


Chapter 1
Renormalization of circle diffeomorphism
sequences and Markov sequences

João P. Almeida, Alberto A. Pinto and David A. Rand

Abstract We show a one-to-one correspondence between circle diffeomorphism
sequences that areC1+ n-periodic points of renormalization and smooth Markov
sequences.

1.1 Introduction

Following [2–9, 20–23], we present the concept of renormalization applied to cir-
cle diffeomorphism sequences. These concepts are essential to extend the results
presented in [8, 9] to all Anosov diffeomorphisms on surfaces, i.e. to prove a one-
to-one correspondence betweenC1+ conjugacy classes of Anosov diffeomorphisms
and pairs ofC1+ circle diffeomorphism sequences that areC1+ n-periodic points
of renormalization (see also [1, 8, 9, 19]). The main point inthis paper is to show
the existence of a one-to-one correspondence betweenC1+ circle diffeomorphism
sequences that areC1+ n-periodic points of renormalization and smooth Markov se-
quences. This correspondence is a key step in passing from circle diffeomorphisms
to Anosov diffeomorphisms because the Markov sequences encode the smooth in-
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formation of the expanding and contracting laminations of the Anosov diffeomor-
phisms [10–18]).

1.2 Circle difeomorphisms

Let a = (ai)
∞
i=0 be a sequence of positive integers and letγ(a) = 1/(a0+1/(a1+

1/ · · ·)). For everyi ∈ N0, let γi = γi(a) = 1/(ai +1/(ai+1+1/ · · ·)) and letSi be a
counterclockwise oriented circle homeomorphic to the circleSi = R/(1+ γi)Z.

An arc in Si is the image of a non trivial intervalI in R by a homeomorphism
α : I → Si. If I is closed (resp. open) we say thatα(I) is aclosed (resp.open) arc in
Si. We denote by(a,b) (resp.[a,b]) the positively oriented open (resp. closed) arc
on Si starting at the pointa ∈ Si and ending at the pointb ∈ Si. A C1+ atlasAi in
Si is a set of charts such that (i) every small arc ofSi is contained in the domain of
some chart inAi, and (ii) the overlap maps areC1+α compatible, for someα > 0.

Let A i denote the affine atlas whose charts are isometries with respect to the
usual norm inSi. Let therigid rotation g

i
: Si → Si be the affine homeomorphism,

with respect to the atlasA i, with rotation numberγi/(1+ γi).
A homeomorphismh : Si → Si is quasisymmetric if there exists a constantC > 1

such that for each two arcsI1 andI2 of Si with a common endpoint and such that
|I1|i = |I2|i, we have|h(I1)|i/|h(I2)|i < C, where the lengths are measured in the
charts ofAi andAi.

A C1+ circle diffeomorphism sequence (gi,Si,Ai)
∞
i=0 is a sequence of triples

(gi,Si,Ai) with the following properties: (i)gi : Si → Si is aC1+α diffeomorphism,
with respect to theC1+α atlasAi, for someα > 0; and (ii) gi is quasi-symmetric
conjugate to the rigid rotationg

i
with respect to the atlasA i.

We denote theC1+ circle diffeomorphism(gi,Si,Ai) by gi. In particular, we
denote the rigid rotation(g

i
,Si,A i) by g

i
.

1.2.1 Horocycles

Let us mark a point inSi that we will denote by 0i ∈ Si. Let S0
i = [0i,gi(0i)] be the

oriented closed arc inSi, with endpoints 0i and gi(0i). For everyk ∈ {0, . . . ,ai},
let Sk

i =
[

gk
i (0i),g

k+1
i (0i)

