in such a way that these vary Hölder continuously

with the leaf. In this affine structure the Anosov diffeomorphism is affine on leaves

and the basic holonomies are uniformly C1+. Pinto and Rand [31] proved a one-to-one

correspondence between C1+ conjugacy classes of Anosov diffeomorphisms on surfaces

and pairs of stable and unstable ratio functions (see Cawley [7] for the construction of

another moduli space for C1+ conjugacy classes of Anosov diffeomorphisms on surfaces

using cohomology classes). Pinto, Rand and Ferreira [36] constructed an explicit dual

operator that associates to each unstable ratio function ru a dual stable ratio function

rs. Given an Anosov diffeomorphism we prove that the corresponding ratio functions

rs and ru are dual if, and only if, the Anosov diffeomorphism has an invariant measure

that is absolutely continuous with respect to Lebesgue measure (other related duality

results appear in Cawley [7], Jiang [12], Llave [15] and Marco and Moriyon [18, 19]).

Here, we prove an equivalence between ratio functions and C1+ circle diffeomorphisms

that are C1+ fixed points of renormalization (see [4] and Chapter 13 of [36]).

Inspired in the works of Y. Jiang [13] and A. Pinto and D. Sullivan [37], we introduced

the notion of γ-tiling. The γ-tilings record the infinitesimal geometric structure

determined by the dynamics along the unstable leaf that is invariant by the Anosov

diffeomorphism. We define the properties of the γ-tilings using the γ-Fibonacci de-

composition of the natural numbers, instead of the dyadic decomposition, because

the γ-Fibonacci decomposition has the advantage of encoding, in a natural way, the

combinatorics determined by the Markov partition along the unstable leaf. Our goal

is to exhibit a natural correspondence between γ-tilings, Anosov diffeomorphisms and

solenoid functions (see [1, 24,25]).



Chapter 2

Circle difeomorphisms

In this chapter we link C1+ circle diffeomorphisms that are C1+ fixed points of renor-

malization with Markov maps (see [4, 5, 26,36]).

Let us fix a natural number a ∈ N and let S be a counterclockwise oriented circle

homeomorphic to the circle S
1 = R/(1 + γ)Z, where

γ = γ(a) = (−a+
√
a2 + 4)/2 = 1/(a+ 1/(a+ · · · )).

The key feature of γ is that it satisfies the relation aγ+ γ2 = 1. We note that if a = 1

then γ is the inverse of the golden number (1 +
√
5)/2.

An arc in S is the image of a non trivial interval I in R by a homeomorphism α : I → S.

If I is closed (resp. open) we say that α(I) is a closed (resp. open) arc in S. We denote

by (a, b) (resp. [a, b]) the positively oriented open (resp. closed) arc on S starting at

the point a ∈ S and ending at the point b ∈ S. A C1+ atlas A in S is a set of charts

such that (i) every small arc of S is contained in the domain of some chart in A, and

(ii) the overlap maps are C1+α compatible, for some α > 0.

Let Aiso denote the affine atlas whose charts are isometries with respect to the usual

norm in S
1. Let the rigid rotation gγ : S1 → S

1 be the affine homeomorphism, with

respect to the atlas Aiso, with rotation number γ/(1+γ). A C1+ circle diffeomorphism

is a triple (g, S,A) where g : S → S is a C1+α diffeomorphism, with respect to the

C1+α atlas A, for some α > 0, and g is quasi-symmetric conjugate to the rigid

rotation gγ with respect to the atlas Aiso. We denote by F the set of all C1+

circle diffeomorphisms (g, S,A) and, in order to simplify the notation, we denote the

C1+ circle diffeomorphism (g, S,A) by g. In particular, we denote the rigid rotation

14



CHAPTER 2. CIRCLE DIFEOMORPHISMS 15

(gγ, S
1,Aiso) by gγ.

2.1 The horocycle

Let us mark a point in S that we will denote by 0 ∈ S, from now on. Let S0 = [0, g(0)]

be the oriented closed arc in S, with endpoints 0 and g(0). For every k ∈ {0, . . . , a},
let Sk =

[

gk(0), gk+1(0)
]

be the oriented closed arc in S, with endpoints gk(0) and

gk+1(0) and such that Sk ∩ Sk−1 = {gk(0)}. Let Sa+1 = [ga+1(0), 0] be the oriented

closed arc in S, with endpoints ga+1(0) and 0.

We introduce an equivalence relation ∼ in S by identifying the a+1 points g(0), . . . , ga+1(0)

and form the topological space H(S, g) = S/ ∼. We take the orientation in H as the

reverse of the orientation induced by S. We call this oriented topological space the

horocycle (see Figure 2.2) and we denote it by H = H(S, g). We consider the quotient

topology in H. Let πg : S → H be the natural projection. The point

ξ = πg(g(0)) = · · · = πg(g
a+1(0)) ∈ H

is called the junction of the horocycle. For every k ∈ {0, . . . , a}, let SH
k = SH

k (S, g) ⊂
H be the projection by πg of the closed arc Sk. Let RS = SH

0 ∪SH
a+1 be the renormalized

circle. The horocycle H is the union of the renormalized circle RS with the circles SH
k

for every k ∈ {1, . . . , a}.

A parametrization in H is the image of a non trivial interval I in R by a homeomor-

phism α : I → H. If I is closed (resp. open) we say that α(I) is a closed (resp. open)

arc in H. A chart in H is the inverse of a parametrization. A topological atlas B on

the horocycle H is a set of charts {(j, J)}, on the horocycle, with the property that

every small arc is contained in the domain of a chart in B, i.e. for any open arc K in

H and any x ∈ K there exists a chart {(j, J)} ∈ B such that J ∩K is a non trivial

open arc in H and x ∈ J ∩K. A C1+ atlas B in H is a topological atlas B such that

the overlap maps are C1+α and have C1+α uniformly bounded norms, for some α > 0.

Let A be a C1+ atlas on S in which g : S → S is a C1+ circle diffeomorphism. We

are going to construct a C1+ atlas AH on H that we call the extended pushforward

AH = (πg)∗ A of the atlas A on S. If x ∈ H\{ξ} then there exists a sufficiently small

open arc J ⊂ H containing x and such that π−1
g (J) is contained in the domain of some

chart (I, i) of A. In this case, we define (J, i ◦ π−1
g ) as a chart in AH . If x = ξ and
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Figure 2.1: The horocycle H and the chart j : J → R in case (ii). The junction ξ of

the horocycle is equal to ξ = πg(g(0)) = πg(g
2(0)) = πg(g

3(0)).

J is a small arc containing ξ, then either (i) π−1
g (J) is an arc in S or (ii) π−1

g (J) is a

disconnected set that consists of a union of two connected components.

In case (i), π−1
g (J) is connected it is contained in the domain of some chart (I, i) ∈ A.

Therefore we define
(

J, i ◦ π−1
g

)

as a chart in AH .

In case (ii), π−1
g (J) is a disconnected set that is the union of two connected arcs

ILl and IRr of the form ILl = (cLl , g
l(0)] and IRr = [gr(0), cRr ), respectively, for all

l, r ∈ {1, . . . , a + 1}. Let JL
l and JR

r be the arcs in H defined by JL
l = πg(I

L
l )

and πg(I
R
r ) respectively. Then J = JL

l ∪ JR
r is an arc in H with the property that

JL
l ∩ JR

r = {ξ}, for every l, r ∈ {1, . . . , a + 1}. We call such arc J a (l, r)-arc and we

denote it by Jl,r. Let jl,r : Jl,r → R be defined by,

jl,r(x) =

{

i ◦ π−1
g (x) if x ∈ JR

r

i ◦ gr−l ◦ π−1
g (x) if x ∈ JL

l

.

Let (I, i) ∈ A be a chart such that πg(I) ⊃ Jl,r. Then we define (Jl,r, jl,r) as a chart

in AH (see Figure 2.1). We call the atlas determined by these charts the extended

pushforward atlas of A and, by abuse of notation, we will denote it by AH = (πg)∗ A.
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2.2 Renormalization of a circle diffeomorphism

Let g = (g, S,A) be a C1+ circle diffeomorphism with respect to a C1+ atlas A in S.

The renormalization of g = (g, S,A) is the triple (Rg,RS, RA), where (i)RS has the

orientation of the horocycle H, i.e. the reversed orientation of the orientation induced

by S in RS; (ii) the renormalized atlas RA = AH |RS is the set of all charts in AH with

domains contained in RS; and (ii) Rg : RS → RS is the continuous map given by (see

Figure 2.2)

Rg(x) =

{

πg ◦ ga+1 ◦ (πg|S0
)−1 (x) if x ∈ SH

0

πg ◦ g ◦
(

πg|Sa+1

)−1
(x) if x ∈ SH

a+1

.

For simplicity of notation, we will denote the renormalization (Rg,RS, RA) of a C1+

circle diffeomorphism g only by Rg.

x

0

g2(0)

g(0)

S

g3(0)

pg

H

S 0

S2

S1

~=

S3

SH
2

SH
1

0RS
=pg(0)

g4(0)

SH
0 SH

3URS=

Rg|SH
0
  =pg o g3 o pg

Rg|SH
3
  =pg o g o pg

-1

g3|S0
g|S3

-1

Figure 2.2: The horocycle H and the renormalization Rg of the circle diffeomorphism

g topologically conjugate to gγ with γ = (
√
5− 1)/2.

Lemma 2.1 The renormalization Rg of a C1+ circle diffeomorphism g is a C1+ circle

diffeomorphism. In particular, the renormalization Rgγ of the rigid rotation is the rigid

rotation gγ.

Proof. Let g = (g, S,A) be a C1+ circle diffeomorphism and let Rg = (Rg,RS, RA)

be its renormalization. Observe that

(i) Rg(SH
0 ) = πg(g

a+1(S0));

(ii) Rg(SH
a+1) = πg(g(Sa+1));
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(iii) Rg(πg(0)) = πg(g(0)) = πg(g
a+1(0)); and

(iv) Rg(πg(g(0))) = πg(g
a+2(0)), and so Rg(ξ) = πg(g

a+2(0)).

Hence, Rg : RS → RS is a homeomorphism. Let us prove that Rg is a C1+

circle diffeomorphism. By construction of the atlas RA we have that the restrictions

Rg|int(SH
0
) and Rg|int(SH

a+1
) are C1+ diffeomorphisms onto their images. Hence, it is

enough to prove that the map Rg is a C1+ diffeomorphism onto its image for (a) a

small arc J ⊂ RS containing 0 and for (b) a small arc J̃ ⊂ RS containing ξ.

Let us prove case (a). Let Ia = (a, 0] ⊂ Sa+1 and Ib = [0, b) ⊂ S0 be such that

J = πg(Ia) ∪ πg(Ib). Let Îa = g(Ia) and Îb = ga+1(Ib) and let Î = Îa ∪ Îb. Hence

Rg(πg(Ia)) = πg(Îa) and Rg(πg(Ib)) = πg(Îb). Let (I, i) be a chart in A such that

I ⊃ Ia ∪ Ib. The chart jH : J → R is defined as follows:

(i) jH ◦ πg(x) = i(x), for x ∈ Ia and

(ii) jH ◦ πg(x) = i(x), for x ∈ Ib.

Similarly, the chart kH : Rg(J) → R is defined as follows:

(i) kH ◦ πg(x) = k(x), for x ∈ Îa and

(ii) kH ◦ πg(x) = k(x), for x ∈ Îb, where k : I ′ → R is a chart in A and I ′ ⊃ Î.

Hence, kH ◦Rg◦i−1
H (πg(Ia)) = k◦g◦i−1(Ia) and kH ◦Rg◦i−1

H (πg(Ib)) = k◦ga+1◦i−1(Ib)

and so Rg is a C1+ diffeomorphism in J .

Let us prove case (b). Consider Ĩa = (a, ξ] ⊂ S0 and Ĩb = [ξ, b) ⊂ Sa+1 be such that

Ĩ = πg(Ĩa) ∪ πg(Ĩb). Let Ĩ ′a = ga+1(Ĩa) and Ĩ ′b = g(Ĩb) and let Ĩ ′ = Ĩ ′a ∪ Ĩ ′b. Hence

Rg(πg(Ĩa)) = πg(Ĩ
′
a) and Rg(πg(Ĩb)) = πg(Ĩ

′
b). Let J̃ = πg(Ĩa) ∪ πg(Ĩb). The chart

jH : J̃ → R is defined as follows:

(i) jH ◦ πg(x) = i(x), for x ∈ Ĩa and

(ii) jH ◦ πg(x) = i(x), for x ∈ Ĩb, where i : I → R is a chart in A such that I ⊃ Ĩ.

Similarly, the chart kH : Rg(J̃) → R is defined as follows:
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(i) kH ◦ πg(x) = k(x), for x ∈ Ĩ ′a and

(ii) kH ◦ πg(x) = k(x), for x ∈ Ĩ ′b, where k : I ′ → R is a chart in A and I ′ ⊃ Ĩ ′.

Hence, kH ◦Rg◦j−1
H (πg(Ĩa)) = k◦ga+1◦j−1(Ĩa) and kH ◦Rg◦j−1

H (πg(Ĩb)) = k◦g◦j−1(Ĩb)

and so Rg is a C1+ diffeomorphism in J̃ .

Let us consider the rigid rotation gγ : S1 → S
1 with respect to the atlas Aiso. By

construction, Rgγ is a rigid rotation in RAiso. We note that |S0| = γ and |Sa+1| = γ2.

Since the circle RS has the reverse orientation with respect to the orientation of S, the

rotation number of Rgγ is equal to

γ2/(γ + γ2) = γ/(1 + γ).

Hence, Rgγ is affine conjugate to gγ. Since g : S → S is a C1+ circle diffeomorphism

then there exist a unique quasi-symmetric homeomorphism ψ : S → S
1 that conjugates

g with the rigid rotation gγ and such that ψ(0) = [0] ∈ S
1. Hence, the map πgγ ◦

ψ ◦ π−1
g |RS is a quasi-symmetric conjugacy between Rg and Rgγ. Since Rgγ is affine

conjugate to the rigid rotation, we get that Rg is also quasi-symmetric conjugate to

the rigid rotation and so, we conclude that Rg is a C1+ circle diffeomorphism. �

We note that, by Lemma 2.1, the map R : F → F given by R(g) = Rg is well defined.

The marked point 0 ∈ S determines the marked point 0RS = πg(0) in the circle RS.

Since Rg is homeomorphic to a rigid rotation, there exists a unique map h : S → RS,

with h(0) = 0RS, such that h conjugates g with Rg.

Definition 2.1 If the conjugacy map h : S → RS is C1+ then we call g a C1+ fixed

point of renormalization. We will denote by R the set of all C1+ circle diffeomorphisms

g that are C1+ fixed points of renormalization.

We note that the rigid rotation gγ is an affine fixed point of renormalization, with

respect to the atlas Aiso. Hence gγ ∈ R.

2.3 Markov map

Let g = (g, S,A) be a C1+ circle diffeomorphism, with respect to a C1+ atlas A, and

let H = H(S, g) be the horocycle determined by g. Let AH be the atlas on H that is

the extended pushforward of the atlas A. Let πg : S → H be the natural projection.
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Let h : S → RS be the homeomorphism that conjugates g and Rg sending the marked

point 0 of S in the marked point 0RS of RS.

0

0

gg  (0) g3
g  (0)

g-g2 g2 gg

g2
g  (0) gg  (0)

gg  (0)

g2
g  (0)

g3
g  (0)

g4
g  (0)

g2

~

~

~

~

~ ~ ~ ~ ~~

Figure 2.3: The rigid Markov map Mgγ , with respect to the atlas AH
iso, where γ =

(
√
5− 1)/2. We represent by 0̃ the point 0̃ = πgγ (0) and by g̃nγ (0) the points g̃nγ (0) =

πgγ ◦ gnγ (0), for n = 1, . . . , 4.

Definition 2.2 The Markov map associated to the C1+α circle diffeomorphism g, is

the map Mg : H → H defined by

Mg(x) =

{

πg ◦ h−1(x) if x ∈ RS

πg ◦ h−1 ◦ πg ◦ ga+1−k ◦ π−1
g (x) if x ∈ SH

k , for k = 1, . . . , a
.

We note that

Mg(πg ◦ gk(0)) = πg ◦ g2(0) = πg ◦ g(0)

for every k ∈ {1, . . . , a+ 2}. We observe that the identification in H of πg ◦ g(0) with

πg ◦ g2(0) makes the Markov map Mg a local homeomorphism.

