

2 Sprifyer

Chapter 1
 Renormalization of circle diffeomorphism sequences and Markov sequences

João P. Almeida, Alberto A. Pinto and David A. Rand

Abstract

We show a one-to-one correspondence between circle diffeomorphism sequences that are $C^{1+} n$-periodic points of renormalization and smooth Markov sequences.

1.1 Introduction

Following [2-9, 20-23], we present the concept of renormalization applied to circle diffeomorphism sequences. These concepts are essential to extend the results presented in $[8,9]$ to all Anosov diffeomorphisms on surfaces, i.e. to prove a one-to-one correspondence between C^{1+} conjugacy classes of Anosov diffeomorphisms and pairs of C^{1+} circle diffeomorphism sequences that are $C^{1+} n$-periodic points of renormalization (see also $[1,8,9,19]$). The main point in this paper is to show the existence of a one-to-one correspondence between C^{1+} circle diffeomorphism sequences that are $C^{1+} n$-periodic points of renormalization and smooth Markov sequences. This correspondence is a key step in passing from circle diffeomorphisms to Anosov diffeomorphisms because the Markov sequences encode the smooth in-

[^0] Portugal. e-mail: jpa@ipb.pt

Alberto A. Pinto

LIAAD-INESC TEC and Department of Mathematics, Faculty of Sciences, University of Porto. Rua do Campo Alegre, 4169-007 Porto, Portugal. e-mail: aapinto@fc.up.pt

David A. Rand
Warwick Systems Biology \& Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.
e-mail: dar@maths.warwick.ac.uk
formation of the expanding and contracting laminations of the Anosov diffeomorphisms [10-18]).

1.2 Circle difeomorphisms

Let $\mathbf{a}=\left(a_{i}\right)_{i=0}^{\infty}$ be a sequence of positive integers and let $\gamma(\mathbf{a})=1 /\left(a_{0}+1 /\left(a_{1}+\right.\right.$ $1 / \cdots)$). For every $i \in \mathbb{N}_{0}$, let $\gamma_{i}=\gamma_{i}(\mathbf{a})=1 /\left(a_{i}+1 /\left(a_{i+1}+1 / \cdots\right)\right)$ and let \mathbb{S}_{i} be a counterclockwise oriented circle homeomorphic to the circle $\mathbb{S}_{i}=\mathbb{R} /\left(1+\gamma_{i}\right) \mathbb{Z}$.

An arc in \mathbb{S}_{i} is the image of a non trivial interval I in \mathbb{R} by a homeomorphism $\alpha: I \rightarrow \mathbb{S}_{i}$. If I is closed (resp. open) we say that $\alpha(I)$ is a closed (resp. open) arc in \mathbb{S}_{i}. We denote by (a, b) (resp. $[a, b]$) the positively oriented open (resp. closed) arc on \mathbb{S}_{i} starting at the point $a \in \mathbb{S}_{i}$ and ending at the point $b \in \mathbb{S}_{i}$. A C^{1+} atlas \mathscr{A}_{i} in \mathbb{S}_{i} is a set of charts such that (i) every small arc of \mathbb{S}_{i} is contained in the domain of some chart in \mathscr{A}_{i}, and (ii) the overlap maps are $C^{1+\alpha}$ compatible, for some $\alpha>0$.

Let \mathscr{A}_{i} denote the affine atlas whose charts are isometries with respect to the usual norm in $\underline{\mathbb{S}}_{i}$. Let the rigid rotation $\underline{g}_{i}: \underline{\mathbb{S}}_{i} \rightarrow \underline{\mathbb{S}}_{i}$ be the affine homeomorphism, with respect to the atlas \mathscr{A}_{i}, with rotation number $\gamma_{i} /\left(1+\gamma_{i}\right)$.

A homeomorphism $h: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i}$ is quasisymmetric if there exists a constant $C>1$ such that for each two $\operatorname{arcs} I_{1}$ and I_{2} of \mathbb{S}_{i} with a common endpoint and such that $\left|I_{1}\right|_{i}=\left|I_{2}\right|_{i}$, we have $\left|h\left(I_{1}\right)\right|_{i} /\left|h\left(I_{2}\right)\right|_{i}<\bar{C}$, where the lengths are measured in the charts of \mathscr{A}_{i} and \mathscr{A}_{i}.

