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Abstract. In this paper we present a study of evaluation measures that enable the quantification of the quality of an image
segmentation result. Despite significant advances in image segmentation techniques, evaluation of these techniques thus far
has been largely subjective. Typically, the effectiveness of a new algorithm is demonstrated only by the presentation of a
few segmented images and is otherwise left to subjective evaluation by the reader. Such an evaluation criterion can be useful
for different applications: the comparison of segmentation results, the automatic choice of the best fitted parameters of a
segmentation method for a given image, or the definition of new segmentation methods by optimization. We first present the
state of art of distance evaluation measures, and then, we compare several evaluation criteria.
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INTRODUCTION

Despite the fact that image segmentation algorithms have been, and are still being, widely studied, quantitative eval-
uation of image segmentation quality is a much harder problem. The history of measures for evaluating segmentation
algorithms is as old as the history of segmentation algorithms themselves.

Generally the evaluation methods of image segmentation can be classified into three categories: analytical methods,
empirical goodness methods and empirical discrepancy methods. The empirical discrepancy methods have been
the most commonly used methods for segmentation evaluation. These methods evaluate segmentation methods by
comparing the segmented image against a manually segmented reference image, which is often referred as the ground
truth, and computing error measures. One approach is to ask human subjects to segment the images by hand. If a
reasonable consensus emerges, the hand segmentations can be treated as ground truth, and compared to the outputs
of segmentation schemes. Martin et al. [1] presented a database containing hand segmented images from the Corel
database, which we used in this study.

A potential problem for a measure of consistency between segmentations is that there is no unique segmentation of
an image, since each human perceives the scene differently. For example, the numbers of segments may be different.
Humans produce segmentations at different granularities and with different levels of detail, even when they perceive
the image as having the same hierarchical tree structure [1].

In addition to a ground truth database, evaluating grouping algorithms requires an error measure. We want a
measure exact enough to penalize systematic discrepancies with respect to the ground truth, yet tolerant to inter-subject
variations. Under-segmentation is considered to be a serious problem as it is easier to recover true segments through
a merging process after over-segmentation rather than trying to split an heterogeneous region. We think that one
desirable property of a good evaluation measure is to accommodate refinement only in regions that human segmenters
could find ambiguous and to penalize differences in refinements elsewhere. In addition to being tolerant to refinement,
any evaluation measure should also be tolerant to different number of segments in each partition.

EVALUATION MEASURES

Reviewing work in the literature, one can find two kinds of empirical discrepancy methods: (1) region-based evaluation
[1, 2, 3], which evaluates segmentation consensus in terms of the number of regions, and the locations, sizes and other
statistics of the segmented regions, and (2) boundary-based evaluation [1, 2, 4], which evaluates segmentation in terms
of both the location and shape accuracies of the extracted region boundaries.
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Hamming Distance: Huang and Dom [2] introduced the concept of directional Hamming distance between two
segmentations, denoted by DH (S⇒ R). Let S and R be two segmentations. They began by establishing the correspon-
dence between each region of S with a region of R such that si∩ r j is maximized. The directional Hamming distance
from S to R is defined as:

DH (S⇒ R) = ∑ri∈R ∑sk �=s j ,sk∩ri �=0 |ri∩ sk| , (1)

where |·| denote the size of a set. Therefore, DH (S⇒ R) is the total area under the intersections between all ri ∈ R
and their non-maximal intersected regions from S. A region-based evaluation measure based on normalized Hamming
distance is defined as

p = 1− DH (S⇒ R)+DH (R⇒ S)

2×|S| , (2)

where |S| is the image size and p ∈ [0,1]. The smaller the degree of mismatch, the closer the p is to one.
Local Consistency Error: To compensate for the difference in granularity while comparing segmentations, many

measures allow label refinement uniformly through the image. Martin et al. [1] proposed an error measure to quantify
the consistency between image segmentations of differing granularities - Local Consistency Error (LCE) that allows
labeling refinement between segmentation and ground truth.

LCE (S,R, pi) =
1
N

∑
i

min{E (S,R, pi) ,E (R,S, pi)} , (3)

where E (S,R, p) measures the degree to which two segmentations agree at pixel p, and N is the size of region where
pixel p belongs.

Note that the LCE is an error measure, with a score 0 meaning no error and a score 1 meaning maximum error.
Since LCE is tolerant to refinement, it is only meaningful if the two segmentations have similar number of segments.

Bidirectional Consistency Error: To overcome the problem of degenerate segmentations, LCE was adapted to
a measure that penalizes dissimilarity between segmentations proportional to the degree of region overlap. The
Bidirectional Consistency Error (BCE) is defined as:

BCE (S,R, pi) =
1
N

∑
i

max{E (S,R, pi) ,E (R,S, pi)} . (4)

Partition Distance Measure: Cardoso and Corte-Real [3] proposed a discrepancy measure (dsym) defined as: "given
two partitions S1 and S2 of S, the partition distance is the minimum number of elements that must be deleted from S, so
that the two induced partitions (S1 and S2 restricted to the remaining elements) are identical". dsym (S1,S2) = 0 means
that no points need to be removed from S to make the partitions equal, i.e., when S1 = S2.

Rand Index: Rand index (RI) [5] is the function that converts the problem of comparing two partitions with possibly
differing number of classes into a problem of computing pair wise label relationships.