]

be the oriented closed arc inSi with endpointsgk
i (0i)

andgk+1
i (0i) and such thatSk

i ∩ Sk−1
i = {gk

i (0)}. Let Sai+1
i = [gai+1

i (0i),0i] be the
oriented closed arc inSi, with endpointsgai+1

i (0i) and 0i.
We introduce anequivalence relation ∼ in Si by identifying theai + 1 points

gi(0), . . . ,g
ai+1
i (0) and form the topological spaceHi(Si,gi) = Si/ ∼. We take the

orientation inHi as the reverse orientation of the one induced bySi. We call this
oriented topological space thehorocycle and we denote it byHi = Hi(Si,gi). We
consider the quotient topology inHi. Let πgi : Si → Hi be the natural projection. The
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point
ξi = πgi(gi(0i)) = · · ·= πgi(g

ai+1
i (0i)) ∈ Hi

is called thejunction of the horocycleHi. For everyk ∈ {0, . . . ,ai}, let Sk
i,H =

Sk
i,H(Si,gi)⊂ Hi be the projection byπgi of the closed arcSk

i . Let RiSi = S0
i,H ∪Sa+1

i,H
be therenormalized circle in Hi. The horocycleHi is the union of the renormalized
circle RiSi with the circlesSk

i,H for everyk ∈ {1, . . . ,ai}.
A parametrization in Hi is the image of a non trivial intervalI in R by a homeo-

morphismα : I → Hi. If I is closed (resp. open) we say thatα(I) is aclosed (resp.
open) arc in Hi. A chart in Hi is the inverse of a parametrization. Atopological atlas
B on the horocycleHi is a set of charts{( j,J)}, onHi, with the property that every
small arc is contained in the domain of a chart inB, i.e. for any open arcK in Hi

and anyx ∈ K there exists a chart{( j,J)} ∈ B such thatJ ∩K is a non trivial open
arc inHi andx ∈ J ∩K. A C1+ atlas B in Hi is a topological atlasB such that the
overlap maps areC1+α and haveC1+α uniformly bounded norms, for someα > 0.

Let Ai be aC1+ atlas onSi in whichgi : Si → Si is aC1+ circle diffeomorphism.
We are going to construct aC1+ atlasA H

i on Hi that we call theextended push-
forward A H

i = (πgi)∗Ai of the atlasAi on Si. If x ∈ Hi\{ξi} then there exists a
sufficiently small open arcJ ⊂ Hi containingx and such thatπ−1

gi
(J) is contained in

the domain of some chart(I, ι̂) of Ai. In this case, we define(J, ι̂ ◦π−1
gi

) as a chart
in A H

i . If x = ξi andJ is a small arc containingξi, then either (i)π−1
gi

(J) is an arc
in Si or (ii) π−1

gi
(J) is a disconnected set that consists of a union of two connected

components.
In case (i),π−1

gi
(J) is connected and it is contained in the domain of some chart

(I, ι̂) ∈ Ai. Therefore we define
(

J, ι̂ ◦π−1
gi

)

as a chart inA H
i .

In case (ii),π−1
gi

(J) is a disconnected set that is the union of two connected arcs
IL
l andIR

r of the formIL
l = (cL

l ,g
l
i(0)] andIR

r = [gr
i (0),c

R
r ), respectively, for alll,r ∈

{1, . . . ,ai +1}. Let JL
l andJR

r be the arcs inHi defined byJL
l = πgi(I

L
l ) andπgi(I

R
r )

respectively. ThenJ = JL
l ∪ JR

r is an arc inHi with the property thatJL
l ∩ JR

r = {ξi},
for every l,r ∈ {1, . . . ,ai +1}. We call such arcJ a (l,r)-arc and we denote it by
Jl,r. Let jl,r : Jl,r → R be defined by,

jl,r(x) =

{

ι̂ ◦π−1
gi

(x) if x ∈ JR
r

ι̂ ◦gi
r−l ◦π−1

gi
(x) if x ∈ JL

l
.