A C^{1+} circle diffeomorphism sequence $\left(g_{i}, \mathbb{S}_{i}, \mathscr{A}_{i}\right)_{i=0}^{\infty}$ is a sequence of triples $\left(g_{i}, \mathbb{S}_{i}, \mathscr{A}_{i}\right)$ with the following properties: (i) $g_{i}: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i}$ is a $C^{1+\alpha}$ diffeomorphism, with respect to the $C^{1+\alpha}$ atlas \mathscr{A}_{i}, for some $\alpha>0$; and (ii) g_{i} is quasi-symmetric conjugate to the rigid rotation \underline{g}_{i} with respect to the atlas $\underline{\mathscr{A}}_{i}$.

We denote the C^{1+} circle diffeomorphism $\left(g_{i}, \mathbb{S}_{i}, \mathscr{A}_{i}\right)$ by g_{i}. In particular, we denote the rigid rotation $\left(\underline{g}_{i}, \mathbb{S}_{i}, \underline{\mathscr{A}}_{i}\right)$ by \underline{g}_{i}.

1.2.1 Horocycles

Let us mark a point in \mathbb{S}_{i} that we will denote by $0_{i} \in \mathbb{S}_{i}$. Let $S_{i}^{0}=\left[0_{i}, g_{i}\left(0_{i}\right)\right]$ be the oriented closed arc in \mathbb{S}_{i}, with endpoints 0_{i} and $g_{i}\left(0_{i}\right)$. For every $k \in\left\{0, \ldots, a_{i}\right\}$, let $S_{i}^{k}=\left[g_{i}^{k}\left(0_{i}\right), g_{i}^{k+1}\left(0_{i}\right)\right]$ be the oriented closed arc in \mathbb{S}_{i} with endpoints $g_{i}^{k}\left(0_{i}\right)$ and $g_{i}^{k+1}\left(0_{i}\right)$ and such that $S_{i}^{k} \cap S_{i}^{k-1}=\left\{g_{i}^{k}(0)\right\}$. Let $S_{i}^{a_{i}+1}=\left[g_{i}^{a_{i}+1}\left(0_{i}\right), 0_{i}\right]$ be the oriented closed arc in \mathbb{S}_{i}, with endpoints $g_{i}^{a_{i}+1}\left(0_{i}\right)$ and 0_{i}.

We introduce an equivalence relation \sim in \mathbb{S}_{i} by identifying the $a_{i}+1$ points $g_{i}(0), \ldots, g_{i}^{a_{i}+1}(0)$ and form the topological space $H_{i}\left(\mathbb{S}_{i}, g_{i}\right)=\mathbb{S}_{i} / \sim$. We take the orientation in H_{i} as the reverse orientation of the one induced by \mathbb{S}_{i}. We call this oriented topological space the horocycle and we denote it by $H_{i}=H_{i}\left(\mathbb{S}_{i}, g_{i}\right)$. We consider the quotient topology in H_{i}. Let $\pi_{g_{i}}: \mathbb{S}_{i} \rightarrow H_{i}$ be the natural projection. The
point

$$
\xi_{i}=\pi_{g_{i}}\left(g_{i}\left(0_{i}\right)\right)=\cdots=\pi_{g_{i}}\left(g_{i}^{a_{i}+1}\left(0_{i}\right)\right) \in H_{i}
$$

is called the junction of the horocycle H_{i}. For every $k \in\left\{0, \ldots, a_{i}\right\}$, let $S_{i, H}^{k}=$ $S_{i, H}^{k}\left(\mathbb{S}_{i}, g_{i}\right) \subset H_{i}$ be the projection by $\pi_{g_{i}}$ of the closed arc S_{i}^{k}. Let $R_{i} \mathbb{S}_{i}=S_{i, H}^{0} \cup S_{i, H}^{a+1}$ be the renormalized circle in H_{i}. The horocycle H_{i} is the union of the renormalized circle $R_{i} \mathbb{S}_{i}$ with the circles $S_{i, H}^{k}$ for every $k \in\left\{1, \ldots, a_{i}\right\}$.