The rigid Markov map Mgγ is the Markov map associated to the rigid rotation gγ. The

rigid Markov map Mgγ is an affine map with respect to the atlas AH
iso (see Figure 2.3).

Theorem 2.1 If g is a C1+ circle diffeomorphism then the Markov map Mg is a local

C1+ diffeomorphism with respect to the atlas AH if, and only if, g is a C1+ fixed point

of renormalization.
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Proof. Throughout the proof we denote M = Mg and π = πg. As in Section 2.1, let

Jl,r be a (l, r) arc and let JL
l and JR

r be the connected components of Jl,r with the

property that Jl,r = JL
l ∪ JR

r and {ξ} = JL
l ∩ JR

r . Let ILl and IRr be the arcs in S such

that JL
l = π(ILl ) and JR

r = π(IRr ). For simplicity and without loss of generality, we

can consider that g1−l(ILl ) = IL1 and g1−r(IRr ) = IR1 , for every l, r ∈ {1, . . . , a+1}. Let

(Ja+1,1, ja+1,1) be a chart in RA = AH |RS ⊂ AH and let (Jl,r, jl,r) be the chart in AH

given by

jl,r(x) =

{

ja+1,1 ◦ π|ILa+1
◦ ga+1−l ◦ (π|IL

l
)−1(x) if x ∈ JL

l ⊂ SH
l

ja+1,1 ◦ π|ILa+1
◦ g1−r ◦ (π|IL

l
)−1(x) if x ∈ JR

r ⊂ SH
r−1

.

Since JL
l ⊂ SH

l , by construction of M , we have

M ◦ j−1
l,r |jl,r(JL

l
) =

=
(

π|S0
◦ h−1 ◦ π|ILa+1

◦ ga+1−l ◦ (π|IL
l
)−1
)

◦ π|IL
l
◦ g−(a+1−l) ◦ (π|ILa+1

)−1 ◦ j−1
a+1,1

= π|Sa+1
◦ h−1 ◦ j−1

a+1,1.

(2.1)

Let J̃R = M(JL
a+1) ⊂ SH

0 . By the construction of the Markov map, we have that

J̃R = M(JL
l ) for every l ∈ {1, . . . , a + 1}. Since JR

1 ⊂ SH
0 ⊂ RS, by construction of

M , we have

M ◦ j−1
l,1 |jl,1(JR

1
) = π|S1

◦ h−1 ◦ j−1
a+1,1. (2.2)

Let J̃L =M(JR
1 ) ⊂ SH

1 . Since JR
r ⊂ SH

r−1, for r ≥ 2, we have

M ◦ j−1
l,r |jl,r(JR

r ) =

=
(

π|S2
◦ h−1 ◦ π|S0

◦ ga+2−r ◦ (π|IRr )−1
)

◦ π|IRr ◦ gr−1 ◦ (π|IR
1
)−1 ◦ j−1

a+1,1

= π|S2
◦ h−1 ◦ π|S0

◦ ga+1 ◦ (π|IR
1
)−1 ◦ j−1

a+1,1

= π|S2
◦ h−1 ◦Rg ◦ j−1

a+1,1

= π|S2
◦ g|S1

◦ h−1 ◦ j−1
a+1,1 (2.3)

Let ĴL = M(JR
2 ) ⊂ SH

2 . By (2.2) and (2.3), we have that ĴL = π ◦ g ◦ π−1(J̃L) and

ĴL = M(JR
r ) for r ∈ {2, . . . , a+ 1}. Let J̃ = J̃L ∪ J̃R and Ĵ = ĴL ∪ J̃R. Let the arcs

ĨL and ÎL in S be given by J̃L = π(ĨL) and ĴL = π(ÎL). Let (J̃ , j̃) be a chart in AH

and let (Ĵ , ĵ) be the chart in AH given by

ĵ =

{

j̃ ◦ π|ĨL ◦ g−1 ◦ (π|ÎL)−1(x) if x ∈ ĴL

j̃(x) if x ∈ J̃R
.
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Let us prove that if g is a C1+ circle diffeomorphism that is a fixed point of renormal-

ization, then M is a C1+ local diffeomorphism. By hypothesis h : S → RS is a C1+

diffeomorphism with respect to the atlases A and RA. Hence, the restriction M |int(SH
k
)

of the Markov map M to int(SH
k ) is a local C1+ diffeomorphism with respect to the

atlas AH . By (2.1) and (2.2), we have

j̃ ◦M ◦ j−1
l,1 |j−1

l,1
(JR

1
) = j̃ ◦ π ◦ h−1 ◦ j−1

a+1,1.

Hence, M |Jl,1 is a local C1+ diffeomorphism (see Figure 2.4). For r ≥ 2, by (2.1) and

(2.2), we have

ĵ ◦M ◦ j−1
l,r |jl,r(Jl,r) = j̃ ◦ π ◦ h−1 ◦ j−1

a+1,1.

Therefore, M |Jl,r is a C1+ local diffeomorphism (see Figure 2.5). Thus, we conclude

that M is a C1+ local diffeomorphism.

Let us prove the converse. By hypothesis, M is a local C1+ diffeomorphism. Since

π ◦ h−1|RS = Mg and π is a local diffeomorphism onto its image, h−1 is a C1+

diffeomorphism in RS with respect to the atlases RA and A. �

The next remark follows from the proof of Theorem 2.1.

Remark 2.1 For every x ∈ SH
0 take a small arc Jx ⊂ SH

0 containing x. Let Ix ⊂
∪a+1

i=1Si be a small arc with the property that πg(Ix) =Mg(Jx). For every r ∈ {2, . . . , a+
1}, we have that

πg ◦ g ◦ (πg|Ix)−1 ◦Mg(x) =Mg(g
r(x)).

2.4 Circle train-track

Similarly to the horocycle H introduced in Section 2.1 we construct the circle train-

track T. Let (g, S,A) be a C1+ circle diffeomorphism. We introduce an equivalence

relation in S by identifying g(0) with g2(0) and form the oriented topological space

T(S, g) = S/ ∼. We call T = T(S, g) the circle train-track and we consider the

quotient topology in T. Let πT = πT,g : S → T be the natural projection. The point



CHAPTER 2. CIRCLE DIFEOMORPHISMS 23

KL KR R

KR~

J
1
R J

3
L

JL~

R

JR~
J

2
L

gg  (0)
~

g2
g  (0)

~

g3
g  (0)

~

0
~

gg  (0)
~ g3

g  (0)
~ g2

g  (0)
~ gg  (0)

~0
~

j
2,1

|J
2
L

j
3,1

|J
1
R j

3,1
|J

3
L

j |JL
~ ~

KL~

j |JR
~ ~

j oM o j
2,1

-1~

Figure 2.4: The charts used to prove that Mg is a local C1+ diffeomorphism when

restricted to a (l, 1)-arc for l ∈ {1, . . . a + 1}. Here, KL = j3,1(J
L
3 ), K

R = j3,1(J
R
1 ),

K̃L = j̃(J̃L) and K̃R = j̃(J̃R).

ξT = πT(g(0)) = πT(g
2(0)) ∈ T is called the junction of the circle train-track T. For

every k ∈ {0, . . . , a+ 1}, let ST
k = ST

k (S, g) ⊂ T be the projection by πT of the closed

arc Sk ⊂ S, where the arcs Sk are the same as in Section 2.1.

A parametrization in T is the image of a non trivial interval I in R by a homeomorphism

α : I → H. If I is closed (resp. open) we say that α(I) is a closed (resp. open) arc

in T. A chart in T is the inverse of a parametrization. A topological atlas B on the

circle train-track T is a set of charts {(j, J)} with the property that every small arc is

contained in the domain of a chart in B, i.e. for any open arc K in T and any x ∈ K

there exists a chart {(j, J)} ∈ B such that J ∩K is a non trivial open arc in T and

x ∈ J ∩K. A C1+ atlas B in T is a topological atlas B such that the overlap maps

are C1+α and have C1+α uniformly bounded norms, for some α > 0.

Let A be a C1+ atlas on S in which g : S → S is a C1+ circle diffeomorphism. We

are going to construct a C1+ atlas AT in the circle train-track that is the extended

pushforward AT = (πT)∗A of the atlas A in S.
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Figure 2.5: The charts used to prove that Mg is a local C1+ diffeomorphism when

restricted to a (l, r)-arc for r ∈ {2, . . . a+ 1} and l ∈ {1, . . . a+ 1}.

If x ∈ T\{ξT} then there exists a sufficiently small open arc J in T, containing x,

such that π−1
T (J) is contained in the domain of some chart (I, i) in A. In this case, we

define (J, i ◦ π−1
g ) as a chart in AT. If x = ξT and J is a small arc containing ξT, then

either (i) π−1
T (J) is an arc in S or (ii) π−1

T (J) is a disconnected set that consists of a

union of two connected components. In case (i), π−1
T (J) is connected and we define

(J, i ◦ π−1
T ) as a chart in AT. In case (ii), π−1

T (J) is a disconnected set that is the

union of two connected arcs JL and JR of the form JR = [g2(0), d) and JL = (c, g(0)],

respectively. Let (I, i) ∈ A be a chart such that I ⊃ (c, d). We define j : J → R as

follows,

j(x) =

{

i ◦ π−1
T (x) if x ∈ πT([g

2(0), d))

i ◦ g ◦ π−1
T (x) if x ∈ πT((c, g(0)])

.

We call the atlas determined by these charts, the extended pushforward atlas of A and,

by abuse of notation, we will denote it by AT = (πT)∗A.

The Markov map MT = MT,g associated to a C1+ circle diffeomorphism g and to the
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circle train-track T is the map MT : T → T defined by

MT(x) =

{

πT ◦ h−1(x) if x ∈ ST
0 ∪ ST

a+1

πT ◦ h−1 ◦ πT ◦ g−k ◦ π−1
T (x) if x ∈ ST

k , for k = 1, . . . , a
.

Lemma 2.2 Let g be a C1+ circle diffeomorphism. Let Mg and MT = MT,g be the

Markov maps associated to g defined in the horocycle H and in the circle train-track

T, respectively. Let AH and AT be the extended pushforward atlases in H and T of

the atlas A, respectively. The Markov map Mg is a local C1+ diffeomorphism in H if

and only if MT is a local C1+ diffeomorphism in T.

Proof. If the Markov map MT : T → T, associated to the C1+ circle diffeomorphism

g, is a local C1+ diffeomorphism then, by a similar argument as the one used in the

proof of Theorem 2.1, we obtain that g is a C1+ fixed point of renormalization. Again,

by Theorem 2.1, this implies that Mg is a local C1+ diffeomorphism in H. Now, let

πT,H : T → H be the natural projection from T to H. Then AH = (πT,H)∗AT and so,

by the definition of MT and the construction of AT, we obtain that MT is a local C1+

diffeomorphism in T. �

Putting together Theorem 2.1 and Lemma 2.2, we obtain the following Corollary.

Corollary 2.1 If g is a C1+ circle diffeomorphism, then the Markov map MT is a C1+

local diffeomorphism with respect to the atlas AT if, and only if, the diffeomorphism g

is a C1+ fixed point of renormalization.



Chapter 3

Anosov diffeomorphisms

In this chapter we are going to relate Anosov diffeomorphisms with self-renormalizable

structures and C1+ circle diffeomorphisms that are C1+ fixed points of renormalization

(see also Pinto, Rand and Ferreira [27,34,35]).

Let us fix a positive integer a ∈ N and consider the Anosov automorphism Gγ : T → T

given by Gγ(x, y) = (ax + y, x), where T is equal to R
2/(vZ × wZ) with v = (γ, 1)

and w = (−1, γ) and γ = γ(a) is as in Section 2. Let π : R
2 → T be the natural

projection. Let Ã and B̃ be the rectangles [0, 1]× [0, 1] and [−γ, 0]× [0, γ] respectively.

A Markov partition Mγ of Gγ is given by A = π(Ã) and B = π(B̃) (see Figure 3.1).

The unstable manifolds of Gγ are the projection by π of the vertical lines in the plane,

and the stable manifolds of Gγ are the projection by π of the horizontal lines in the

plane.

A C1+ Anosov diffeomorphism G : T → T is a C1+α diffeomorphism, with α > 0, such

that (i)G is topologically conjugate toGγ; (ii) the tangent bundle has a C1+α uniformly

hyperbolic splitting into a stable direction and an unstable direction (see [38]). We

denote by G the set of all such C1+ Anosov diffeomorphisms with an invariant measure

that is absolutely continuous with respect to the Lebesgue measure.

Throughout this thesis we will use the following notation: we use ι to denote an

element of the set {s, u} of the stable and unstable superscripts and ι′ to denote the

element of {s, u} that is not ι. In the main discussion we will often refer to objects

which are qualified by ι such as, for example, an ι-leaf. This means a leaf which is a

leaf of the stable lamination if ι = s or the unstable lamination if ι = u. In general

the meaning should be quite clear.

26
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Figure 3.1: The Markov partition and the dynamics of the Anosov automorphism

Gγ : T → T, with γ = γ(2) = (
√
5−1)/2. Note that the image Gγ(B) of the rectangle

B is the dark gray rectangle and the image Gγ(A) of the rectangle A is the whole light

gray area.

If h is the topological conjugacy between Gγ and G, then a Markov partition MG of

G is given by h(A) and h(B). Let d = dρ be the distance on the torus T, determined

by a Riemannian metric ρ. For ι ∈ {s, u}, we define the map Gι = G if ι = u, or

Gι = G−1 if ι = s. Given x ∈ T, we denote the local ι-manifolds through x by

W ι(x, ε) =
{

y ∈ T : d(G−n
ι (x), G−n

ι (y)) ≤ ε, for all n ≥ 0
}

.

By the Stable Manifold Theorem (see [38]), these sets are respectively contained in

the stable and unstable immersed manifolds

W ι(x) =
⋃

n≥0

Gn
ι

(

W ι
(

G−n
ι (x), ε0

))

which are the image of C1+α immersions κι,x : R → T, for some 0 < α ≤ 1 and some

small ε0 > 0. An open (resp. closed) ι-leaf segment I is defined as a subset of W ι(x)

of the form κι,x(I1) where I1 is an open (resp. closed) subinterval (non-empty) in R.

An ι-leaf segment is either an open or closed ι-leaf segment. The endpoints of an ι-leaf

segment I = κι,x(I1) are the points κι,x(u) and κι,x(v) where u and v are the endpoints

of I1. The interior of an ι-leaf segment I is the complement of its boundary. A map

c : I → R is an ι-leaf chart of an ι-leaf segment I if c is a homeomorphism onto its

image.



CHAPTER 3. ANOSOV DIFFEOMORPHISMS 28

3.1 Spanning leaf segments

One can find a small enough ε0 > 0, such that for every 0 < ε < ε0 there is δ = δ(ε) > 0

with the property that, for all points w, z ∈ T with d(w, z) < δ, W u(w, ε) and W s(z, ε)

intersect in a unique point that we denote by

[w, z] = W u(w, ε) ∩W s(z, ε).

A rectangle R is a subset of T which is (i) closed under the bracket, i.e. x, y ∈ R ⇒
[x, y] ∈ R, and (ii) proper, i.e. it is the closure of its interior in T. If ℓu and ℓs are

respectively unstable and stable closed leaf segments intersecting in a single point then

we denote by [ℓu, ℓs] the set consisting of all points of the form [w, z] with w ∈ ℓu and

z ∈ ℓs. We note that [ℓu, ℓs] is a rectangle. Conversely, given a rectangle R, for each

x ∈ R there are closed unstable and stable leaf segments of T, ℓu(x,R) ⊂ W u(x) and

ℓs(x,R) ⊂ W s(x) such that R = [ℓu(x,R), ℓs(x,R)]. The leaf segments ℓs(x,R) and

ℓu(x,R) are called spanning stable and spanning unstable leaf segments, respectively.

R

x z

l
s
(z,R)l

s
(x,R)

q(w)=[w,z]w

l
u
(x,R)

l
u
(w,R)

Figure 3.2: A basic stable holonomy θ : ℓu(x,R) → ℓu(z, R).

3.2 Basic holonomies

Suppose that x and z are two points inside any rectangle R of T. Let ℓs(x,R) and

ℓs(z, R) be two spanning stable leaf segments of R containing, respectively, x and z.