Consider two valid label assignments S1 and S2 that assign labels li and l′i , respectively, to each point xi. The RI can
be computed as the ratio of the number of pairs of points having the same label relationship in S1 and S2, i.e.,

RI (S1,S2) =
1(
N
2

) ∑
i, j

i �= j

[
II
(
li = l j ∧ l′i = l′j

)
+ II

(
li �= l j ∧ l′i �= l′j

)]
, (5)

where II is the identity function and the denominator is the number of possible unique pairs among N data points.
Distance Distribution Signatures: Let BS represent the boundary point set derived from the segmentation and BR

the boundary ground truth. A distance distribution signature [2] between the boundary points of two segmentations,
denoted DB (S1,S2), is a discrete function whose distribution characterizes the discrepancy between segmentations.
The distance from x in set S1 to S2 is defined as the minimum distance to S2, d (x,S2) = min{dE (x,y)} ,∀y∈ S2, where
dE denotes the Euclidean distance.

In order to normalize the result between 0 and 1, we proposed using d (x,BR) = min{dE (x,y) ,c}, where the c value
sets an upper limit for the error, allowing the two boundary distances to be combined in a framework similar to the
one presented in Eq. (2):

b = 1− DB (BS,BR)+DB (BR,BS)

c× (|R|+ |S|) , (6)
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where |R| and |S| are the number of boundary points in reference mask and segmented mask, respectively.
Precision-Recall Measures: Martin [1], proposed the use of precision and recall values to characterize the agree-

ment between the oriented boundary edge elements of region boundaries of two segmentations. The two statistics may
be distilled into a single figure of merit:

F =
PR

αR+(1−α)P
, (7)

where α determines the relative importance of each term.
Since these measures are not tolerant to refinement, it is possible for two segmentations that are perfect mutual

refinements of each other to have low precision and recall scores.
Earth Mover’s Distance: The concept of using Earth Mover’s Distance (EMD) to measure perceptual similarity

between segmentations was first explored by Monteiro and Campilho[4]. EMD is defined as the the minimal sum of
costs incurred to move all the individual points between the signatures. Let S1 = {p1, ..., pm} be the first signature with
m pixels; the second signature with n pixels is represented by S2 = {q1, ...,qn}. Let D = [di j] be the distance matrix
where di j is the distance between pi and q j. The flow fi j is the amount of weight moved from pi to q j. Then the EMD
is defined as the work normalized by the total number of pixels moved fi j, that minimizes the overall cost:

EMD(S1,S2) = ∑
i

∑
j

fi jdi j

/
∑

i
∑

j

fi j , (8)

In order to embed two sets of contour features with different total weights, [4] suggested adding "fake" pixels to the
smaller set. The distance between any fake point and any true point is penalized with the maximum possible distance.

Perceptual Discrepancy Measure: This measure applies different weights to false negative and false positive pixels
and is supported by research showing that the visual importance of these pixels is not the same and they should be
treated differently [4]. As we move away from the border of an object, missing parts are more important than added
background, e.g., in medical imaging, it may be enough that the segmented region overlaps with the true region, so the
tumor can be located. But if there are missing parts of the tumor the segmentation results will be poor. Therefore, the
following weights have been suggested by [4]:

wp =
αp log(1+dp)

D
wn =

αndn

D
. (9)

where dp be the distance of a false positive pixel from the boundary of the reference region, dn be the distance of a
false negative pixel, and D be the image diagonal distance. Perceptual discrepancy measure is given by sw = 1− εw,
where εw is the sum of the weighted functions.

COMPARATIVE STUDY

To achieve comparative results about different evaluation methods, two strategies can be followed: the first one consists
in applying the evaluation methods to segmented images obtained from different segmentation approaches. The second
one consists in simulating results of segmentation processes. To exempt the influence of segmentation algorithms, the
latter has been adopted and a set of images obtained from manual segmentation available in [1] was used. Figure 1
presents an image, from the Berkeley Dataset, with six manual segmentations and three faked segmentations.

Results of boundary-based evaluation on the same set of images of Fig. 1 are reported in Fig. 2. On comparing the
results of the boundary-based measures, it is made evident that they are well correlated. EMD tolerates well some
amount of deformations that normally happens in the manual segmentation process. However, when the number of
pixels in ground truth differs a lot from the number of pixels in the segmented image, EMD gives poor results. Despite
its success, the EMD method still needs to be refined to address the limitation in the complexity of algorithm that
require to be further reduced. The b-measure gives results similar with F-measure, but is even more intolerant to
refinement.

Results of region-based evaluation show that LCE, BCE, dsym, Rand Index and p, are just proportional to the total
amount of false detections - different position of those pixels do not affect the similarity. This makes those methods
unreliable for applications where the results will be presented to humans. Note that sw produces results that agree with
the visual relevance of errors.

796



FIGURE 1. The image and its ground truth are shown in (a) and (b), respectively. From (c) to (g) we have different segmentations
of image (a). Images (h) to (l) are wrong segmentations.

(a) Region-based (b) Boundary-based

FIGURE 2. Region-based and boundary-based evaluation of images from Fig. 1.

CONCLUSION

Segmentation evaluation is indispensable for improving the performance of existing segmentation algorithms and
for developing new powerful segmentation algorithms. In spite of the number of evaluation segmentation algorithms
presents in the literature, very few comparative results on evaluation of segmentation algorithms have been proposed.
Typically, researchers show their results on a few images and point out why the results are good. We never know
from such studies whether the results are best examples or typical examples, whether the technique will work only
on images that have no texture, and so on. Moreover the measures used in the evaluations have weaknesses. An ideal
measure should incorporate the similarity criteria used by human subjects and have 100% agreement with human
subjects when deciding on the most similar shape to a reference.
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