A parametrization in H_{i} is the image of a non trivial interval I in \mathbb{R} by a homeomorphism $\alpha: I \rightarrow H_{i}$. If I is closed (resp. open) we say that $\alpha(I)$ is a closed (resp. open) arc in H_{i}. A chart in H_{i} is the inverse of a parametrization. A topological atlas \mathscr{B} on the horocycle H_{i} is a set of charts $\{(j, J)\}$, on H_{i}, with the property that every small arc is contained in the domain of a chart in \mathscr{B}, i.e. for any open $\operatorname{arc} K$ in H_{i} and any $x \in K$ there exists a chart $\{(j, J)\} \in \mathscr{B}$ such that $J \cap K$ is a non trivial open arc in H_{i} and $x \in J \cap K$. A C^{1+} atlas \mathscr{B} in H_{i} is a topological atlas \mathscr{B} such that the overlap maps are $C^{1+\alpha}$ and have $C^{1+\alpha}$ uniformly bounded norms, for some $\alpha>0$.

Let \mathscr{A}_{i} be a C^{1+} atlas on \mathbb{S}_{i} in which $g_{i}: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i}$ is a C^{1+} circle diffeomorphism. We are going to construct a C^{1+} atlas \mathscr{A}_{i}^{H} on H_{i} that we call the extended pushforward $\mathscr{A}_{i}^{H}=\left(\pi_{g_{i}}\right)_{*} \mathscr{A}_{i}$ of the atlas \mathscr{A}_{i} on \mathbb{S}_{i}. If $x \in H_{i} \backslash\left\{\xi_{i}\right\}$ then there exists a sufficiently small open arc $J \subset H_{i}$ containing x and such that $\pi_{g_{i}}^{-1}(J)$ is contained in the domain of some chart $(I, \hat{\imath})$ of \mathscr{A}_{i}. In this case, we define $\left(J, \hat{\imath} \circ \pi_{g_{i}}^{-1}\right)$ as a chart in \mathscr{A}_{i}^{H}. If $x=\xi_{i}$ and J is a small arc containing ξ_{i}, then either (i) $\pi_{g_{i}}^{-1}(J)$ is an arc in \mathbb{S}_{i} or (ii) $\pi_{g_{i}}^{-1}(J)$ is a disconnected set that consists of a union of two connected components.

In case (i), $\pi_{g_{i}}^{-1}(J)$ is connected and it is contained in the domain of some chart $(I, \hat{\imath}) \in \mathscr{A}_{i}$. Therefore we define $\left(J, \hat{\imath} \circ \pi_{g_{i}}^{-1}\right)$ as a chart in \mathscr{A}_{i}^{H}.

In case (ii), $\pi_{g_{i}}^{-1}(J)$ is a disconnected set that is the union of two connected arcs I_{l}^{L} and I_{r}^{R} of the form $I_{l}^{L}=\left(c_{l}^{L}, g_{i}^{l}(0)\right]$ and $I_{r}^{R}=\left[g_{i}^{r}(0), c_{r}^{R}\right)$, respectively, for all $l, r \in$ $\left\{1, \ldots, a_{i}+1\right\}$. Let J_{l}^{L} and J_{r}^{R} be the arcs in H_{i} defined by $J_{l}^{L}=\pi_{g_{i}}\left(I_{l}^{L}\right)$ and $\pi_{g_{i}}\left(I_{r}^{R}\right)$ respectively. Then $J=J_{l}^{L} \cup J_{r}^{R}$ is an arc in H_{i} with the property that $J_{l}^{L} \cap J_{r}^{R}=\left\{\xi_{i}\right\}$, for every $l, r \in\left\{1, \ldots, a_{i}+1\right\}$. We call such arc J a (l, r)-arc and we denote it by $J_{l, r}$. Let $j_{l, r}: J_{l, r} \rightarrow \mathbb{R}$ be defined by,

$$
j_{l, r}(x)=\left\{\begin{array}{ll}
\hat{\imath} \circ \pi_{g_{i}}^{-1}(x) & \text { if } x \in J_{r}^{R} \\
\hat{\imath} \circ g_{i}^{r-l} \circ \pi_{g_{i}}^{-1}(x) & \text { if } x \in J_{l}^{L}
\end{array} .\right.
$$