We define the map θ : ℓs(x,R) → ℓs(z, R) by θ(w) = [w, z] (see Figure 3.2). Such

maps are called the basic stable holonomies. They generate the pseudo-group of all

stable holonomies. Similarly, we can define the basic unstable holonomies.
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3.3 Lamination atlas

The stable lamination atlas Ls(G, ρ), determined by a Riemannian metric ρ, is the set

of all maps e : I → R, where e is an isometry between the induced Riemannian metric

on the stable leaf segment I and the Euclidean metric on the reals. We call the maps

e ∈ Ls the stable lamination charts. Similarly, we can define the unstable lamination

atlas Lu(G, ρ). By Theorem 2.1 in [30], the basic stable and unstable holonomies are

C1+ with respect to the lamination atlas Ls(G, ρ).

3.4 Circle diffeomorphisms

Let G ∈ G be a C1+ Anosov diffeomorphism with an invariant measure absolutely

continuous with respect to the Lebesgue measure and topologically conjugate to the

Anosov automorphism Gγ by a homeomorphism h. For each Markov rectangle R,

let tsR be the set of all spanning unstable leaf segments of R. By the local product

structure, one can identify tsR with any spanning stable leaf segment ℓs(x,R) of R.

We form the space SG by taking the disjoint union tsh(A)

⊔

tsh(B), where h(A) and h(B)

are the Markov rectangles of the Markov partition MG, and identifying two points

I ∈ tsR and J ∈ tsR′ if (i) R 6= R′, (ii) the unstable leaf segments I and J are unstable

boundaries of Markov rectangles, and (iii) int(I ∩ J) 6= ∅. Topologically, the space

SG is a counterclockwise oriented circle. Let πSG :
⊔

R∈MG
R → SG be the natural

projection sending x ∈ R to the point ℓu(x,R) in SG.

Let IS be an arc in SG and I a leaf segment such that πSG(I) = IS. The chart i : I → R

in Ls(G, ρ) determines a circle chart iS : IS → R for IS given by iS ◦ πSG = i. We

denote by As(SG, G, ρ) the set of all circle charts iS determined by charts i in Ls(G, ρ).

Given any circle charts iS : IS → R and jS : JS → R, the overlap map

jS ◦ i−1
S

: iS(IS ∩ JS) → jS(IS ∩ JS)

is equal to jS ◦ i−1
S

= j ◦ θ ◦ i−1, where i = iS ◦ πSG : I → R and j = jS ◦ πSG : J → R

are charts in Ls(G, ρ), and

θ : i−1(iS(IS ∩ JS)) → j−1(jS(IS ∩ JS))

is a basic stable holonomy. By Theorem 2.1 in Pinto and Rand [30], there exists

α > 0 such that, for all circle charts iS and jS in As(SG, G, ρ), the overlap maps
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p(0,0)

A

B

B

A

0S
i0

gG

gG(x)

j0=q(i0)

i2

j2=q(i2)

x

q(x)J

I

l0

i1

j1=q(i1)

gG gG

l(i0)=gG(l0)

l(q(x))=gG(l (x))

l(q(i1))=gG(l (i1))

Figure 3.3: The arc rotation map gG = θ̃G : πSG(I) → πSG(J). We note that S =

πSG(I) = πSG(J) and ℓ(x) = πSG(x) is the spanning unstable leaf segment containing

x.

jS ◦ i−1
S

= j ◦ θ ◦ i−1 are C1+α diffeomorphisms with a uniform bound in the C1+α

norm. Hence, As(SG, G, ρ) is a C1+ atlas.

Suppose that I and J are stable leaf segments and θ : I → J is a holonomy map

such that, for every x ∈ I, the unstable leaf segments with endpoints x and θ(x) cross

once, and only once, a stable boundary of a Markov rectangle. We define the arc

rotation map θ̃G : πSG(I) → πSG(J), associated to θ, by θ̃G(πSG(x)) = πSG(θ(x)) (see

Figure 3.3). By Theorem 2.1 in Pinto and Rand [30] there exists α > 0 such that the

holonomy θ : I → J is a C1+α diffeomorphism, with respect to the C1+ lamination

atlas Ls(G, ρ). Hence, the arc rotation maps θ̃G are C1+ diffeomorphisms, with respect

to the C1+ atlas A(G, ρ).

Lemma 3.1 There is a well-defined C1+ circle diffeomorphism gG, with respect to the

C1+ atlas As(SG, G, ρ), such that g|πSG
(I) = θ̃G, for every arc rotation map θ̃G. In
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particular, if Gγ is the Anosov automorphism, then g is the rigid rotation gγ, with

respect to the isometric atlas As(SGγ
, Gγ , E), where E corresponds to the Euclidean

metric in the plane.

Proof. Let us consider the Anosov automorphism Gγ and the lamination atlas Liso =

Ls(Gγ, E). Let Aiso = As(SGγ
, Gγ , E) be the atlas on SGγ

determined by Liso, where

SGγ
is as above. The overlap maps of the charts in Aiso are translations, and the arc

rotation maps θ̃Gγ
: πSGγ

(I) → πSGγ
(J), as defined above, are also translations, with

respect to the charts in Aiso. Furthermore, the rigid circle rotation gγ : SGγ
→ SGγ

,

with respect to the atlas Aiso, has the property that gγ|πSGγ
(I) = θ̃Gγ

. Hence, for every

Anosov diffeomorphism G, let h : T → T be the topological conjugacy between Gγ

and G. Let g : SG → SG be the map determined by g ◦ πG ◦ h(x) = gγ ◦ πGγ
(x), with

rotation number γ/(1 + γ). Since the arc rotation maps θ̃G = πSG(I) → πSG(J) are

C1+, with respect to the atlas A(G, ρ) and g|πSG
(I) = θ̃G, we obtain that g is a C1+

diffeomorphism. �

3.5 Train-tracks

Train-tracks are the optimal leaf-quotient spaces on which the stable and unstable

Markov maps induced by the action of G on leaf segments are local homeomorphisms.

Let G ∈ G be a C1+ Anosov diffeomorphism. Let h be the homeomorphism that

conjugates G with Gγ. We recall that, for each Markov rectangle R, tsR denotes the

set of all spanning unstable leaf segments of R and, by the local product structure,

one can identify tsR with any spanning stable leaf segment ℓs(x,R) of R. We form

the space Ts
G by taking the disjoint union tsh(A)

⊔

tsh(B), where h(A) and h(B) are the

Markov rectangles of the Markov partition MG and identifying two points I ∈ tsR and

J ∈ tsR′ if (i) the unstable leaf segments I and J are unstable boundaries of Markov

rectangles and (ii) int(I ∩ J) = ∅. This space is called the stable train-track and it is

denoted by Ts
G. Similarly, we define the unstable train-track Tu

G.

Let πTs
G

:
⊔

R∈MG
R → Ts

G be the natural projection sending the point x ∈ R to

the point ℓu(x,R) in Ts
G. A topologically regular point I in Ts

G is a point with a

unique preimage under πTs
G

(i.e. the preimage of I is not a union of distinct unstable

boundaries of Markov rectangles). If a point has more than one preimage by πTs
G
, then

we call it a junction and we denote it by js. Hence, there is only one junction.
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A chart i : I → R in Ls(G, ρ) determines a train-track chart iT : IT → R for IT
given by iT ◦ πTs

G
= i. We denote by As(Ts

G, G, ρ) the set of all train-track charts iT
determined by charts i in Ls(G, ρ). Given any train-track charts iT : IT → R and

jT : JT → R in As(Ts
G, G, ρ), the overlap map

jT ◦ i−1
T : iT (IT ∩ JT ) → jT (IT ∩ JT )

is equal to jT ◦ i−1
T = j ◦ θ ◦ i−1, where i = iT ◦ πTs

G
: I → R and j = jT ◦ πTs

G
: J → R

are charts in L(G, ρ), and

θ : i−1(iT (IT ∩ JT )) → j−1(jT (IT ∩ JT ))

is a basic stable holonomy. By Theorem 2.1 in Pinto and Rand [30], there exists

α > 0 such that, for all train-track charts iT and jT in As(Ts
G, G, ρ), the overlap maps

jT ◦ i−1
T = j ◦ θ ◦ i−1 have C1+α diffeomorphic extensions with a uniform bound in the

C1+α norm. Hence, As(Ts
G, G, ρ) is a C1+α atlas on Ts

G.

3.6 Markov maps

The (stable) Markov map ms = ms,G : Ts
G → Ts

G is the mapping induced by the

action of G on spanning unstable leaf segments and it is defined as follows: if I ∈ Ts
G,

then ms(I) = πTs
G
(G(I)) is the spanning unstable leaf segment containing G(I). This

map ms is a local homeomorphism because G sends short stable leaf segments home-

omorphically onto short stable leaf segments. Similarly, we can define the (unstable)

Markov map mu = mu,G : Tu
G → Tu

G.

A stable leaf primary cylinder of a Markov rectangle R is a spanning stable leaf segment

of R. For n ≥ 1, a stable leaf n-cylinder of R is a stable leaf segment I such that

(i) GnI is a stable leaf primary cylinder of a Markov rectangle R′(I) ∈ MG; (ii)

Gn (ℓu(x,R)) ⊂ R′(I) for every x ∈ I, where ℓu(x,R) is an spanning unstable leaf

segment of R.

For n ≥ 1, a n-cylinder is a subset C of Ts
G or Tu

G such that, for ι ∈ {s, u}, mn
ι C is

in Aι = tιh(A) or in Bι = tιh(B) and mn
ι is a homeomorphism of intC onto intmn

ι C.

Hence, a n-cylinder is the projection into Tι
G of a ι-leaf n-cylinder segment. Thus,

each Markov rectangle in T projects in a unique primary ι-leaf segment in Tι
G.

Given a topological chart (e, U) on the train-track Ts
G and a train-track segment

C ⊂ U , we denote by |C|e the length of e(C). We say that ms has bounded geometry
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in a C1+ atlas B, if there is κ1 > 0 such that, for every n-cylinder C1 and n-cylinder C2

with a common endpoint with C1, we have κ−1
1 < |C1|e/|C2|e < κ1, where the lengths

are measured in any chart (e, U) of the atlas B such that C1 ∪ C2 ⊂ U .

Lemma 3.2 Given a C1+ Anosov diffeomorphism G ∈ G, with respect to a C1+

atlas A, the Markov map ms = ms,G is a C1+ local diffeomorphism and has bounded

geometry with respect to the C1+ atlas As(Ts
G, G, ρ).

Proof. Let IT be an arc in Ts
G and let I be a leaf segment such that πTs

G
(I) = IT . Let

JT = ms(IT ) and J be the leaf segments such that G(I) = J . Let iT : IT → R and

jT : JT → R be the charts given by iT ◦πTs
G
= i and jT ◦πTs

G
= j. Since jT ◦ms ◦ i−1

T =

j ◦G−1 ◦ i−1, we obtain that jT ◦ms ◦ i−1
T is a local C1+ diffeomorphism and so ms is a

local C1+ diffeomorphism with respect to the atlas As(Ts
G, G, ρ). Furthermore, since

G−1 is uniformly expanding along stable leaves, ms has bounded geometry. �

3.7 Exchange pseudo-group

Suppose that I and J are stable leaf segments and let θ : I → J be a basic stable

holonomy. The map θ̃T : πTs
G
(I) → πTs

G
(J) given by θ̃T ◦ πTs

G
= πTs

G
◦ θ is a stable

exchange map. The set of all stable exchange maps is the stable exchange pseudo-group

and will be denoted by EG.

Lemma 3.3 The elements of the exchange pseudo-group EG are C1+ diffeomorphisms

with respect to the C1+ atlas As(Ts
G, G, ρ).

Proof. Let I and J be two stable leaf segments and let θ : I → J be a basic stable

holonomy. Let IT = πTs
G
(I) and JT = πTs

G
(J). Let i : I → R and j : J → R be two

charts in the stable lamination atlas Ls(G, ρ) and let iT : IT → R and jT : JT → R the

charts in As(Ts
G, G, ρ) given by iT ◦πTs

G
= i and jT ◦πTs

G
= j. By Theorem 2.1 in Pinto

and Rand [30] the map j◦θ◦i−1 is a C1+ diffeomorphism. Since jT ◦ θ̃T◦i−1
T = j◦θ◦i−1

we get that the stable exchange map θ̃T : πTs
G
(I) → πTs

G
(J) is a C1+ diffeomorphism.

�
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3.8 Self-renormalizable structures

A C1+ structure S = S(Ts
G) on Ts

G is a maximal set of charts on Ts
G such that all the

charts are C1+ compatible. Let B be a C1+α atlas of S, for some α > 0, and let B|SG
be the set of charts in B that are also charts in SG.We note that a C1+α atlas B in Ts

G

determines a unique C1+ structure S(Ts
G,B) on Ts

G.

Definition 3.1 A C1+ structure S(Ts
G,B) on TG is a stable self-renormalizable struc-

ture if it has the following properties:

(i) The Markov map ms = ms,G is a C1+α local diffeomorphism, for some α > 0,

and has bounded geometry with respect to B.

(ii) The elements of the exchange pseudo-group EG are C1+ diffeomorphisms with

respect to the C1+ atlas B.

We observe that the elements of the exchange pseudo-group EG are C1+ diffeomor-

phisms with respect to the C1+ atlas B if, and only if, the map gG is a C1+ local

diffeomorphisms with respect to B|SG .

Lemma 3.4 The map G 7→ S(Ts
G,As(Ts

G, G, ρ)) associates to every C1+ conjugacy

class of C1+ Anosov diffeomorphisms a C1+ self-renormalizable structure.

Proof. By Lemma 3.2, the Markov map ms = ms,G is a C1+ local diffeomorphism and

has bounded geometry with respect to the C1+ atlas As(Ts
G, G, ρ). By Lemma 3.3,

the elements of the exchange pseudo-group EG are C1+ diffeomorphisms with respect

to the C1+ atlas As(Ts
G, G, ρ). �

Let h be the topological conjugacy between G and the Anosov automorphism Gγ. The

map h induces a unique homeomorphism hT : Ts
G → Ts

Gγ
given by hT (x) = h(x) and

a unique homeomorphism hS : SG → SGγ
given by hS(x) = h(x). Furthermore,

hT ◦ms,G = ms,Gγ
◦ hT and hS ◦ms,G = ms,Gγ

◦ hS.

Hence, every C1+ self-renormalizable structure S(Ts
G,B) on Ts

G determines a unique

C1+ self-renormalizable structure S(Ts
Gγ
, (hT )∗B) on Ts

Gγ
that is the pushforward

structure of S(Ts
G,B) by hT . Hence, the map S(Ts

G,B) 7→ S(Ts
Gγ
, (hT )∗B) determines

a one-to-one correspondence between C1+ self-renormalizable structures on Ts
G and

C1+ self-renormalizable structures on Ts
Gγ

.
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3.9 Circle diffeomorphisms and self-renormalizable struc-

tures

Let g = (g, S,A) be a C1+ circle diffeomorphism. Let h : S → S
1 be the conjugacy

map between g and the rigid rotation gγ. Let Ag = h∗A be the pushforward of the

atlas A by h. Hence, by construction (g, S,A) is C1+ conjugate to (gγ, S
1,Ag). Hence,

every C1+ conjugacy class of a circle diffeomorphism (g, S,A) contains a C1+ circle

diffeomorphisms of the form (gγ, S
1,Ag).

Remark 3.1 We note that S1 = SGγ
, Tgγ = Ts

Gγ
, gγ = gGγ

and mgγ = mGγ
.

By the above remark, every C1+ circle diffeomorphism (gγ, S
1,A) determines a C1+

atlas AT in Tgγ = Ts
Gγ

and a corresponding C1+ structure S(Ts
Gγ
,AT ).

Theorem 3.1 The map (gγ, S
1,A) 7→ S(Ts

Gγ
,AT ) induces a one-to-one correspon-

dence between C1+ circle diffeomorphisms that are C1+ fixed points of renormalization

and C1+ self-renormalizable structures.

Proof. Given a C1+ circle diffeomorphism (gγ, S
1,A), by Section 2.4, this determines a

circle train-track Tgγ = Ts
Gγ

and an atlas AT on Ts
Gγ

. Since, (gγ, S1,A) is a C1+ fixed

point of renormalization then by Lemma 2.2 the Markov mapmgγ = mGγ
is a C1+ local

diffeomorphism with respect to AT . Conversely, if S(Tgγ ) is a C1+ self-renormalizable

structure, then mgγ = mGγ
is a local C1+α diffeomorphism with respect to a C1+α

atlas AT of S(Tgγ ). Hence, by Lemma 2.2, gγ is a C1+ circle diffeomorphism that is a

C1+ fixed point of renormalization with respect to the atlas AT |S1 . �
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HR Structures

A C1+ conjugacy class of Anosov diffeomorphisms of the torus is determined by its

HR-structure, where HR stands for Hölder ratios. These associate an affine structure

to each stable and unstable leaf in such a way that these vary Hölder continuously

with the leaf (see Pinto and Rand [31]).