Let (I, ι̂) ∈ Ai be a chart such thatπgi(I)⊃ Jl,r. Then we define(Jl,r, jl,r) as a chart
in A H

i (see Figure 1.1). We call the atlas determined by these charts theextended
pushforward atlas of Ai and, by abuse of notation, we will denote it byA H

i =
(πgi)∗Ai.

Let the marked point 0i in Si be the natural projection of 0∈ R onto 0i ∈ Si =
R/(1+ γi)Z. Let S0

i = [0i,gi
(0i)] andSk

i = [gk
i
(0i),gk+1

i
(0i)]. Furthermore, let

H i = Hi(Si,gi
) , Sk

i,H = Sk
i,H(Si,gi

) , RiSi = S
0
i,H ∪S

a+1
i,H andA

Hi =
(

πg
i

)

∗
A i .
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Fig. 1.1: The horocycleHi and the chartjl,r : Jl,r → R in case (ii). The junctionξi

of the horocycle is equal toξi = πgi(gi(0i)) = · · ·πgi(g
ai
i (0i)) = πgi(g

ai+1
i (0i)).

1.3 Renormalization

Therenormalization of a C1+ circle diffeomorphism gi is the triple(Rigi,RiSi,RiAi)
where (i)RiSi is the renormalized circle with the orientation of the horocycleHi, i.e.
the reversed orientation of the orientation induced bySi; (ii) the renormalized atlas
RiAi = A H

i |RiSi is the set of all charts inA H
i with domains contained inRiSi; and

(iii) Rigi : RiSi → RiSi is the continuous map given by

Rigi(x) =











πgi ◦gai+1
i ◦

(

πgi |S0
i,H

)−1
(x) i f x ∈ S0

i,H

πgi ◦gi ◦

(

πgi |Sai+1
i,H

)−1

(x) i f x ∈ Sai+1
i,H

.

We denote theC1+ renormalization(Rigi,RiSi,RiAi) of gi by Rigi.
By construction, the renormalizationRigi

of the rigid rotationg
i
is affine conju-

gate to the rigid rotationg
i+1

. Hence, from now on, we identify(Rigi
,RiSi,RiA i)

with (g
i+1

,Si+1,A i+1).

Recall that aC1+ circle diffeomorphism g : Si → Si is aC1+α diffeomorphism
with respect to aC1+α atlasA on Si, for someα > 0, that is quasi-symmetric
conjugate to a rigid rotationg : Si → Si with respect to an affine atlasA onSi.

The renormalizationRigi is aC1+ circle diffeomorphism quasi-symmetric conju-
gate to the rigid rotationg

i+1
. Hence,Rigi is quasi-symmetric conjugate to theC1+
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circle diffeomorphismgi+1. The marked point 0i ∈ Si determines the marked point
0RiSi = πgi(0i) in the circleRiSi. Thus, there is a unique topological conjugacyhi

betweenRigi andgi+1 such thathi(0RiSi) = 0i+1.
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Fig. 1.2: The horocyclesHi andHi+1, and the renormalized mapRigi : RiSi → RiSi.
Hereξi = gi(0i) = . . .= gai+1

i (0i), ξi+1 = gi+1(0i+1) = . . .= gai+1+1
i+1 (0i+1)) and the

mapRigi is identified withgi+1.

A C1+ circle diffeomorphismg0 determines a uniqueC1+ renormalization circle
diffeomorphism sequence R(g0) = (gi,Si,Ai)

∞
i=0 given by

(gi,Si,Ai) = (Ri ◦ . . .◦R0g0,Ri ◦ . . .◦R0S0,Ri ◦ . . .◦R0A0).

We note that theC1+ renormalization circle diffeomorphism sequenceR(g0) is a
C1+ circle diffeomorphism sequence.