Let $(I, \hat{\imath}) \in \mathscr{A}_{i}$ be a chart such that $\pi_{g_{i}}(I) \supset J_{l, r}$. Then we define $\left(J_{l, r}, j_{l, r}\right)$ as a chart in \mathscr{A}_{i}^{H} (see Figure 1.1). We call the atlas determined by these charts the extended pushforward atlas of \mathscr{A}_{i} and, by abuse of notation, we will denote it by $\mathscr{A}_{i}^{H}=$ $\left(\pi_{g_{i}}\right)_{*} \mathscr{A}_{i}$.

Let the marked point $\underline{0}_{i}$ in $\underline{\mathbb{S}}_{i}$ be the natural projection of $0 \in \mathbb{R}$ onto $\underline{0}_{i} \in \underline{\mathbb{S}}_{i}=$ $\mathbb{R} /\left(1+\gamma_{i}\right) \mathbb{Z}$. Let $\underline{S}_{i}^{0}=\left[0_{i}, \underline{g}_{i}\left(0_{i}\right)\right]$ and $\underline{S}_{i}^{k}=\left[\underline{g}_{i}^{k}\left(0_{i}\right), \underline{g}_{i}^{k+1}\left(0_{i}\right)\right]$. Furthermore, let

$$
\underline{H}_{i}=H_{i}\left(\underline{S}_{i}, \underline{g}_{i}\right), \underline{S}_{i, H}^{k}=S_{i, H}^{k}\left(\underline{\mathbb{S}}_{i}, \underline{g}_{i}\right), R_{i} \underline{S}_{i}=\underline{\mathbb{S}}_{i, H}^{0} \cup \underline{\mathbb{S}}_{i, H}^{a+1} \text { and } \underline{\mathscr{A}}^{\mathrm{H}_{\mathrm{i}}}=\left(\pi_{\underline{\mathrm{g}}_{\mathrm{i}}}\right)_{*} \underline{\mathscr{A}}_{\mathrm{i}} .
$$

Fig. 1.1: The horocycle H_{i} and the chart $j_{l, r}: J_{l, r} \rightarrow \mathbb{R}$ in case (ii). The junction ξ_{i} of the horocycle is equal to $\xi_{i}=\pi_{g_{i}}\left(g_{i}\left(0_{i}\right)\right)=\cdots \pi_{g_{i}}\left(g_{i}^{a_{i}}\left(0_{i}\right)\right)=\pi_{g_{i}}\left(g_{i}^{a_{i}+1}\left(0_{i}\right)\right)$.

1.3 Renormalization

The renormalization of a C^{1+} circle diffeomorphism g_{i} is the triple $\left(R_{i} g_{i}, R_{i} \mathbb{S}_{i}, R_{i} \mathscr{A}_{i}\right)$ where (i) $R_{i} \mathbb{S}_{i}$ is the renormalized circle with the orientation of the horocycle H_{i}, i.e. the reversed orientation of the orientation induced by \mathbb{S}_{i}; (ii) the renormalized atlas $R_{i} \mathscr{A}_{i}=\left.\mathscr{A}_{i}^{H}\right|_{R_{i} \mathbb{S}_{i}}$ is the set of all charts in \mathscr{A}_{i}^{H} with domains contained in $R_{i} \mathbb{S}_{i}$; and (iii) $R_{i} g_{i}: R_{i} \mathbb{S}_{i} \rightarrow R_{i} \mathbb{S}_{i}$ is the continuous map given by

$$
R_{i} g_{i}(x)=\left\{\begin{array}{l}
\pi_{g_{i}} \circ g_{i}^{a_{i}+1} \circ\left(\left.\pi_{g_{i}}\right|_{S_{i, H}^{0}}\right)^{-1}(x) \text { if } x \in S_{i, H}^{0} \\
\pi_{g_{i}} \circ g_{i} \circ\left(\left.\pi_{g_{i}}\right|_{S_{i, H}^{a_{i}+1}}\right)^{-1}(x) \quad \text { if } x \in S_{i, H}^{a_{i}+1}
\end{array} .\right.
$$