An affine structure on a leaf is equivalent to a ratio function r(x, y, z) which can be

thought of as prescribing the ratio of the size of the segment between y and z to that

between x and y for all points x, y and z in the leaf. We can restrict the domain of r

to those triples such that x ≺ y ≺ z. A ratio function is positive, continuous in x, y

and z and satisfies the following equalities:

r(x, y, z) = r(z, y, x)−1and r(w, x, z) = r(w, x, y)(1 + r(x, y, z)). (4.1)

For ι = s and u, let T ι be the set of all triples (x, y, z) which are contained in some

extended ι-leaf segment and are such that x ≺ y ≺ z.

Let dι be the metric on Tι
G defined as follows: if ξ, η ∈ Tι

G, dι(ξ, η) = 2−n if, for

0 ≤ i < n, Gi
ιξ and Gi

ιη are both in A or both in B while for i = n this is not true.

We say that rι : T ι → R
+ is a ι-ratio function if (i) rι is continuous in T ι; (ii) rι is

invariant under the Anosov mapG, i.e. rι(x, y, z) = rι(Gx,Gy,Gz) for all (x, y, z) ∈ T ι

and (iii) for every basic ι-holonomy maps θ between the leaves ξ and η,
∣

∣

∣

∣

log
rι(θx, θy, θz)

rι(x, y, z)

∣

∣

∣

∣

≤ c0dι′(ξ, η)
α (4.2)

where the constants α ∈ (0, 1) and c0 ∈ R
+ only depend upon r and not on the points

(x, y, z) and (θx, θy, θz) or on ξ and η. Inequality (4.2) and the invariance of rι under

36
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the Anosov map implies
∣

∣

∣

∣

log
rι(θx, θy, θz)

rι(x, y, z)

∣

∣

∣

∣

≤ c1(dι′(ξ, η)dι(x, z))
α (4.3)

where dι(x, z) is the dι distance between the leaf segments in Tι
G containing x and z

and the constants α ∈ (0, 1) and c0 ∈ R
+ only depend upon r and not on the points

(x, y, z) and (θx, θy, θz) or on ξ and η. By Proposition 3.4 of [31] this implies that rι

is Hölder continuous along leaves. We call rs : T s → R
+ a stable ratio function and

ru : T u → R
+ an unstable ratio function.

Definition 4.1 A HR-structure is a pair (rs, ru) consisting of a stable and an unstable

ratio function.

4.1 Basic holonomies and the atlas associated to a

ratio function

We will use the notion of a bounded atlas on Tι
G. This is a set of charts of a C1+

structure on Tι
G with the following two properties: (i) the charts are C1+α-compatible

for some α ∈ (0, 1) and their overlap maps are uniformly bounded in the C1+α norm

and (ii) mι has bounded geometry in these charts. Any C1+α structure with bounded

geometry contains a bounded atlas by compactness of Tι
G.

We now define the bounded atlas Arι . This is a set of charts of a C1+ structure on

Tι
G which is determined by a ι-ratio function rι. Suppose that J is a segment in Tι

G

with endpoints x and z with x ≺ z. If ℓ is any extended ι-leaf segment, let λℓ : J → ℓ

be a continuous map such that λℓ(y) is an intersection of the ι′-leaf segment y with

ℓ. Since ℓ is an extended leaf segment, there might be two choices for λℓ. A ratio

function r on ℓ determines a unique homeomorphism jℓ : ℓ → [0, 1] which preserves

the affine structure of ℓ determined by r and a mapping ir,J,ℓ : J → R defined by

ir,J,ℓ(z) = jℓ ◦ λℓ(y).

Now if rι is any ι-ratio function, the atlas Arι consists of all charts of the form ir,J,ℓ.

By Proposition 4.1 below all these charts are C1+α compatible for some α ∈ (0, 1) and

the atlas is bounded.

Proposition 4.1 Suppose that r is a ι-ratio function. Then there is α ∈ (0, 1) such

that all basic ι-holonomies θ : ℓ → ℓ′ are C1+α diffeomorphisms for some α ∈ (0, 1)
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as mappings between the af on ℓ and ℓ′ defined by r. Moreover, the C1+α norm of the

induced maps θ̃ is uniformly bounded in Ar.

Note that when we say that the C1+α norm of the mappings θ is uniformly bounded

in Ar we mean that where defined the maps j−1 ◦ θ̃ ◦ i are uniformly bounded in the

C1+α norm for all charts i and j contained in Ar.

Proof. We must check that j−1 ◦ θ̃ ◦ i is C1+α for some α > 0. Take a sequence xn ∈ ℓ

converging to x. Let In be the image by i of the segment in ℓ between xn and x and

let Jn = j ◦ θ ◦ i−1(In). By inequality (4.3),

|Jn+1|
|In+1|

∈ (1±O(|In|β))
|Jn|
|In|

(4.4)

for some 0 < β < 1 which only depends upon r. Thus |Jn|/|In| converges to a limit

as n → ∞ which is θ′(x). The convergence is exponentially fast i.e. θ′(x)|In|/|Jn| ∈
1 ± O(|In|β) whence θ′ is Hölder continuous with exponent α for all 0 < α < β.

The uniformly boundedness in Ar follows because the bound in inequality (4.4) just

depends upon r. �

4.2 Realized HR structures

Let G be a C1+ Anosov diffeomorphism in G, and let Lu(G, ρ) be an unstable lam-

ination atlas associated to a Riemannian metric ρ. If I is an unstable leaf segment

then by |I|, we mean the length of the unstable leaf containing I measured using the

Riemannian metric ρ. Let hG : T → T be the topological conjugacy between the

automorphism Gγ and the Anosov diffeomorphism G. Using the mean value theorem

and the fact that G is C1+α uniformly hyperbolic, for some α > 0, for all short unstable

leaf segments K of Gγ and all leaf segments I and J contained in K, the unstable

realized ratio function ruG given by

ruG(I : J) = lim
n→∞

|G−n(hG(J))|
|G−n(hG(I))|

(4.5)

is well-defined (see Lemma 3.6 in [31]). Similarly, we have the definition of stable

realized ratio function rsG.

Theorem 4.1 The map G → (rsG, r
u
G) determines a one-to-one correspondence be-

tween C1+ conjugacy classes of Anosov diffeomorphisms G and pairs of stable and

unstable ratio functions.
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See proof of Theorem 4.1 in [31].

4.3 Self-renormalizable structures and ratio functions

Theorem 4.2 The map S 7→ rιS induces a one-to-one correspondence between C1+

self-renormalizable structures S on Tι
G and ι-ratio functions rι.

See also Pinto, Rand and Ferreira [34–36].

Proof. Let S be a C1+ self-renormalizable structure on Tι
G and let A be a bounded at-

las for S. Let (x0, x1, x2) ∈ T ι. Let xnk = (Gι)
−nxk and suppose they are not contained

in the ι-boundary of A or B. Let znk = πιx
n
k . Then mn

ι (z
n
k ) = z0k. Consequently, the

points zn0 , zn1 and zn2 are at most a distance apart which is O(νn) for some ν ∈ (0, 1).

Thus if (i, U) is a chart in A such that U contains zn0 , zn1 and zn2 and we define

rn(z
n
0 , z

n
1 , z

n
2 ) =

|i(zn2 )− i(zn1 )|
|i(zn1 )− i(zn0 )|

then rn(z
n
0 , z

n
1 , z

n
2 ) is independent of the chart in A up to multiplication by an error

term that is 1±O(νβn) for some β > 0. But mι is smooth in the atlas A and therefore

r(x0, x1, x2) = lim
n→∞

rn(z
n
0 , z

n
1 , z

n
2 )

exists and is approached exponentially fast i.e.

r(x0, x1, x2) ∈ (1±O(κn))rn(z
n
0 , z

n
1 , z

n
2 )

for some κ ∈ (0, 1). If for some n > N , xnk is contained in the ι-boundary of A or B

then we have two choices znk and h(znk ) for the points πι(xnk), but since h is smooth

the ratios rn(zn0 , z
n
1 , z

n
2 ) and rn(hz

n
0 , hz

n
1 , hz

n
2 ) converge to the same limit. Thus r is

well-defined and it is Hölder continuous in (x0, x1, x2) with respect to the metric dι.

Now we must check that r depends Hölder continuously on the leaf. Suppose that

(x0, x1, x2) ∈ T ι lie in the leaf ξ ∈ Tι′

G and

(x′0, x
′
1, x

′
2) = (θx0, θx1, θx2)

is the image under the basic holonomy θ from ξ to η ∈ Tι′

G. Assume that ξ and η are in

a common n-cylinder of Tι′

G. Then, for all 0 < i < n, xik = (Gι)
−ixk and xi′k = (Gι)

−ix′k
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are either both in A or both in B. Therefore, if zik = πιx
i
k and zi′k = πιx

i′
k , z

i
k = zi′k for

0 < i < n. Consequently,

r(x0, x1, x2), r(θx0, θx1, θx2) ∈ (1±O(κn))rn(z
n
0 , z

n
1 , z

n
2 )

for some 0 < κ < 1 independent of the triples and leaf segments ξ and η. It follows

that
∣

∣

∣

∣

log
r(θx0, θx1, θx2)

r(x0, x1, x2)

∣

∣

∣

∣

≤ O(κn)

as required. A similar argument applies if x0, x1 and x2 are not contained in a single

leaf segment but are all contained in an extended leaf segment.

The converse follows from Proposition 4.1. For S we take the structure determined by

the atlas Ar defined above. �



Chapter 5

Solenoid functions

Let solu denote the set of all ordered pairs (I, J) of unstable spanning leaf segments of

the Markov rectangles A and B of Gγ such that the intersection of I and J consists of

a single endpoint. Since the set sol
u is topologically a finite disjoint union of disjoint

intervals, i.e. the disjoint union of a primary stable leaf of A and a primary stable leaf

of B, it has a natural topological structure (see Pinto and Rand [28]).

We define a pseudo-metric dsolu : solu × sol
u → R

+ on the set sol
u by

dsolu ((I, J) , (I
′, J ′)) = max {d (I, I ′) , d (J, J ′)} .

Similarly, we define the sol
s and the pseudo-metric dsols : sol

s × sol
s → R

+.

Let G be a C1+ Anosov diffeomorphism in G. We call the restriction ruG|solu of an

unstable ratio function ruG to sol
u, the unstable realized solenoid function and we

denote it by σG = ruG|solu. Similarly, we call the restriction rsG|sols of an unstable

ratio function rsG to sol, the stable realized solenoid function and we denote it by

σG = rsG|sols. By construction, the restriction σG of the unstable ratio function to

sol
u gives a Hölder continuous function satisfying the matching condition and the

boundary condition, as we now proceed to describe (see Theorem 6.1 in [31]).

41
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5.1 Hölder continuity of solenoid functions

The Hölder continuity of solenoid functions means that for all t = (I, J) and t′ =

(I ′, J ′) in sol = sol
u,

|σG(t)− σG(t
′)| ≤ O

(

(dsol (t, t
′))

α)

,

for some α > 0.

5.2 Matching condition

Let (I, J) ∈ sol. Suppose that there are pairs

(I0, I1), (I1, I2), . . . , (In−2, In−1) ∈ sol

such that GγI =
⋃k−1

j=0 Ij and GγJ =
⋃n−1

j=k Ij. Then

|GγJ |
|GγI|

=

∑n−1
j=k |Ij|

∑k−1
j=0 |Ij|

=

∑n−1
j=k

∏j

i=1 |Ii|/|Ii−1|
1 +

∑k−1
j=1

∏j

i=1 |Ii|/|Ii−1|
.

Hence, the realized solenoid function σG must satisfy the matching condition (see

Figure 5.1) for all such leaf segments:

σG(I : J) =

∑n−1
j=k

∏j

i=1 σG(Ii−1 : Ii)

1 +
∑k−1

j=1

∏j

i=1 σG(Ii−1 : Ii)
. (5.1)

sG(Gg I:Gg J)

Gg JGg I

I0 I1 I2 I3
I4

sG(I2:I3) sG(I3:I4)sG(I1:I2)sG(I0:I1)

Figure 5.1: The matching condition for the solenoid function σG with k = 2 and n = 5.
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Lemma 5.1 Let σG : sol → R
+ be a realized solenoid function. For a ∈ N, the

matching condition holds for σG if, for every (K1, K2) ∈ sol, the following conditions

hold:

(i) if K1, K2 ∈ A, then

σG(K1 : K2) =
a+1
∏

k=1

σG(Ik : Ik+1)

(

1 +
∑2a+1

j=a+2

∏j

k=a+2 σG(Ik : Ik+1)

1 +
∑a

j=1

∏j

k=1 σG(Ik : Ik+1)

)

. (5.2)

where I1, . . . , I2a+2 are such that Gγ(K1) = ∪a+1
i=1 Ii, Gγ(K2) = ∪2a+2

i=a+2Ii and

(Ii, Ii+1) ∈ sol for i ∈ {1, . . . , 2a+ 1}.

(ii) if K1 ∈ A and K2 ∈ B, then

σG(K1 : K2) =
a+1
∏

k=1

σG(Ik : Ik+1)

(

1 +
a
∑

j=1

j
∏

k=1

σG(Ik : Ik+1)

)−1

(5.3)

where I1, . . . , Ia+2 are such that Gγ(K1) = ∪a+1
i=1 Ii, Gγ(K2) = Ia+2 and (Ii, Ii+1) ∈

sol for i ∈ {1, . . . , a+ 1}.

(iii) if K1 ∈ B and K2 ∈ A, then

σG(K1 : K2) = σG(I1 : I2)

(

1 +
a+1
∑

j=2

j
∏

k=2

σG(Ik : Ik+1)

)

(5.4)

where I1, . . . , Ia+2 are such that Gγ(K1) = I1, Gγ(K2) = ∪a+2
i=2 Ii and (Ii, Ii+1) ∈

sol for i ∈ {1, a+ 1}.

Proof. If (K1, K2) ∈ sol then (K1, K2) satisfies either condition (i), (ii) or (iii) above

(see Figure 7.3). Let us check that the formulas (5.2), (5.3) and (5.4) correspond to

the matching condition (5.1) for σG.

(i) If K1, K2 ∈ A then there exists (Ii, Ii+1) ∈ sol, for i = 1, . . . , 2a + 2, such that

Gγ(K1) = I1 ∪ · · · ∪ Ia+1 and Gγ(K2) = Ia+2 ∪ · · · ∪ I2a+2. Furthermore,

|Gγ(K2)|
|Gγ(K1)|

=

∑2a+1
i=a+2 |Ii|
∑a+1

i=1 |Ii|
=

a+1
∏

k=1

|Ik+1|
|Ik|

(

1 +
∑2a+1

j=a+2

∏j

k=a+2
|Ik+1|

|Ik|

1 +
∑a

j=1

∏j

k=1
|Ik+1|

|Ik|

)

.

Hence, equality (5.2) follows from equality (5.1).
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(ii) If K1 ∈ A and K2 ∈ B then there exists (Ii, Ii+1) ∈ sol, for i = 1, . . . , a+1, such

that Gγ(K1) = I1 ∪ · · · ∪ Ia+1 and Gγ(K2) = Ia+2. Furthermore,

|Gγ(K2)|
|Gγ(K1)|

=
|Ia+2|
∑a+1

i=1 |Ii|
=

a+1
∏

k=1

|Ik+1|
|Ik|

(

1 +
a
∑

j=1

j
∏

k=1

|Ik+1|
|Ik|

)−1

.

Hence, equality (5.3) follows from equality (5.1).

(iii) If K1 ∈ B and K2 ∈ A, then there exists (Ii, Ii+1) ∈ sol, for i = 1, 2, such that

Gγ(K1) = I1 and Gγ(K2) = I2 ∪ · · · ∪ Ia+2. Furthermore,

|Gγ(K2)|
|Gγ(K1)|

=

∑a+2
i=2 |Ii|
|I1|

=
|I2|
|I1|

(

1 +
a+1
∑

j=2

j
∏

k=2

|Ik+1|
|Ik|

)

.