We say thata = (ai)
∞
i=0 a sequence isn-periodic if n is the least integer such that

ai+n = ai, for everyi ∈ N0. We observe that given an-periodic sequence of positive
integersa = (ai)

∞
i=0, γi = γi(a) = 1/(ai+1/(ai+1+1/ · · ·)) is equal toγi+n for every

i ∈ N0. Hence, there exists a topological conjugacyφi : Si → Si+n such that

φi ◦gi = gi+n ◦φi,
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becausegi andgi+n = Ri+n ◦ . . .◦Rigi areC1+ circle diffeomorphisms with the same
rotation numberγi = γi+n.

We say that a sequenceR(g0) is aC1+ n-periodic point of renormalization, if φi

is C1+ for everyi ∈ N.

1.4 Markov maps

Let R(g0) be the renormalization circle diffeomorphism sequence associated to the
C1+ circle diffeomorphismg0. TheMarkov map Mi : Hi → Hi+1 is given by

Mi(x) =

{

πgi+1(x) i f x ∈ RiSi

πgi+1 ◦πgi ◦g−k
i ◦π−1

gi
(x) i f x ∈ Sk

i,Hi
, for k = 1, . . . ,ai

.

TheMarkov sequence (Mi)
∞
i=0(g0) associated to aC1+ circle diffeomorphismg0

is the sequence of Markov mapsMi : Hi → Hi+1, for i ∈N0. Two Markov sequences
(Mi)

∞
i=0(g0) and(Ni)

∞
i=0(g0) arequasi-symmetric conjugate if there is a sequence

(hi)
∞
i=0 of quasi-symmetric mapshi such thatMi+1◦hi = hi+1◦Mi, for eachi ∈ N0.

The rigid Markov sequence (Mi)
∞
i=0 = (Mi)

∞
i=0(g0

) is the Markov sequence as-
sociated to the rigid rotationg

0
. The rigid Markov mapsMi : H i → H i+1 are affine

with respect to the atlasesA H
i andA

H
i+1 (see Figure 1.3).

The Markov sequence(Mi)
∞
i=0(g0) has the following properties: (i) the Markov

mapsMi are localC1+α diffeomorphisms, for someα > 0, and (ii) the Markov
sequence(Mi)

∞
i=0(g0) is quasi-symmetric conjugate to the rigid Markov sequence

(Mi)
∞
i=0(g0

) becausegi is quasi-symmetric conjugate tog
i
.

Then-extended Markov sequence (Mi)
n−1
i=0 (g0) is the sequence of then-extended

Markov maps Mi(g0) : Hi → Hi defined by

Mi(g0) = φ−1
i ◦Mi+n ◦ · · · ◦Mi.

We observe that a sequenceR(g0) is aC1+ n-periodic point of renormalization
if, and only if, then-extended Markov mapsMi : Hi → Hi areC1+ for everyi ∈ N.

Therigid n-extended Markov sequence (Mi)
n−1
i=0 = (Mi)

n−1
i=0 (g0

) is then-extended
Markov sequence associated to the rigid rotationg

0
. The rigidn-extended Markov

mapsM0, . . . ,Mn−1 are affine with respect to the atlasesA
H
0 , . . . ,A

H
n−1, respec-

tively, because the conjugacy mapsφ
i
: Si → Si+n are affine.

If φi : Si → Si+n is C1+α then then-extended Markov sequence(Mi)
n−1
i=0 (g0) has

the following properties: (i) then-extended Markov mapsMi are localC1+α diffeo-
morphisms, for someα > 0, because the Markov mapsM0, . . .Mn−1 of the sequence
(Mi)

n−1
i=0 (g0) are localC1+α diffeomorphisms, and (ii) then-extended Markov maps

Mi are quasi-symmetric conjugate to the rigidn-extended Markov mapsMi because
the Markov mapsM0, . . .Mn−1 are quasi-symmetric conjugate toM0, . . . ,Mn−1.
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Fig. 1.3: A representation of the rigid Markov mapMi : H i → H i+1, with respect
to the atlasesA H

i andA
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i+1, respectively. Here we represent by0̃i and 0̃i+1 the

pointsπgi
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