We denote the C^{1+} renormalization $\left(R_{i} g_{i}, R_{i} \mathbb{S}_{i}, R_{i} \mathscr{A}_{i}\right)$ of g_{i} by $R_{i} g_{i}$.
By construction, the renormalization $R_{i} \underline{g}_{i}$ of the rigid rotation \underline{g}_{i} is affine conjugate to the rigid rotation \underline{g}_{i+1}. Hence, from now on, we identify $\left(R_{i} \underline{g}_{i}, R_{i} \underline{\mathbb{S}}_{i}, R_{i} \underline{\mathscr{A}}_{i}\right)$ with $\left(\underline{g}_{i+1}, \mathbb{S}_{i+1}, \underline{\mathscr{A}}_{i+1}\right)$.

Recall that a C^{1+} circle diffeomorphism $g: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i}$ is a $C^{1+\alpha}$ diffeomorphism with respect to a $C^{1+\alpha}$ atlas \mathscr{A} on \mathbb{S}_{i}, for some $\alpha>0$, that is quasi-symmetric conjugate to a rigid rotation $g: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i}$ with respect to an affine atlas \mathscr{A} on \mathbb{S}_{i}.

The renormalization $R_{i} g_{i}$ is a C^{1+} circle diffeomorphism quasi-symmetric conjugate to the rigid rotation \underline{g}_{i+1}. Hence, $R_{i} g_{i}$ is quasi-symmetric conjugate to the C^{1+}
circle diffeomorphism g_{i+1}. The marked point $0_{i} \in \mathbb{S}_{i}$ determines the marked point $0_{R_{i} \mathbb{S}_{i}}=\pi_{g_{i}}\left(0_{i}\right)$ in the circle $R_{i} \mathbb{S}_{i}$. Thus, there is a unique topological conjugacy h_{i} between $R_{i} g_{i}$ and g_{i+1} such that $h_{i}\left(0_{R_{i} \mathbb{S}_{i}}\right)=0_{i+1}$.

Fig. 1.2: The horocycles H_{i} and H_{i+1}, and the renormalized map $R_{i} g_{i}: R_{i} \mathbb{S}_{i} \rightarrow R_{i} \mathbb{S}_{i}$. Here $\left.\xi_{i}=g_{i}\left(0_{i}\right)=\ldots=g_{i}^{a_{i}+1}\left(0_{i}\right), \xi_{i+1}=g_{i+1}\left(0_{i+1}\right)=\ldots=g_{i+1}^{a_{i+1}+1}\left(0_{i+1}\right)\right)$ and the map $R_{i} g_{i}$ is identified with g_{i+1}.

A C^{1+} circle diffeomorphism g_{0} determines a unique C^{1+} renormalization circle diffeomorphism sequence $\mathbf{R}\left(g_{0}\right)=\left(g_{i}, \mathbb{S}_{i}, \mathscr{A}_{i}\right)_{i=0}^{\infty}$ given by

$$
\left(g_{i}, \mathbb{S}_{i}, \mathscr{A}_{i}\right)=\left(R_{i} \circ \ldots \circ R_{0} g_{0}, R_{i} \circ \ldots \circ R_{0} \mathbb{S}_{0}, R_{i} \circ \ldots \circ R_{0} \mathscr{A}_{0}\right) .
$$

We note that the C^{1+} renormalization circle diffeomorphism sequence $\mathbf{R}\left(g_{0}\right)$ is a C^{1+} circle diffeomorphism sequence.