Hence, equality (5.4) follows from equality (5.1). �

5.3 Boundary condition

Let (Ii, Ii+1), (Jj, Jj+1) ∈ sol, for each i ∈ {0, . . . ,m} and each j ∈ {0, . . . , n} with the

following properties: (i) I0 = J0, (ii) ∪m
i=1Ii = ∪m

j=1Jj and (iii) Ii 6= Jj for all i ≥ 1 and

all j ≥ 1. Then the following two ratios are equal

m
∑

i=1

i
∏

j=1

|Ij|
|Ij−1|

=
| ∪m

i=1 Ii|
|I0|

=
| ∪n

i=1 Jj|
|J0|

=
n
∑

i=1

i
∏

j=1

|Jj|
|Jj−1|

.

We observe that the unstable spanning leaf segments I1, . . . , Im and J1, . . . , Jn must be

boundaries of Markov rectangles. Thus, a realized solenoid function σG must satisfy

the following boundary condition for all such leaf segments:

m
∑

i=1

i
∏

j=1

σG (Ij−1 : Ij) =
n
∑

i=1

i
∏

j=1

σG (Jj−1 : Jj) . (5.5)

Let K1, K2 and K3 be the unstable spanning leaf segments as defined in Section 7.

Let K0 be the unstable spanning leaf segment in A such that K0 ∩ K1 = {y0}. Let

the unstable spanning leaf segment I1 be the right boundary of the Markov rectangle

B and the unstable spanning leaf segment I2 be the right boundary of the Markov

rectangle A (see Figure 5.2).
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Lemma 5.2 Let σG : sol → R
+ be a realized solenoid function. The boundary

condition holds for σG if the following conditions hold

σG(K0 : K1)(1 + σG(K1 : K2)) = σG(K0 : I1)(1 + σG(I1 : I2)); (5.6)

and

σG(K3 : K2)(1 + σG(K2 : K1)) = σG(K3 : I2)(1 + σG(I2 : I1)). (5.7)

Proof. Since I1 and K2 are the unstable boundaries of the Markov rectangle B and

I2 and K1 are the unstable boundaries of the Markov rectangle A, then the boundary

condition (5.5) corresponds to

|K1|
|K0|

(

1 +
|K2|
|K1|

)

=
|K1 ∪K2|

|K0|
=

|I1 ∪ I2|
|K0|

=
|I1|
|K0|

(

1 +
|I2|
|I1|

)

,

and
|K2|
|K3|

(

1 +
|K1|
|K2|

)

=
|K1 ∪K2|

|K3|
=

|I1 ∪ I2|
|K3|

=
|I2|
|K3|

(

1 +
|I1|
|I2|

)

.

Hence, the boundary condition for σG is given by (5.6) and (5.7). �

5.4 Solenoid functions

Definition 5.1 A function σ : sol → R
+ is a (unstable) solenoid function, if the

following conditions hold: (i) σ is Hölder continuous; (ii) σ satisfies the matching

condition given by the equalities (5.2), (5.3) and (5.4); and (iii) σ satisfies the bound-

ary condition given by the equalities (5.6) and (5.7).

By Theorem 6.1 in [31], we have the following equivalence:

Lemma 5.3 The map r → r|sol gives a one-to-one correspondence between ratio

functions and solenoid functions.

Theorem 5.1 The map G → (rsG|sols, ruG|solu) determines a one-to-one correspon-

dence between C1+ conjugacy classes of Anosov diffeomorphisms G and pairs of stable

and unstable solenoid functions.

See the proof of Theorem 5.1 in [31].
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A B

B

A

A

K0

K3

K2

K1

I1

B

I2
s

G
(K1:K2)

s
G
(K0:K1)

s
G
(K2:K3)

s
G
(K0:I1)

s
G
(I1:I2)

s
G
(I2:K3)

Figure 5.2: The Boundary condition for the realized solenoid function σG.
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SRB and Gibbs measures

Pinto and Rand [31] proved a one-to-one correspondence between C1+ conjugacy

classes of Anosov diffeomorphisms on surfaces and pairs of stable and unstable ratio

functions. Given an Anosov diffeomorphism, the corresponding ratio functions rs and

ru are dual if, and only if, the Anosov diffeomorphism has an invariant measure that

is absolutely continuous with respect to Lebesgue measure. In Theorem 6.4, it is

proved an equivalence between C1+ Anosov diffeomorphisms whose SRB measure is

absolutely continuous with respect to two dimensional Lebesgue measure and C1+

self-renormalizable structures (see Pinto, Rand and Ferreira [36]).

6.1 Duality of train-tracks

In this section we show how Tι′

G can be regarded as the dual of Tι
G where, as before,

ι′ denotes an element of the set {s, u} that is not ι. The dual of Tι
G is defined as a

quotient space Σ/ ∼ and we will denote it by (Tι
G)

∗.

Recall from Section 3.6 that a n-cylinder is a subset C of Tι
G such that mn

ι C is Aι or

Bι and mn
ι is a homeomorphism of intC onto intmn

ι C. A point ξ = (Ii)
∞
i=0 of Σ is

a backward orbit of cylinders in Tι
G i.e. I0 is Aι or Bι and mι sends the i-cylinder Ii

onto the (i − 1)-cylinder Ii−1. There is a natural Markov map mι,∗ on Σ defined by

mι,∗((Ii)) = (Ki) where Ki is the i-cylinder containing Ii+1.

For ι ∈ {s, u} let jι denote the junction of Tι
G. There are four special points j1, . . . , j4

in Σ two of which are given by the backward orbits (Ii) for which the junction jι ∈ Ii

47
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for all i ≥ 0 while the others are given by the backward orbits (Ki) such that Ki is

adjacent to Ii and contained in I ′i for all i ≥ 0. Here I ′i is the (i−1)-cylinder containing

the i-cylinder Ii. These points will all be identified to give the junction j∗ of (Tι
G)

∗.

We define special subsets Σn of Σ on which we carry out identifications. A point

x = (Ii) is in Σn if one of the following two equivalent properties is true:

(i) mn
ι,∗(x) = j∗ but mn−1

ι,∗ (x) 6= j∗.

(ii) there exists a point y = (Ki) ∈ Σ such that (a) Kn−1 = In−1 and (b) either

inth(Im) ⊂ intKm 6= ∅ or int Im ⊂ inth(Km) 6= ∅ for all m ≥ n. In this

case we denote y by y(x) or x by x(y) respectively.

Note that the points j1, . . . , j4 are the only points in Σ0 and we can choose their order

such that y(j2) = j1, y(j2) = j3 and y(j4) = j1.

Definition 6.1 The dual train-track (Tι
G)

∗ is the quotient space of Σ in which the four

points in the junction are identified and each of the pairs x, y(x) ∈ Σn is identified in

a single point.

We call y : ∪n≥0Σn → ∪n≥0Σn the identification map. It gives a local order on

the n-cylinders of Σ by saying that the cylinder containing y(x) follows the cylinder

containing x. This in turn induces a local order on the train-track (Tι
G)

∗.

The map mι,∗ : Σ → Σ induces a Markov map of (Tι
G)

∗ which we also denote by mι,∗.

We also define a map hι,∗ : (Tι
G)

∗ → (Tι
G)

∗ as follows. If ξ1 = (Ii) and ξ2 = (Ji) are

in (Tι
G)

∗ such that for all i, Ii and Ji meet in an endpoint and Ii ≺ Ji, then we write

ξ2 = hι,∗(ξ1). The map hι,∗ is one-to-one except at the junction where is one-to-two.

For a n-cylinder C in Tι
G define C∗ and C† by

C∗ = {ξ = (Ii) : In = K} and C† = πι′ ◦Gn
ι ◦ π−1

ι (C).

The subsets C∗ are the n-cylinders of (Tι
G)

∗ and C∗ and C† are called the duals of C

(see Figure 6.1).

Note that a backward orbit (C∗
i ) of cylinders of (Tι

G)
∗ under mι,∗ corresponds to a

nested sequence of cylinders Ci in Tι
G and therefore (C∗)∗ is naturally identified with

C.
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{

0
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B

Gg
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Gg
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D

Figure 6.1: The geometric relation between a cylinder C in Tι
G and its dual. This

is obtained by taking the ι′-leaf segments in C and applying a power of Gγ to get a

rectangle that is the union of ι-leaf segments. Note how a nested sequence of cylinders

corresponds to a backward orbit of cylinders in the original train-track.

Lemma 6.1 There is a natural identification of (Tι
G)

∗ with Tι′

G which identifies mι,∗

with mι′, hι,∗ with hι′ and C∗ with C† for all cylinders C.

Proof. If ξ ∈ (Tι
G)

∗, then ξ corresponds to a point (Ii)
∞
i=0 of Σ. But then I†i ⊂ I†i−1

and therefore this defines a point x = x(ξ) of Tι′

G by x = ∩i≥0I
†
i . By construction of

the identification map, we have that x : (Tι
G)

∗ → Tι′

G is a homeomorphism. �

Note that any such holonomy map induces a map θ̃ : U ⊂ Tι
G → Tι

G defined by

θ̃(πιp) = πιθ(p). This map θ̃ is the identity if ℓ and ℓ′ are both contained in one of the

rectangles A or B. If one is contained in rectangle A and other in rectangle B then θ̃

is the map h.

6.2 The SRB measures and their ratio decomposition

Suppose that S is a C1+ self-renormalizable structure on Tι
G. Let A be a bounded

atlas for it. Fix a point ξ ∈ Σ. Then ξ = (Ii)
∞
i=0 corresponds to a backward orbit

of cylinders in Tι
G. Each Ii is an i-cylinder. For i ≥ 1 let I ′i be the (i − 1)-cylinder
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containing Ii. Let the scaling function σ be defined by

σ(ξ) = lim
i→∞

|Ii|
|I ′i|

(6.1)

where for large i the ratios |Ii|/|I ′i| are measured in a chart of the atlas A containing

I ′i. Because the atlas is bounded, as i → ∞ the ratio becomes independent of the

chart up to a multiplicative error of the form 1±O(|I ′i|α) which is exponentially close

to one. Thus, since mι is a local diffeomorphism with bounded geometry in S, the

approach to the limit is exponentially fast in i. Moreover, if ξ and η are in a common

n-cylinder then σ(ξ)/σ(η) ∈ 1 ± O(κn) for some 0 < κ < 1 independent of the leaf

segments ξ and η. Thus σ is Hölder continuous in the metric dι′ . Finally, note that σ

does not depend upon the atlas chosen because the charts are C1+ compatible.

The duality between the identification map in (Tι
G)

∗ and the holonomy in Tι
G implies

that σ : (Tι
G)

∗ ∼= Tι′

G → R
+ is a continuous map, except at the junction where it is

multi-valued.

Let µ∗ be the Gibbs state on Tι′

G whose potential is σ. That is, µ∗ is the unique

mι′-invariant probability measure on Tι′

G such that for all n-cylinders

µ∗(C) ∈ [d−1, d] exp(Snσ(C)) (6.2)

where d > 1 is a constant which is independent of C and n and

Snσ(C) = max
ξ∈C

(σ(ξ) + · · ·+ σ(mn−1
ι′ ξ)).

Let µ = µS be the probability measure on Tι
G such that µ(C) = µ∗(C∗) for all cylinders

C. Note that µ is a measure because µ∗ is invariant and µ is invariant because µ∗ is

a measure.

Proposition 6.1 A C1+ self-renormalizable structure S on Tι
G determines a unique

measure µ = µS which is mι-invariant and absolutely continuous with respect to the

lengths determined by any bounded atlas of S. In particular, for this measure and

such an atlas the ratios µ(C)/|C| are uniformly bounded away from 0 and ∞ for all

cylinders C in Tι
G where the length |C| is measured in any chart of the atlas which

contains C.

Proof. From inequality (6.2) and the Hölder continuity of σ, the ratios µ(C)/|C| =
µ(C∗)/|C| are uniformly bounded away from zero and infinity. µ is mι-invariant
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because µ∗ is a measure. It is unique because there is at most one invariant measure

which is absolutely continuous with respect to Lebesgue measure. �

We will call µ = µι
S the SRB measure of Tι

G for the self-renormalizable structure S.

It has the following important property: for every Borel subset A in Tι
G,

lim
n→∞

λ(m−n
ι A) = µ(A)

for every probability measure λ equivalent to Lebesgue measure (e.g. Theorem 1.2

of [17]). This implies that if A is a bounded atlas for S and E is any interval in Tι
G,

then

µ(E) = lim
n→∞

∑

C

|EC | (6.3)

where the sum is over all n-cylinders C, EC = C ∩m−n
ι E and |EC | is measured in any

chart of A containing EC .

Lemma 6.2 Let I, J and K be three intervals in Aι or Bι with K containing both I

and J . Then
µ(I)

µ(J)
∈ (1 +O(|K|α)) |I||J | (6.4)

for some 0 < α ≤ 1 independent of I, J and K. Here |I|, |J | and |K| are measured in

any bounded atlas of S. Consequently, the inverse of the potential σ is the Jacobian

of the Gibbs state µ∗ i.e. 1/σ is the Radon-Nikodym derivative d(µ∗ ◦mι,∗)/dµ
∗(ξ).

Proof. By equation (6.3),
µ(I)

µ(K)
= lim

n→∞

∑ |IC |
∑ |KC |

where the sums are over the same ranges as in equation (6.3). However, since IC and

KC are preimages of mn
ι and mι has Hölder continuous derivative in a bounded atlas

of S,
|IC |
|KC |

∈ (1±O(|K|α)) |I||K|
for some 0 < α ≤ 1 independent of I and K. Thus,

µ(I)

µ(K)
∈ (1±O(|K|α)) |I||K| .

This proves equation (6.4).

Now let ξ, Ii and I ′i be as in the definition (6.1) of σ. Then, by (6.4), we have

µ(Ii)/µ(I
′
i) ∈ (1± (|Ii|α))σ(ξ).
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Taking the limit

σ−1(ξ) = lim
i→∞

µ(I ′i)

µ(Ii)
= lim

i→∞

µ∗(I ′,∗i )

µ(I∗i )

= lim
i→∞

µ∗(mι,∗(I
∗
i ))

µ∗(I∗i )

=
d(µ∗ ◦mι,∗)

dµ∗
(ξ).

In this we are using the fact that, since I ′i is the (i−1)-cylinder containing the i-cylinder

Ii, mι,∗(I
∗
i ) = I ′,∗i . �

Suppose that we are given a ι-ratio function r. This determines an affine structure on

the ι-leaves ℓ. For any two segments I and J in a common ι-leaf ℓ, we define r(I : J) as

the ratio between I and J determined by the affine structure on ℓ. If Ij is any family

of intervals in a ι-leaf which are disjoint on their interiors then we define r(∪jIj : J)

to be
∑

j r(Ij : J).

Lemma 6.3 For all open subsets C of Tι
G

µ(C) =

∫

rιξ(C)µ
∗(dξ)

where rιξ(C) = rι(π−1
ι C ∩ ξ : ξ), the integral is over all leaf segments ξ ∈ Tι′

G and

rιξ(C) = 0 if ξ ∩ π−1
ι C = ∅.

Proof. If I ⊂ Tι
G is an interval and C is a n cylinder then, as above, let IC be the

connected component of m−n
ι (I) which is contained in C. Then

µ(I) = lim
n→∞

∑

µ(IC)

= lim
n→∞

∑

(1±O(νn))
|IC |
|C| µ(C)

= lim
n→∞

(1±O(νn))
∑

rξC (I)µ
∗(C∗)

=

∫

rξ(I)µ
∗(dξ)

for all choices of ξC ∈ C∗. In this, all sums are over the set of all n-cylinders C and

µ(IC)/µ(C) = (1±O(νn))|IC |/|C| by Lemma 6.2. �

Lemma 6.4 The ratios µ(C)/rιξ(C) where C is a cylinder in Tι
G and ξ ∈ Tι′

G is such

that ξ ∩ π−1
ι C 6= ∅ are uniformly bounded away from 0 and ∞.
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Proof. By Lemma 6.3
µ(C)

rιξ(C)
=

∫

rιη(C)

rιξ(C)
µ∗(dη).

But rιη(C)/r
ι
ξ(C) is uniformly bounded away from 0 and ∞ by the Hölder continuous

dependence of the ratio function upon the leaf segment. �

Now we construct a 2-dimensional measure ριS . If C is a cylinder in Tι
G let Ce = π−1

ι C

be the union of all the leaf segments in C. We define ριS(C
e) to be µ(C). We call R a

cylinder of G if for some n, G−nR is of the form Ce for some cylinder C in Tι
G. We

define

ριS(R) = ριS(C
e) = µ(C).

This defines a G-invariant probability measure on T.