We say that $\mathbf{a}=\left(a_{i}\right)_{i=0}^{\infty}$ a sequence is n-periodic if n is the least integer such that $a_{i+n}=a_{i}$, for every $i \in \mathbb{N}_{0}$. We observe that given a n-periodic sequence of positive integers $\mathbf{a}=\left(a_{i}\right)_{i=0}^{\infty}, \gamma_{i}=\gamma_{i}(\mathbf{a})=1 /\left(a_{i}+1 /\left(a_{i+1}+1 / \cdots\right)\right)$ is equal to γ_{i+n} for every $i \in \mathbb{N}_{0}$. Hence, there exists a topological conjugacy $\phi_{i}: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i+n}$ such that

$$
\phi_{i} \circ g_{i}=g_{i+n} \circ \phi_{i},
$$

because g_{i} and $g_{i+n}=R_{i+n} \circ \ldots \circ R_{i} g_{i}$ are C^{1+} circle diffeomorphisms with the same rotation number $\gamma_{i}=\gamma_{i+n}$.

We say that a sequence $\mathbf{R}\left(g_{0}\right)$ is a C^{1+} n-periodic point of renormalization, if ϕ_{i} is C^{1+} for every $i \in \mathbb{N}$.

1.4 Markov maps

Let $\mathbf{R}\left(g_{0}\right)$ be the renormalization circle diffeomorphism sequence associated to the C^{1+} circle diffeomorphism g_{0}. The Markov map $M_{i}: H_{i} \rightarrow H_{i+1}$ is given by

$$
M_{i}(x)=\left\{\begin{array}{ll}
\pi_{g_{i+1}}(x) & \text { if } x \in R_{i} \mathbb{S}_{i} \\
\pi_{g_{i+1}} \circ \pi_{g_{i}} \circ g_{i}^{-k} \circ \pi_{g_{i}}^{-1}(x) & \text { if } x \in S_{i, H_{i}}^{k}, \text { for } k=1, \ldots, a_{i}
\end{array} .\right.
$$

The Markov sequence $\left(M_{i}\right)_{i=0}^{\infty}\left(g_{0}\right)$ associated to a C^{1+} circle diffeomorphism g_{0} is the sequence of Markov maps $M_{i}: H_{i} \rightarrow H_{i+1}$, for $i \in \mathbb{N}_{0}$. Two Markov sequences $\left(M_{i}\right)_{i=0}^{\infty}\left(g_{0}\right)$ and $\left(N_{i}\right)_{i=0}^{\infty}\left(g_{0}\right)$ are quasi-symmetric conjugate if there is a sequence $\left(h_{i}\right)_{i=0}^{\infty}$ of quasi-symmetric maps h_{i} such that $M_{i+1} \circ h_{i}=h_{i+1} \circ M_{i}$, for each $i \in \mathbb{N}_{0}$.

The rigid Markov sequence $\left(\underline{M}_{i}\right)_{i=0}^{\infty}=\left(M_{i}\right)_{i=0}^{\infty}\left(\underline{g}_{0}\right)$ is the Markov sequence associated to the rigid rotation \underline{g}_{0}. The rigid Markov maps $\underline{M}_{i}: \underline{H}_{i} \rightarrow \underline{H}_{i+1}$ are affine with respect to the atlases \mathscr{A}_{i}^{H} and \mathscr{A}_{i+1}^{H} (see Figure 1.3).

The Markov sequence $\left(M_{i}\right)_{i=0}^{\infty}\left(g_{0}\right)$ has the following properties: (i) the Markov maps M_{i} are local $C^{1+\alpha}$ diffeomorphisms, for some $\alpha>0$, and (ii) the Markov sequence $\left(M_{i}\right)_{i=0}^{\infty}\left(g_{0}\right)$ is quasi-symmetric conjugate to the rigid Markov sequence $\left(\underline{M}_{i}\right)_{i=0}^{\infty}\left(\underline{g}_{0}\right)$ because g_{i} is quasi-symmetric conjugate to \underline{g}_{i}.

The n-extended Markov sequence $\left(\mathbf{M}_{i}\right)_{i=0}^{n-1}\left(g_{0}\right)$ is the sequence of the n-extended Markov maps $\mathbf{M}_{i}\left(g_{0}\right): H_{i} \rightarrow H_{i}$ defined by

$$
\mathbf{M}_{i}\left(g_{0}\right)=\phi_{i}^{-1} \circ M_{i+n} \circ \cdots \circ M_{i} .
$$

We observe that a sequence $\mathbf{R}\left(g_{0}\right)$ is a $C^{1+} n$-periodic point of renormalization if, and only if, the n-extended Markov maps $\mathbf{M}_{i}: H_{i} \rightarrow H_{i}$ are C^{1+} for every $i \in \mathbb{N}$.

The rigid n-extended Markov sequence $\left(\underline{\mathbf{M}}_{i}\right)_{i=0}^{n-1}=\left(\mathbf{M}_{i}\right)_{i=0}^{n-1}\left(\underline{g}_{0}\right)$ is the n-extended Markov sequence associated to the rigid rotation \underline{g}_{0}. The rigid n-extended Markov maps $\mathbf{M}_{0}, \ldots, \mathbf{M}_{n-1}$ are affine with respect to the atlases $\underline{\mathscr{A}}_{0}^{H}, \ldots, \mathscr{A}_{n-1}^{H}$, respectively, because the conjugacy maps $\underline{\phi}_{i}: \mathbb{S}_{i} \rightarrow \underline{\mathbb{S}}_{i+n}$ are affine.

If $\phi_{i}: \mathbb{S}_{i} \rightarrow \mathbb{S}_{i+n}$ is $C^{1+\alpha}$ then the n-extended Markov sequence $\left(\mathbf{M}_{i}\right)_{i=0}^{n-1}\left(g_{0}\right)$ has the following properties: (i) the n-extended Markov maps \mathbf{M}_{i} are local $C^{1+\alpha}$ diffeomorphisms, for some $\alpha>0$, because the Markov maps $M_{0}, \ldots M_{n-1}$ of the sequence $\left(M_{i}\right)_{i=0}^{n-1}\left(g_{0}\right)$ are local $C^{1+\alpha}$ diffeomorphisms, and (ii) the n-extended Markov maps \mathbf{M}_{i} are quasi-symmetric conjugate to the rigid n-extended Markov maps $\underline{\mathbf{M}}_{i}$ because the Markov maps $M_{0}, \ldots M_{n-1}$ are quasi-symmetric conjugate to $\underline{M}_{0}, \ldots, \underline{M}_{n-1}$.

Fig. 1.3: A representation of the rigid Markov map $\underline{M}_{i}: \underline{H}_{i} \rightarrow \underline{H}_{i+1}$, with respect to the atlases $\mathscr{\mathscr { A }}_{i}^{H}$ and $\mathscr{\mathscr { A }}_{i+1}^{H}$, respectively. Here we represent by $\tilde{0}_{i}$ and $\tilde{0}_{i+1}$ the points $\pi_{\underline{g}_{i}}\left(\underline{0}_{i}\right)$ and $\pi_{\underline{g}_{i+1}}\left(\underline{0}_{i+1}\right)$, respectively, and by \tilde{g}_{k}^{l} the points $\pi_{\underline{g}_{k}} \circ \underline{g}_{k}^{l}\left(\underline{0}_{k}\right)$, for $k \in\{i, i+1\}$ and $l \in\left\{1, \ldots, a_{k}+1\right\}$.

Acknowledgements We thank the financial support of LIAAD-INESC TEC through program PEst, USP-UP project, Faculty of Sciences, University of Porto, Calouste Gulbenkian Foundation, FEDER and COMPETE Programmes, PTDC/MAT/121107/2010 and Fundação para a Ciência e a Tecnologia (FCT). J. P. Almeida acknowledges the FCT support given through grant SFRH/PROTEC/49754/2009.