We will see later that ριS is the SRB measure of the C1+ conjugacy class of Gι giving

rise to the self-renormalizable structure on Tι
G.

Suppose that Q is any open subset of T. Let rιξ(Q) denote the ratio rι(Q∩ξ : ξ) where

we adopt the convention that rιξ(Q) = 0 if ξ ∩Q = ∅.

For simplicity, assume that Q ⊂ T is a small connected set. Hence, there is an open

connected set D ⊂ Tι′

G with the following properties: (i) for every ξ ∈ D there is a

unique extended leaf ξ′ extending ξ so that ξ′∩Q is connected and (ii)Q = ∪ξ∈D(ξ
′∩Q).

Theorem 6.1 (Ratio decomposition of 2-dimensional SRB measures)

ριS(Q) =

∫

ξ∈D

rιξ(Q)µ
∗(dξ).

Proof. It is sufficient to prove this for the case where Q is a cylinder of G i.e. where

for some n, G−nQ is of the form Ce = π−1
ι Cι for some cylinder Cι in Tι

G.

Let Cι′ denote the projection πι′Q of Q into Tι′

G. Then Cι′ is a n cylinder of Tι′

G. Let

Cι′,k
j denote the (n+ k)-cylinders of Tι′

G contained in Cι′ . Let Qk
j = Q ∩ (π−1

ι′ C
ι′,k
j ) so

that Q = ∪jQ
k
j .

We first note that

ρ(Qk
j ) =

(

1±O(νn+k)
)

rξ(Q)µ
∗(Cι′,k

j ) (6.5)

for all ξ ∈ Cι′,k
j where ν ∈ (0, 1) and the constant of proportionality in the O(νn+k)

term is independent of j, k, n, Q and ξ. The proof of this is as follows.
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Let P = Qk
j , P

ι′ = Cι′,k
j and S = π−1

ι′ P
ι′ . Then G−(n+k)P and G−(n+k)S are

respectively of the form π−1
ι Dι and π−1

ι Eι for some cylinders Dι and Eι in Tι
G with Dι

contained in Eι. Moreover, the dι-length of Eι is not greater than 2−(n+k). Therefore,

by inequality (4.3) for all ξ and η in Aι′,k

rξ(D
ι : Eι)

rη(Dι : Eι)
∈
(

1±O(νn+k)
)

(6.6)

for some ν as above and where rξ(Dι : Eι) = rι(ξ ∩ π−1
ι Dι : ξ ∩ π−1

ι Eι) Here Aι′,k ∈
{Aι′ , Bι′} is πι′(G−(n+k)P ). But then

ρ(P )

µ∗(P ι′)
=

ρ(P )

ρ(π−1
ι′ P

ι′)
=
ρ(π−1

ι Dι)

ρ(π−1
ι Eι)

=
µ(Dι)

µ(Eι)
=

∫

rξ(D
ι)µ∗(dξ)

∫

rξ(Eι)µ∗(dξ)
=

∫

rξ(D
ι : Eι)rξ(E

ι)µ∗(dξ)
∫

rξ(Eι)µ∗(dξ)

where the integrals are all over Aι′,k. By (6.6), we have
∫

rξ(D
ι : Eι)rξ(E

ι)µ∗(dξ)
∫

rξ(Eι)µ∗(dξ)
∈
(

1±O(νn+k)
)

rη(D
ι : Eι)

for all η ∈ Aι′,k. But if ξ ∈ Cι′,k
j then η = mn+k

ι′ ξ ∈ Aι′,k and rξ(Q) = rη(D
ι : Eι) by

G-invariance of the ratio function. Thus we deduce (6.5) as required.

Now we can complete the proof of the theorem by noting that

ρ(Q) =
∑

j

ρ(Qk
j ) =

∑

j

(

1±O(νn+k)
)

rξj(Q)µ
∗(Cι′,k

j )

∈
(

1±O(νn+k)
)

∑

j

rξj(Q)µ
∗(Cι′,k

j ).

It follows that

ρ(Q) =

∫

rξ(Q)µ
∗(dξ).

�

6.3 The dual affine structure on the stable lamination

We have seen above that a self-renormalizable structure S on Tι
G determines an affine

structure on the ι-lamination given by a ι-ratio function and the 2-dimensional measure

ριS on T. We now construct a dual affine structure on the ι′ lamination. These two
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Figure 6.2: This figure shows schematically the form of the various sets used in the

proof of Theorem 6.1.

affine structures determine a C1+ conjugacy class and ριS is the SRB measure for this

conjugacy class and is absolutely continuous with respect to two-dimensional Lebesgue

measure. Thus our strategy inverts the usual approach in that, instead of taking the

given smooth structure and trying to find a a measure that is absolutely continuous,

we fix the measure and then construct the smooth structure in which it is absolutely

continuous.

Let (x0, x1, x2) ∈ T ι′ be three points in an extended ι′ leaf segment x. We can regard

x as an element of Tι
G. Let Cn be a n-cylinder containing x. Let ℓx(x0, x1, x2) be

the segment in x determined by the three points. If ξ is a ι-leaf segment then let

Cn(ξ) be the segment in ξ that projects under πι onto Cn. Let An(x0, x1, x2) (resp.

Bn(x0, x1, x2)) be the union of the Cn(ξ) where ξ is a ι leaf segment passing through

a point in ℓx(x0, x1, x2) between x0 and x1 (resp. x1 and x2) (see Figure 6.3). Define

rι,∗(x0, x1, x2) = lim
n→∞

rι,∗n (x0, x1, x2) (6.7)

where

rι,∗n (x0, x1, x2) =
ριS(Bn)

ριS(An)
.

Theorem 6.2 rι,∗ is a ι′-ratio function which we call the dual ratio function to rι.

The dual of rι,∗ is rι. Furthermore, rι is affine if, and only if, rι,∗ is affine.
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Figure 6.3: This figure shows how the dual ratio function is calculated. The three

points are in the leaf x and their ratio is given by taking the limit of the ratios

ριS(Bn)/ρ
ι
S(An).

Proof. Let ρ denote ριS . The main thing to prove is that, in the notation above,

ρ(Bn+1)

ρ(An+1)
∈ (1±O(νn))

ρ(Bn)

ρ(An)
(6.8)

for some 0 < ν < 1 which is independent of n and (x0, x1, x2).

Let us consider the case where An and Bn are both contained in A or both in B. Since

Cn is a n-cylinder of mι, Gn
ι An and Gn

ιBn are both unions of ι-leaf segments. Let an
and bn be the segments in Tι′

G consisting of these leaf segments. Then by Theorem 6.1,

ρ(An+1)

ρ(An)
=

∫

an
rξ(Dn)µ

∗(dξ)

µ∗(an)
∈ (1±O(νn)) rη(Dn)

where η is any element of an, Dn is the cylinder πι(GnAn+1) and 0 < ν < 1 is as above.

This is because rξ(Dn)/rη(Dn) ∈ (1±O(νn)) for any ξ, η ∈ an.

A similar inequality holds for ρ(Bn+1)/ρ(Bn+1) and therefore (6.8) holds.

The existence of the limit in (6.7) and the Hölder continuity of rι,∗ between leaves

(inequality (4.2)) follows immediately from (6.8). The invariance of rι,∗ under G

follows immediately from the G-invariance of ρ.

To see that the dual of r = rι,∗ is rι consider three points x, y and z on a ι-leaf ℓ. To

check that r(x, y, z) = rι(x, y, z) in general, we may restrict to the case where x, y and

z are all contained in a single element of {A,B}. Let x(n) = G−nx and let y(n) and z(n)

be similarly defined. Let A′
n (resp. B′

n) denote the union of all leaf segments through
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the points on ℓ between x(n) and y(n) (resp. y(n) and z(n)) and let a′n = πι(A
′
n) and

b′n = πι(B
′
n). By the following Lemma 6.5, µ∗ is the SRB measure on Tι′

G corresponding

to r. Therefore, ρ = ριS = ρι,∗S and

r(x, y, z) = lim
n→∞

ρ(B′
n)

ρ(A′
n)

= lim
n→∞

µ(b′n)

µ(a′n)
= rι(x, y, z)

as required. �

Recall the definition of rιξ(C) in Lemma 6.3 as rι(Ce ∩ ξ : ξ). Similarly, we define the

ratios rι,∗x (C) as rι,∗(Ce ∩ x : x) where C is a cylinder in Tι′

G, Ce is the union of all the

leaf segments ξ in C and x ∈ Tι
G .

Lemma 6.5 The ratios µ∗(C)/r∗ι,x(C) where C is a cylinder in Tι′

G and x ∈ Tι
G and

x ∈ Tι
G is such that x ∩ π−1

ι′ C 6= ∅ are uniformly bounded away from 0 and ∞.

Proof. Let An ∈ Tι
G be a decreasing sequence of n-cylinders containing x. Let Ce be

the union of the leaf segments ξ in C and Ae
n be the union of the leaf segments y in

An. Let Bn be the intersection of Ce and Ae
n. Then

r∗ι,x(C) = lim
n→∞

ριS(Bn)

ριS(A
e
n)

and, by Theorem 6.2, r∗ι,x(C)
−1 × (ριS(Bn)/ρ

ι
S(A

e
n)) ∈ 1±O(κn) where κ ∈ (0, 1) is a

constant independent of C and n. It follows that

r∗ι,x(C) = O(ριS(B1)/ρ
ι
S(A

e
1)).

But ριS(B1) = µ∗(C) and ριS(A
e
1) is bounded independent of Ae

1 whence

r∗ι,x(C)/µ
∗(C)

is bounded away from 0 and ∞. �

6.4 The absolute continuity of the 2-dimensional SRB

measure

Let S be a self-renormalizable structure on Tι
G. By Proposition 4.2, this determines the

affine structure on the ι-lamination given by the ι-ratio function rι. By Theorem 6.2,

the measure ριS determined by S in turn determines the affine structure on the ι′-

lamination given by the ι′-ratio function rι,∗.
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Theorem 6.3 The HR structure (rι, rι,∗) determines a unique C1+ conjugacy class of

Anosov maps with the property that it gives (rι, rι,∗). Furthermore, the SRB measure

ριS is absolutely continuous with respect to two-dimensional Lebesgue measure.

It follows from the proof of Theorem 6.3 that the HR (rs, ru) determines a canonical

C1+ structure on T. Furthermore, this canonical C1+ structure on T has the property

that the basic holonomies have the highest degree of smoothness in its C1+ conjugacy

class. The SRB measure ριS is in fact proportional to two-dimensional Lebesgue

measure in the sense that if A is a bounded atlas of the structure and E a Borel

set of T then the ratio of ριS(E) to the Lebesgue measure of E in any chart of the atlas

is bounded away from 0 and ∞ with the bounds only depending upon the atlas and

not on the set E.

Proof. By Theorem 5.1 of [31], the HR structure (rι, rι,∗) determines a unique C1+

conjugacy class of Anosov maps with the property that it gives (rι, rι,∗). The smooth

structure is defined as follows. Recall the definition of the local product structure

map. Suppose that, for y ∈ T, ℓιε(y) is the ε-neighbourhood of y in the ι-leaf through

x in the metric dι. Then, for ε > 0 small there is a well-defined map

[·, ·] : ℓsε(x)× ℓuε (x) → T

where [y, z] is the unique intersection point of ℓs2ε(y) and ℓu2ε(z). For x ∈ T, let xι denote

the endpoint x ≺ xι of ℓιε(x). There are unique embeddings cι : ℓιε(x) → [0, 1] ∈ R

such that cι preserves the affine structures on ℓιε(x), sends x to 0 and xι to 1. Now

define

i : ℓsε(x)× ℓuε (x) → R
2

by i([zs, zu]) = (cs(zs), cu(zu)). This chart maps leaf segments to either a horizontal or

a vertical line. This defines an atlas and gives the smooth structure of the theorem.

This atlas is canonically associated with the HR structure. According to Theorem 5.1

of [31], G is a diffeomorphism in this structure. Thus the structure determines a C1+

conjugacy class with the required properties. Furthermore, the atlas maximises the

smoothness of the holonomy maps amongst the C1+ equivalence classes follows from

Theorem 5.3 of [31]. Now we show that ριS is smooth.

Suppose that R is a cylinder of G as defined in Section 6.2. We have,

ριS(R)

µ(πιR)
=

∫

πι′R

rιξ(πιR)

µ(πιR)
µ∗(dξ) = O(µ∗(πι′R))
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because rιξ(πιR) = O(µ(πιR)) by Lemma 6.4. Consequently,

ριS(R) = O(µ(πιR)µ
∗(πι′R)).

Combining this with Lemma 6.4 and Lemma 6.5, it follows that

ριS(R) = O(rιξ(πιR)r
∗
ι,x(πι′R)).

Therefore, ifR is contained inside a chart i : U → R
2 of the atlas A above, ριS(R)/λ(i(R))

is bounded away from 0 and ∞ uniformly for all such R. This proves that ριS is smooth.

�

6.5 Absolute continuity implies duality of the affine

structures

Lemma 6.6 If the SRB measure ρ of f is absolutely continuous with respect to Lebesgue

measure then rs is the dual of ru.

Proof. Let (x, y, z) ∈ T s and let An, Bn and Cn be the sets used in the definition

of the value of the dual ratio function at (x, y, z). Let us consider the case where

the points x, y and z are all contained in either A or B. Then GnAn and GnBn

are both unions of leaf segments because Cn is a n-cylinder of mu. Let an and bn

be the sets in Ts
G consisting of these leaf segments. Then by the invariance of ρ,

ρ(An)/ρ(Bn) = µs(an)/µ
ss(bn) and therefore

(ru)∗(x, y, z) = lim
n→∞

µs(an)

µs(bn)
.

Since ρ is absolutely continuous with respect to Lebesgue measure, we obtain that ρ

is the SRB measure for both G and G−1 in S. Thus, the projection µs of ρ onto Ts
G is

absolutely continuous in the structure Ss on Ts
G. Thus µs is the SRB measure for the

Markov map ms. Hence, by Lemma 6.2 applied to Ss,

lim
n→∞

µs(an)/µ
s(bn) = lim

n→∞
|an|/|bn|

where the lengths are measured in the submanifold structure of the stable leaves.

Therefore (ru)∗ = rs. �
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Figure 6.4: This figure shows the construction of the sets an and bn in the proof of

Lemma 6.6.

Theorem 6.4 (Flexibility) The map G 7→ S(G) determines a one-to-one correspon-

dence between C1+ Anosov diffeomorphisms whose SRB measure is absolutely contin-

uous with respect to two dimensional Lebesgue measure and C1+ self-renormalizable

structures.

Proof. Given a C1+ Anosov diffeomorphism, by Lemma 6.6, if the SRB measure ρ

is absolutely continuous with respect to Lebesgue measure then rs is the dual of ru.

Furthermore, by Lemma 3.4 the map G determines a unique C1+ self-renormalizable

structure S(G) on Tι
G. Conversely, by Proposition 4.2 a C1+ self-renormalizable

structure S on Tι
G determines a ι-ratio function rι. By Proposition 6.1 the self-

renormalizable structure S on Tι
G determines a unique measure µ = µS which is

mι-invariant and absolutely continuous with respect to the lengths determined by any

bounded atlas of S. By Theorem 6.2, rι determines a dual ι′-ratio function rι,∗ and by

Theorem 6.3, the HR structure (rι, rι,∗) determines a unique C1+ conjugacy class of

Anosov maps with the property that it gives (rι, rι,∗). Furthermore, the SRB measure

ριS is absolutely continuous with respect to two-dimensional Lebesgue measure. �

By Theorem 3.1, there is a well defined map g 7→ S(g) that determines a one-to-

one correspondence between C1+ circle diffeomorphisms that are C1+ fixed points of

renormalization and the induced C1+ self-renormalizable structures. By Theorem 6.4,

there is a well defined map S 7→ G(S) that determines a one-to-one correspondence be-

tween C1+ self-renormalizable structures and the induced C1+ Anosov diffeomorphisms
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with SRB measure absolutely continuous with respect to two dimensional Lebesgue

measure. Putting together Theorem 3.1 and Theorem 6.4 we obtain the following

corollary.

Corollary 6.1 The map g 7→ G(S(g)) induces a one-to-one correspondence between

C1+ fixed points of renormalization g and C1+ Anosov diffeomorphisms G(S(g)) with

an invariant measure that is absolutely continuous with respect to Lebesgue measure.

Putting together Theorem 4.2 and Corollary 6.1 we obtain the following corollary.