References

1. Almeida, J. P., Fisher, A. M., Pinto, A. A. and Rand, D. A.: Anosov and circle diffeomorphisms, Dynamics Games and Science I, Springer Proceedings in Mathematics (eds. M. Peixoto, A. Pinto and D. Rand), Springer Verlag, 11-23 (2011).
2. Arnol'd, V. I.: Small denominators I: on the mapping of a circle into itself. Investijia Akad. Nauk. Math., 25, 1, (1961), 21-96. Transl. A.M.S., 2nd series, 46, 213-284.
3. Coullet, P. and Tresser, C.: Itération d'endomorphismes et groupe de renormalisation. J. de Physique, C5 25 (1978).
4. Herman, M. R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. IHES 49, 1979, 5-233.
5. Lanford, O.: Renormalization group methods for critical circle mappings with general rotation number. VIIIth International Congress on Mathematical Physics. World Sci. Publishing, Singapore, 532-536 (1987).
6. Masur, H.: Interval exchange transformations and measured foliations. The Annals of Mathematics. 2nd Ser., 115 (1), 169-200 (1982).
7. Penner, R. C. and Harer, J. L.: Combinatorics of Train-Tracks. Princeton University Press, Princeton, New Jersey (1992).
8. Pinto, A. A., Almeida, J. P. and Portela, A.: Golden tilings. Transactions of the American Mathematical Society, 364 (2012), 2261-2280.
9. Pinto, A. A., Almeida, J. P. and Rand, D. A.: Anosov and renormalized circle diffeomorphisms. pp. 1-33 (2012) (Submitted).
10. Pinto, A. A. and Rand, D. A.: Train-tracks with C^{1+} self-renormalisable structures. Journal of Difference Equations and Applications, 16(8), 945-962 (2010).
11. Pinto, A. A. and Rand, D. A.: Solenoid functions for hyperbolic sets on surfaces. Dynamics, Ergodic Theory and Geometry, Boris Hasselblat (ed.), MSRI Publications, 54 145-178 (2007).
12. Pinto, A. A. and Rand, D. A.: Rigidity of hyperbolic sets on surfaces. J. London Math. Soc., 712 481-502 (2004).
13. Pinto, A. A. and Rand, D. A.: Smoothness of holonomies for codimension 1 hyperbolic dynamics. Bull. London Math. Soc., 34 341-352 (2002).
14. Pinto, A. A. and Rand, D. A.: Teichmüller spaces and HR structures for hyperbolic surface dynamics. Ergod. Th. Dynam. Sys, 22 1905-1931 (2002).
15. Pinto, A. A. and Rand, D. A.: Existence, uniqueness and ratio decomposition for Gibbs states via duality. Ergod. Th. \& Dynam. Sys., 21 533-543 (2001).
16. Pinto, A. A. and Rand, D. A.: Characterising rigidity and flexibility of pseudo-Anosov and other transversally laminated dynamical systems on surfaces. Warwick Preprint 1995.
17. Pinto, A. A., Rand, D. A. and Ferreira, F.: Arc exchange systems and renormalization. Journal of Difference Equations and Applications 16 (2010), no. 4, 347-371.
18. Pinto, A. A., Rand, D. A. and Ferreira, F.: Cantor exchange systems and renormalization. Journal of Differential Equations, 243 593-616 (2007).
19. Pinto, A. A. Rand, D. A., Ferreira, F.: Fine structures of hyperbolic diffeomorphisms. Springer Monographs in Mathematics, Springer (2010).
20. Pinto, A. A. and Sullivan, D.: The circle and the solenoid. Dedicated to Anatole Katok On the Occasion of his 60th Birthday. DCDS A, 162 463-504 (2006).
21. Rand, D. A.: Existence, nonexistence and universal breakdown of dissipative golden invariant tori. I. Golden critical circle maps. Nonlinearity, 53 639-662 (1992).
22. Veech, W.: Gauss measures for transformations on the space of interval exchange maps. The Annals of Mathematics, 2nd Ser. 1152 201-242 (1982).
23. Yoccoz J. C.: Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. Ann. Scient. Éc. Norm. Sup., 4 série, t, 17 (1984) 333-359.

[^0]: João P. Almeida
 LIAAD-INESC TEC and Department of Mathematics, School of Technology and Management, Polytechnic Institute of Bragança. Campus de Santa Apolónia, Ap. 1134, 5301-857 Bragança,