Corollary 6.2 The map G → ruG determines a one-to-one correspondence between

C1+ conjugacy classes of Anosov diffeomorphisms G in G and unstable ratio functions.

Let SOL be the set consisting of all (unstable) solenoid functions. The set SOL has

a natural metric. Combining Lemma 6.2 and Lemma 5.3, we obtain the following

corollary.

Corollary 6.3 The map G→ rG|sol determines a one-to-one correspondence between

C1+ conjugacy classes of Anosov diffeomorphisms G in G and solenoid functions rG|sol
in SOL.



Chapter 7

Tilings

In this chapter we link Anosov diffeomorphisms with a certain type of sequences of

natural numbers that we will call γ-sequences.

As in Chapter 2, let us fix a positive integer a ∈ N and let γ = (−a +
√
a2 + 4)/2 =

1/(a + 1/(a + 1/ . . .)). We recall that the key feature of γ is that it satisfies the

relation aγ + γ2 = 1. We consider the Anosov automorphism Gγ : T → T given

by Gγ(x, y) = (ax + y, x), where T is equal to R
2/(vZ × wZ) with v = (γ, 1) and

w = (−1, γ). Recall from Chapter 3 that a C1+ Anosov diffeomorphism G : T → T

is a C1+α diffeomorphism, with α > 0, such that (i) G is topologically conjugate to

Gγ; (ii) the tangent bundle has a C1+α uniformly hyperbolic splitting into a stable

direction and an unstable direction. We denote by G be the set of all such C1+ Anosov

diffeomorphisms with an invariant measure absolutely continuous with respect to the

Lebesgue measure. The eigenvalues of the Anosov automorphism Gγ are µ− = −γ and

µ+ = 1/γ. Let π : R
2 → T be the natural projection of R2 in T. As in Chapter 3, a

Markov partition Mγ of Gγ is given by A = π(Ã) and B = π(Ã), where Ã and B̃ are

the rectangles [0, 1]× [0, 1] and [−γ, 0]× [0, γ] respectively. The unstable manifolds of

Gγ correspond to the projection by π of the vertical lines of the plane, and the stable

manifolds of Gγ are the projection by π of the horizontal lines of the plane.

Let W0 be the positive vertical axis of R2. Hence W = π(W0) is the unstable leaf of

Gγ with only one endpoint y0 = π(0, 0) that is the fixed point of Gγ. The unstable leaf

W passes, firstly, through all the unstable boundaries of the Markov rectangles A and

B. Let the unstable spanning leaf segment K1 be the left unstable boundary of the

Markov rectangle A (see the definition of spanning leaf segment in Section 3.1). Let

62
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the unstable spanning leaf segment K2 be the left unstable boundary of the Markov

rectangle B. Let K3, K4, . . . ∈ W be the unstable leaf segments defined, inductively,

as follows: (i) Ki is an unstable spanning leaf of a Markov rectangle, for every i ≥ 3;

(ii) Ki ∩ Ki+1 = {yi} is a common boundary point of both Ki and Ki+1, for every

i ≥ 2. We note that W = ∪i≥1Ki.

Let h = hG : T → T be the topological conjugacy between the Anosov automorphism

Gγ and the C1+ Anosov diffeomorphism G. Let Mγ be a Markov partition of Gγ. We

observe that the rectangles h(A) and h(B) form a Markov partition MG of G.

Theorem 7.1 (Flexibility) There is a well-defined map G→ (aG,i)i∈N that associates

to each C1+ Anosov diffeomorphism G ∈ G the γ-sequence (aG,i)i∈N given by

aG,i = lim
n→∞

|G−n(h(Ki+1))|
|G−n(h(Ki))|

,

where |I| is the length of the unstable leaf segment I with respect to a Riemannian

metric on T. Furthermore, this map determines a one-to-one correspondence between

smooth conjugacy classes of Anosov diffeomorphisms in G and γ-sequences.

Later, in Definition 7.2, we give the precise definition of γ-sequence and the proof of

Theorem 7.1 is given in Section 7.7.

Let the γ-Fibonacci sequence (Fn)n∈N be the sequence of natural numbers defined

recursively by

F1 = 1, F2 = a+ 1, and Fn+2 = aFn+1 + Fn, for n ≥ 1.

We observe that if a = 1, then (Fi)i∈N is the well known Fibonacci sequence. For any

natural number i ∈ N, we define the finite sequence F̃n0
, F̃n1

, . . . , F̃nq
as follows: (i) F̃n0

is the largest term in the γ-Fibonacci sequence that is less or equal to i; (ii) inductively,

if F̃n0
+ · · ·+ F̃nk−1

< i then F̃nk
is the largest term in the γ-Fibonacci sequence that

is less or equal to i− (F̃n0
+ · · · + F̃nk−1

). We observe that there is a natural number

q ∈ N and a term in the γ-Fibonacci sequence such that i = F̃n0
+ · · ·+ F̃nq

.

We observe that if a = 1 then any term of the γ-Fibonacci sequence (Fn)n∈N appears

at most once in the sequence F̃n0
, F̃n1

, . . . , F̃nq
. Hence, setting Fnk

= F̃nk
for k ∈

{0, . . . , q}, we have

i = Fn1
+ Fn2

+ · · ·+ Fnq
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and, in this case, we call (Fn1
, Fn2

, . . . , Fnq
) the Fibonacci decomposition of i ∈ N

(see [25]). If a > 1 then any term of the γ-Fibonacci sequence (Fn)n∈N repeats at most

a times in the sequence F̃n0
, F̃n1

, . . . , F̃nq
, for any natural number i ∈ N.

We define the finite sequence of γ-Fibonacci numbers Fn0
, Fn1

, . . . , Fnp
, with p ≤ q,

such that

i = an0
Fn0

+ · · ·+ anp
Fnp

,

where ank
∈ {1, . . . , a}, for every k ∈ {0, . . . p}.

We call the sequence (an0
Fn0

, . . . , anp
Fnp

) the γ-Fibonacci decomposition of i ∈ N. We

observe that every natural number i ∈ N has a unique γ-Fibonacci decomposition.

Definition 7.1 The rigid γ-sequence (aγ,i)i∈N is defined as follows: For every i ∈ N,

with γ-Fibonacci decomposition (an0
Fn0

, . . . , anp
Fnp

), we define

(i) aγ,i = γ−1, if one of the following conditions is satisfied:

np = 1, ap = 1 and np−1 is odd;

np = 1, ap = 2 and np−1 is even.

(ii) aγ,i = γ, if one of the following conditions is satisfied:

np = 1, ap = 1 and np−1 is even;

np ≥ 2 and np is odd.

(iii) aγ,i = 1, if one of the following conditions is satisfied:

np = 1, ap = 2 and np−1 is odd;

np = 1, ap > 2;

np ≥ 2 and np is even.

Remark 7.1 If a = 1 then the Fibonacci decomposition of a natural number i ∈ N

is (Fn1
, Fn2

, . . . , Fnp
). Hence, ap = 1 and the rigid γ-sequence (aγ,i)i∈N is defined as

follows (see [25]):

(i) aγ,i = γ−1 if either (np = 1 and np−1 is odd) or (np = 2 and np−1 is even);

(ii) aγ,i = γ if either (np = 1 and np−1 is even) or (np > 2 and np is odd);

(iii) aγ,i = 1 if either (np = 2 and np−1 is odd) or (np > 2 and np is even).
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In Theorem 7.1 it is proved the existence of an infinite dimensional space of well-

characterized γ-sequences. However, we are only able to explicit the rigid γ-sequence.

Theorem 7.2 (Rigidity) Every Anosov diffeomorphism G ∈ G with a C1+zygmund

complete system of unstable holonomies determines a rigid γ-sequence (aG,i)i∈N.

The definition of a C1+zygmund complete system of unstable holonomies and the proof

of Theorem 7.2 are given in Section 7.8.

7.1 Realized γ-sequences

the unstable leaf segments K1, K2, . . . , and the unstable leaf W = ∪i≥1Ki. By

construction, the set

L = {(Ki, Ki+1) , i ∈ N}

is contained in sol and it is dense in sol.

Recall that h : T → T is the topological conjugacy between the Anosov automorphism

Gγ and the C1+ Anosov diffeomorphism G.

Lemma 7.1 There is well-defined map G → (aG,i)i∈N that associates to each C1+

Anosov diffeomorphism G in G the sequence (aG,i)i∈N given by

aG,i = lim
n→∞

|G−n(h(Ki+1))|
|G−n(h(Ki))|

.

where |I| denotes the length of the unstable leaf segment I with respect to a Riemannian

metric on T.

Proof. By Lemma 5.3 and by equation (4.5), we get that σG(Ki : Ki+1) = ruG(Ki :

Ki+1), where

ruG(Ki : Ki+1) = lim
n→∞

|G−n(h(Ki+1))|
|G−n(h(Ki))|

,

is well-defined. Since, by construction, aG,i = ruG(Ki : Ki+1), we get that aG,i is

well-defined and aG,i = σG(Ki : Ki+1). �

Lemma 7.2 For every i ∈ N with γ-Fibonacci decomposition (an0
Fn0

, . . . , anp
Fnp

) the

following conditions hold
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(i) Ki ∈ B and Ki+1 ∈ A, if either (np = 1, ap = 1 and np−1 is odd) or (np = 1,

ap = 2 and np−1 is even);

(ii) Ki ∈ A and Ki+1 ∈ B, if either (np = 1, ap = 1 and np−1 is even) or (np ≥ 2

and np is odd);

(iii) Ki, Ki+1 ∈ A, if either (np = 1, ap = 2 and np−1 is odd) or (np ≥ 2 and np is

even).

Proof. If a = 1 see the proof of Lemma 7.2 in [25]. Let us consider an integer a > 1. Let

π : R2 → T be the natural projection, where T = R
2/(vZ× wZ). Let S = R/[1 + γ]Z

be the clockwise oriented circle with the metric induced by the Euclidean metric on

R. Let πS : R → S be the natural projection. The projection πS has the property that

πS(x) = πS(x+ 1 + γ),

for every x ∈ R. Let iS : S → T be the natural inclusion. The inclusion iS has the

property that

π(x, 0) = iS ◦ πS(x),

for every x ∈ R. Recall that K0 is the unstable spanning leaf segment such that

K0 ∩ K1 = {y0}, where y0 = π(0, 0), and let K1, K2, . . . , be the unstable spanning

leaf segments such that W = ∪i≥1Ki. For every i ∈ N0, (i) let yi ∈ T be the point

given by {yi} = Ki ∩Ki+1; (ii) let zi = i−1
S
(yi); and (iii) let wi ∈ [−1, γ] be such that

πS(wi) = zi. Hence, for every i ∈ N0 (see Figure 7.1),

(i) if wi ∈ (−γ, 0) then Ki ∈ A and Ki+1 ∈ B;

(ii) if wi ∈ [−1,−2γ) ∪ (0, γ] then Ki, Ki+1 ∈ A;

(iii) if wi ∈ (−2γ,−γ) then Ki ∈ B and Ki+1 ∈ A.

Let g : S → S be the rigid rotation with rotation number γ/(1 + γ). The map g has

the property that

g ◦ πS(x) = πS(x+ γ),

for every x ∈ R. Since Gγ : T → T is the Anosov automorphism, we obtain that

g(zi) = zi+1, for every i ∈ N0. Let us denote by ℓ(y0, yi) the leaf segment with endpoints

y0 and yi. Since Gγ : T → T is the Anosov automorphism, if the leaf ℓ(y0, yi) contains

mγ spanning leaf segments of the Markov rectangle A andmB spanning leaf segments of
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the Markov rectangle B then Gγ(ℓ(y0, yi)) = ℓ(y0, Gγ(yi)) contains amγ+mB spanning

leaf segments of the Markov rectangle A and mγ spanning leaf segments of the Markov

rectangle B. Hence, by induction, we have that Gγ(yFi
) = yFi+1

, where F1, F2, . . . , is

the γ-Fibonacci sequence. Thus, for every i ∈ N, we have that Gi−1
γ (y1) = yFi

, and,

so, d(y0, yFi
) = γi and π((−γ)i, 0) = yFi

. Thus gFi(z0) = zFi
= πS((−γ)i). Since g is

the rigid rotation, we have that

gFi(πS(x)) = πS(x+ (−γ)i), (7.1)

for every x ∈ R and i ∈ N. Hence, for every i ∈ N with γ-Fibonacci decomposition

(a0Fn0
, . . . , apFnp

), we obtain

zi = gi(z0) = ga0Fn0
+···+apFnp (z0).

Thus, by equality (7.1), we have that

ga0Fn0
+···+apFnp (z0) = πS

(

p
∑

i=0

ai(−γ)ni

)

.

Noting that
∑+∞

i=0 γ
2i = (1− γ2)−1 = γ−1, we obtain

p
∑

i=0

ai(−γ)ni <
∑

j≥0

aγ2+2j = γ

and
p
∑

i=0

ai(−γ)ni >
∑

j≥0

−aγ1+2j = −1.

Therefore, taking wi =
∑p

j=0 aj(−γ)nj ∈ [−1, γ] we obtain that πS(wi) = zi. Now,

there are six distinct cases to consider depending upon the γ-Fibonacci decomposition

(a0Fn0
, . . . , apFnp

) of i (see Figure 7.2):

(i) if np = 1, ap = 1 and np−1 is odd then wi ∈ (−(γ + γ2),−γ) and so Ki ∈ B and

Ki+1 ∈ A;

(ii) if np = 1, ap = 1 and np−1 is even then wi ∈ (−γ,−γ2) and so Ki ∈ A and

Ki+1 ∈ B;

(iii) if np = 1, ap = 2 and np−1 is odd then wi ∈ (γ3, γ2) and so Ki, Ki+1 ∈ A;

(iv) if np = 1, ap = 2 and np−1 is even then wi ∈ (−2γ2,−2γ + γ2] and so Ki ∈ B

and Ki+1 ∈ A;
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(v) if np ≥ 2 and np is odd then wi ∈ (−γ2, 0) and so Ki ∈ A and Ki+1 ∈ B;

(vi) if np ≥ 2 and np is even then wi ∈ (0, γ3) and so Ki, Ki+1 ∈ A.

�
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p|[-1,g ]x{0}
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-2g

Figure 7.1: The map iS ◦ πS.

7.2 The γ-Fibonacci shift

For every i ∈ N, let (an0
Fn0

, . . . , anp
Fnp

) be the γ-Fibonacci decomposition associated

to i, i.e.

i = an0
Fn0

+ . . .+ anp
Fnp

.

We note that in what follows if a = 1 then F2 has the properties of 2F1 (and not the

properties of Fn for n > 2).
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(b) Case a > 1

Figure 7.2: The location of the point yi depending upon the Fibonacci decomposition

of i.

The γ-Fibonacci shift σ : N → N is defined by

(i) σ(i) = an0
Fn0+1 + · · ·+ anp

Fnp−1+1 + F1, if np = 1, anp
= 1 and np−1 is odd;

(ii) σ(i) = an0
Fn0+1 + · · ·+ anp

Fnp−1+1 + F2, if np = 1, anp
= 1 and np−1 is even;

(iii) σ(i) = an0
Fn0+1 + · · · + anp

Fnp−1+1 + (anp
− 1)F2 + F1, if np = 1, anp

≥ 2 and

np−1 is even;

(iv) σ(i) = an0
Fn0+1 + · · ·+ anp

Fnp−1+1 + anp
Fnp+1, if np > 1.

The inverse of the γ-Fibonacci shift σ−1 : N → N is defined by

(i) σ−1(i) = ∅, if np = 1, anp
= 1 and np−1 is odd;

(ii) σ−1(i) = an0
Fn0−1 + · · ·+ anp

Fnp−1−1 + F1, if np = 1, anp
= 1 and np−1 is even;

(iii) σ−1(i) = ∅, if np = 1, anp
≥ 2 and np−1 is even;

(iv) σ−1(i) = an0
Fn0−1 + · · ·+ anp

Fnp−1−1 + anp
Fnp−1, if np > 1.
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Remark 7.2 We observe that for Fnp
= F1 the definition of the γ-Fibonacci shift is

somewhat unnatural. This is due to the fact that we consider, for simplicity, the γ-

Fibonacci sequence F1 = 1, F2 = a+1, . . . instead of the sequence F0 = 1, F1 = 1, F2 =

a + 1, . . .. If we consider the sequence F0 = 1, F1 = 1, F2 = a + 1, . . . then we have to

change the γ-Fibonacci decomposition of the number i accordingly with the following

rule: Suppose that Fnp−2
≥ F2 and i− (an0

Fn0
+ . . .+ anp−1

Fnp−2
) = b ≤ a;

1. if b > 1 then (b− 1)Fnp
+ Fnp

= (b− 1)F1 + F0;

2. if b = 1 and np−1 is odd then Fnp
= F0; and

3. if b = 1 and np−1 is even then Fnp
= F1.

For every i ∈ N, we define σ(i) = Fn0+1+ · · ·+Fnp−1+1+Fnp+1. We get that if np > 0

then σ−1(i) = Fn0−1 + · · · + Fnp−1, and if np = 0 then σ−1(i) = ∅. We claim that for

this new γ-Fibonacci decomposition all the statements in this chapter will hold with

the corresponding simple alterations.

7.3 Matching condition

We say that a sequence (ai)i∈N satisfies the matching condition if, for every i = an0
Fn0

+

· · ·+ anp
Fnp

, the following conditions hold (see Figure 7.3):

(i) If either (np = 1, ap = 1 and np−1 is even) or (np ≥ 2 and np is odd), then

aσ(i) = ai

(

1 +
a
∑

j=1

j
∏

k=1

aσ(i)+k

)−1

.

(ii) If either (np = 1, ap = 1 and np−1 is odd) or (np = 1, ap = 2 and np−1 is even),

then

aσ(i) = ai

(

1 +
a
∑

j=1

j
∏

k=1

a−1
σ(i)−k

)

.

(iii) If either (np = 1, ap = 2 and np−1 is odd) or (np ≥ 2 and np is even), then

aσ(i) = ai

(

1 +
a
∑

j=1

j
∏

k=1

a−1
σ(i)−k

)(

1 +
a
∑

j=1

j
∏

k=1

aσ(i)+k

)−1

.
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Lemma 7.3 The sequence (aG,i)i∈N satisfies the matching condition.

Proof. By Lemma 7.1, we have that aG,i = σG(Ki : Ki+1), for every i ∈ N. Hence

Lemma 7.3 follows from putting together Lemma 5.1 and Lemma 7.2. �

Remark 7.3 Every sequence (bi)i∈N\σ(N) determines, uniquely, a sequence (ai)i∈N sat-

isfying the matching condition as follows: for every i ∈ N\σ(N), define ai = bi and,

for every i ∈ σ(N), define aσ(i) using the matching condition and the elements aj of

the sequence with

j ∈ {j : 2 ≤ j < σ(i) ∨ j ∈ N\σ(N)} .
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Figure 7.3: The matching condition for the sequence (aG,i)i∈N for the three possible

cases when a = 1: condition (i) corresponds to Ii−1 ∈ B and Ii ∈ A; condition (ii)

corresponds to Ii−1 ∈ A and Ii ∈ B; condition (i) corresponds to Ii−1 ∈ A and Ii ∈ A;
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7.4 Boundary condition

A sequence (ai)i∈N satisfies the boundary condition, if the following limits are well-

defined and satisfy the inequalities:

(i) lim
i→+∞

a−1
Fi+2

(

1 + a−1
Fi+1

)

6= 0

(ii) lim
i→+∞

aFi
(1 + aFi+1) 6= 0

Lemma 7.4 The sequence (aG,i)i∈N satisfies the boundary condition.

Proof. We observe that d(KFn
, K0) = γn, d(KF2n+1+1, I1) = γ2n+1, d(KF2n+1+2, I2) =

γ2n+1, d(KF2n+1, K1) = γ2n, d(KF2n+2, K2) = γ2n and d(KFn+3, K3) = γn (see Fig-

ure 7.4). By continuity of σγ , we have that

lim
n→∞

aG,F2n
(1 + aG,F2n+1) =

= lim
n→∞

σG(KF2n
: KF2n+1)(1 + σG(KF2n+1 : KF2n+2))

= σG(K0 : K1)(1 + σG(K1 : K2))

and

lim
n→∞

aG,F2n+1
(1 + aG,F2n+1+1) =

= lim
n→∞

σG(KF2n+1
: KF2n+1+1)(1 + σG(KF2n+1+1 : KF2n+1+2))

= σG(K0 : I1)(1 + σG(I1 : I2)).

Hence, by equality (5.6), we obtain that the sequence (aG,i)i∈N satisfies the boundary

condition (i). By continuity of σG, we have that

lim
n→∞

(aG,F2n+2)
−1(1 + (aG,F2n+1)

−1) =

= lim
n→∞

σG(KF2n+3 : KF2n+2)(1 + σG(KF2n+2 : KF2n+1))

= σG(K3 : K2)(1 + σG(K2 : K1))

and

lim
n→∞

(aG,F2n+1+2)
−1(1 + (aG,F2n+1+1)

−1) =

= lim
n→∞

σG(KF2n+1+3 : KF2n+1+2)(1 + σG(KF2n+1+2 : KF2n+1+1))

= σG(K3 : I2)(1 + σG(I2 : I1)).

Hence, by equality (5.7), we obtain that the sequence (aG,i)i∈N satisfies the boundary

condition (ii). �
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Figure 7.4: A γ-sequence (ai)i∈L.

7.5 Exponentially fast γ-Fibonacci repetitive prop-

erty

A sequence (ai)i∈N is said to be exponentially fast γ-Fibonacci repetitive, if there exist

constants C ≥ 0 and 0 < µ < 1 such that

|ai+Fm
− ai| ≤ Cµm,

for every m ≥ 5 and 3 ≤ i < Fm−1 and, also, for i ∈ {1, 2} if m is even.

Lemma 7.5 The sequence (aG,i) satisfies the exponentially fast γ-Fibonacci repetitive

property.
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Proof. For every m ≥ 5, we have that either m = 2n or m = 2n + 1 for some n ≥ 2

(see Figure 7.5). Recall that Ki ∩Ki+1 = {yi}, for every i ∈ N0.

(i) Case m = 2n. For 1 ≤ i < F2n−1, the unstable spanning leaf segments Ki, Ki+1,

Ki+F2n
and Ki+1+F2n

belong to G2n(A). Hence, we obtain that

d(Ki, Ki+F2n
) ≤ C0|yi − yi+F2n

| ≤ C0γ
2n,

for some C0 ≥ 1 and 0 < γ < 1. By Hölder continuity of the solenoid function, there

exist constants C ≥ 1 and α < 1 such that

|aG,i − aG,i+F2n
| = |σG(Ki : Ki+1)− σG(Ki+F2n

: Ki+1+F2n
)|

< C
(

γ2n
)α

= C (γα)2n .

(ii) Case m = 2n+1. For 3 ≤ i < F2n, the unstable spanning leaf segments Ki, Ki+1,

Ki+F2n+1
and Ki+1+F2n+1

belong to G2n(B). Hence, we obtain that

d(Ki, Ki+F2n+1
) ≤ C0|yi − yi+F2n+1

| ≤ C0γ
2n+1,

for some C0 ≥ 1 and 0 < γ < 1. By Hölder continuity of the solenoid function, there

exist constants C ≥ 1 and α < 1 such that

|aG,i − aG,i+F2n+1
| = |σG(Ki : Ki+1)− σG(Ki+F2n+1

: Ki+1+F2n+1
)|

< C
(

γ2n+1
)α

= Cγα (γα)2n .

Hence, the sequence (aG,i) satisfies the exponentially fast γ-Fibonacci repetitive prop-

erty with µ = γα. �

7.6 γ-Tilings

A tiling T = {Ii ⊂ R : i ∈ N} of the positive real line is a collection of intervals Ii,

with the following properties:

(i) the intervals are closed;

(ii) any two distinct intervals have disjoint interiors;
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Figure 7.5: The exponentially fast γ-Fibonacci repetitive condition.

(iii) the union ∪i∈N Ii is equal to the positive real line;

(iv) for every i ∈ N the intersection of the intervals Ii and Ii+1 is only a point, which

is an endpoint, simultaneously, of both intervals.

We say that two tilings T1 = {Ii ⊂ R : i ∈ N} and T2 = {Ji ⊂ R : i ∈ N} of the

positive real line are in the same affine class, if there exists an affine map h : R → R

such that h (Ii) = Ji, for every i ∈ N. Thus, every positive sequence (ai)i∈N determines

a unique affine class of tilings T = {Ii ⊂ R : i ∈ N}, such that ai = |Ii+1| / |Ii|, and

vice-versa.

Definition 7.2 A γ-sequence (ai)i∈N is an exponentially fast γ-Fibonacci repetitive

sequence that satisfies the matching and the boundary conditions. A tiling T =

{Ii ⊂ R : i ∈ N} of the positive real line is a γ-tiling if the corresponding sequence

(ai = |Ii+1|/|Ii|)i∈N is a γ-sequence.

We say that a γ-tiling Tγ is rigid if its associated γ-sequence is rigid (see Definition

7.1).

Putting together Definition 7.2, and Lemmas 7.3, 7.4 and 7.5 we have that the sequence

(aG,i) is a γ-sequence.
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7.7 Proof of Theorem 7.1

By Lemma 7.1, the map G → (aG,i)i∈N determines a correspondence between Anosov

diffeomorphisms G in G and γ-sequences such that aG,i = σG(Ki : Ki+1). Putting

together Lemma 7.3, Lemma 7.4 and Lemma 7.5, we get that (aG,i)i∈N is a γ-sequence.

By Corollary 6.3, any two C1+ Anosov diffeomorphisms, G1 and G2, that are C1+

smooth conjugate determine the same solenoid functions σG1
= σG2

. Hence, by Lemma

7.1, (aG1,i))i∈N = (aG2,i)i∈N.

Conversely, given a γ-sequence (ai)i∈N we construct a solenoid function σγ in sol as

follows. Recall that L = {(Ki : Ki+1), i ∈ N} is a dense set in sol. We define σγ(Ki :

Ki+1) = ai, for every (Ki : Ki+1) ∈ L. Since the sequence (ai)i∈N is exponentially

fast Fibonacci repetitive, similarly to the proof of Lemma 7.5, we get that σγ|L is

Hölder continuous. Hence, using that L is dense in sol, we define σγ in sol as the

unique Hölder continuous extension of σγ|L to sol. Now, it is enough to check that

the Hölder continuous function σγ in sol satisfies the matching and the boundary

condition. Since (ai)i∈N satisfies the γ-matching condition, similarly to the proof of

Lemma 7.3, we have that σγ|L satisfies the matching condition in L. Hence, using

that σγ in sol is a continuous function, we get that the σγ in sol, also, satisfies the

matching condition. Recall, from the introduction of this chapter, the definition of K0,

K1, K2 and K3. Recall that the spanning leaf segments I1 and I2 are, respectively, the

right boundaries of the Markov rectangles B and A, as in Section 5.3. We observe that

d(KFn
, K0) = γn, d(KF2n+1+1, I1) = γ2n+1, d(KF2n+1+2, I2) = γ2n+1, d(KF2n+1, K1) =

γ2n, d(KF2n+2, K2) = γ2n and d(KFn+3, K3) = γn. By continuity of σγ, we have that

σγ(K0 : K1)(1 + σγ(K1 : K2)) =

= lim
n→∞

σγ(KF2n
: KF2n+1)(1 + σγ(KF2n+1 : KF2n+2))

= lim
n→∞

aF2n
(1 + aF2n+1)

and

σγ(K0 : I1)(1 + σγ(I1 : I2)) =

= lim
n→∞

σγ(KF2n+1
: KF2n+1+1)(1 + σγ(KF2n+1+1 : KF2n+1+2))

= lim
n→∞

aF2n+1
(1 + aF2n+1+1).

Hence, by the boundary condition (i) of the γ-sequence (ai)i∈N, we obtain that σγ
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satisfies equality (5.6). By continuity of σγ, we have that

σγ(K3 : K2)(1 + σγ(K2 : K1))

= lim
n→∞

σγ(KF2n+3 : KF2n+2)(1 + σγ(KF2n+2 : KF2n+1))

= lim
n→∞

a−1
F2n+2(1 + a−1

F2n+1)

and

σγ(K3 : I2)(1 + σγ(I2 : I1)) =

= lim
n→∞

σγ(KF2n+1+3 : KF2n+1+2)(1 + σγ(KF2n+1+2 : KF2n+1+1))

= lim
n→∞

a−1
F2n+1+2(1 + a−1

F2n+1+1).

Hence, by the boundary condition (ii) of the γ-sequence (ai)i∈N, we obtain that σγ
satisfies equality (5.7). Therefore, σγ is a solenoid function. �

7.8 Complete set of holonomies

Let Mγ = {A,B} be a Markov partition of the Anosov automomorphism Gγ. Recall

the topological conjugacy h = hG : T → T between Gγ and the C1+ Anosov diffeo-

morphsm G. Let MG = {h(A), h(B)} be a Markov partition of G. Suppose that M

and N are Markov rectangles, and x ∈ int(M) and y ∈ int(N). We say that x and

y are stable holonomically related, if (i) there is an stable leaf segment ℓu(x, y) such

that ∂ℓu(x, y) = {x, y}, and (ii) ℓu(x, y) ⊂ ℓu(x,M) ∪ ℓu(y,N). Let P = PM be the

set of all pairs (M,N) such that there are points x ∈ int(M) and y ∈ int(N) unstable

holonomically related.

For every Markov rectangle M ∈ MG, choose an unstable spanning leaf segment

ℓ(x,M) in M for some x ∈ M . Let I = {ℓM : M ∈ M}. For every pair (M,N) ∈ P ,

there are maximal leaf segments ℓD(M,N) ⊂ ℓM , ℓC(M,N) ⊂ ℓN such that the unstable

holonomy h(M,N) : ℓ
D
(M,N) → ℓC(M,N) is well-defined. We call such holonomies h(M,N) :

ℓD(M,N) → ℓC(M,N) the unstable primitive holonomies associated to the Markov partition

MG. The complete set of unstable holonomies HG consists of all stable primitive

holonomies and their inverses. In Figure 7.6, we exhibit the complete set of unstable

holonomies

HG =
{

h(A,A), h
−1
(A,A), h(A,B), h

−1
(A,B), h(B,A), h

−1
(B,A)

}

associated to the Markov partition MG.
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Figure 7.6: A complete set of unstable holonomies HG associated to the Markov

partition MG.

A diffeomorphism θ : I → J is said to be C1+zygmund, if θ is C1 and the derivative θ′

satisfies the zygmund condition, i.e. for all points x, y ∈ I,
∣

∣

∣

∣

θ′(x) + θ′(y)− 2θ′
(

x+ y

2

)∣

∣

∣

∣

= χθ (|y − x|) ,

where the function χθ is such that χθ(t) → 0 when t → 0. In particular, a C2+β

diffeomorphism, with β > 0, is a C1+zygmund diffeomorphism. The importance of this

smooth class follows from the fact that it corresponds to maps that distort cross-ratios

of quadruples of points in I by an amount that is o(|I|) (see [21] and [37]).

A unstable lamination atlas L = Lu(G, ρ), determined by a Riemannian metric ρ, is

the set of all maps e : I → R, where e is an isometry between the induced Riemannian

metric on the unstable leaf segment I and the Euclidean metric on the reals. By

Theorem 2.1 in [30], the basic unstable and stable holonomies are C1+ with respect to

the lamination atlas L.

Definition 7.3 A complete set of unstable holonomies HG is C1+zygmund if all the

holonomies in HG are C1+zygmund with respect to the atlas Ls(G, ρ).
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7.9 Proof of Theorem 7.2

By Lemma 7.3 and Theorem 1 in [29], if G has a C1+zygmund complete system of

unstable holonomies then σG = σγ. By Lemma 7.2, for i ∈ N with γ-Fibonacci

decomposition (an0
Fn0

, . . . , anp
Fnp

), we have that the following conditions hold:

(i) If either (np = 1, ap = 1 and np−1 is odd) or (np = 1, ap = 2 and np−1 is even),

then Ki ∈ B and Ki+1 ∈ A. Hence, ai = σγ(Ki : Ki+1) = γ−1.

(ii) If either (np = 1, ap = 1 and np−1 is even) or (np ≥ 2 and np is odd), then Ki ∈ A

and Ki+1 ∈ B. Hence, ai = σγ(Ki : Ki+1) = γ.

(iii) If either (np = 1, ap = 2 and np−1 is odd) or (np ≥ 2 and np is even), then

Ki, Ki+1 ∈ A. Hence, ai = σγ(Ki : Ki+1) = 1.

Thus, from conditions (i), (ii) and (iii), we conclude that (aγ,i)i∈N is the rigid γ-

sequence. �
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