
An SNMP Filesystem in Userspace

Rui Pedro Lopes1,2, Tiago Pedrosa1,2, and Luis Pires1

1 Polytechnic Institute of Braganca, Braganca, Portugal
rlopes@ipb.pt

2 IEETA, University of Aveiro, Aveiro, Portugal

Abstract. Modern computer networks are constantly increasing in size and com-
plexity. Despite this, data networks are a critical factor for the success of many
organizations. Monitoring their health and operation status is fundamental, and
usually performed through specific network management architectures, devel-
oped and standardized in the last decades.
On the other hand, file systems have become one of the best well known paradigms
of human-computer interaction, and have been around since early days in the per-
sonal computer industry.
In this paper we propose a file system interface to network management infor-
mation, allowing users to open, edit and visualize network and systems operation
information.

Key words: Network Management, SNMP, File system

1 INTRODUCTION

A file system is a database typically storing large blocks of information. The informa-
tion is stored in the form of files, structured as a hierarchy of directories. Each entry
in the file system, including directories and files, is characterized by a limited group
of attributes (instant of creation, instant of the last access, instant of the last change,
permissions, owner, group). This paradigm is, perhaps, one of the best well known
mechanism for storing information, available in several operating systems as well as in
some embedded devices, such as PDAs, mobile phones and even digital cameras.

Usually, files are stored locally in persistent memory, such as hard-disks or mem-
ory cards. It is also common, particularly in enterprises, to use network file systems
to store files in a remote server, accessed through a special protocol like NFS [1] or
SMB. In this situation, the network server exports part of the local file system to a set of
selected clients, allowing them to remotely access files and directories. However, this
centralized, single server approach, suffers some scalability issues related to through-
put, capacity and fault tolerance.

Distributed file systems are designed to improve scalability and fault tolerance by
transparently balancing the access between servers. It provides the same view to every
client and is responsible for maintaining coherence of data through distributed locking
and caching [2, 3, 4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153411799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Rui Lopes et al.

Yet another paradigm, cloud storage systems, such as Dropbox1, transparently syn-
chronize the local copy of data with a remote datacenter, allowing user access to per-
sonal and shared files anytime, anywhere.

Based on this paradigm, we considered the possibility of accessing network man-
agement information as a set of virtual file systems. Network resources, usually ac-
cessed through SNMP [5], COPS [6], or other network management protocol, are seen
as remote shares, to be mounted in a regular workstation file system and the instrumen-
tation and configuration information accessed as regular files.

The nature of the information as well as the purpose of this SNMP File System
(SNMPFS) is radically different from traditional distributed file systems (DFS). This
makes the current requirements different of traditional DFS. First, distributed file sys-
tems are used to store files belonging to one or more users. In a network management
scenario, the information is generated both by network resources and users. The former
is used for instrumentation and the later is used for configuration.

Second, the content of the majority of network management backed files is con-
stantly changing, because of the dynamic nature of network parameters. As an example,
consider a value representing the number of transmitted packets or a value representing
CPU load. In regular file systems, used to store personal and application files, entries
seldom change. This allows better cache hit rates than in the former situation.

Third, network management files are very small, resulting from the parameters they
represent. Frequently, a single int is used and, some times, a small table of values is
sufficient.

Fourth, the whole SNMPFS is composed of several network services and resources,
such as routers, firewalls, web servers, and so on. Each resource exports the informa-
tion resulting from the instrumentation of working parameters thus playing a part in a
potentially huge cluster of distributed file systems.

Fifth, faults are usually frequent, resulting from connectivity problems, hardware
failures, human action and others. The system should cope with this issues, by recover-
ing when possible and replicating when necessary.

2 FILE SYSTEM DESIGN

The goal of the SNMPFS is to unify around a unique name space all of the enterprise
network management agents. For concept proving, we are using SNMP agents, since
they are common in organizations and widely implemented by network devices. This
approach allows integrating the tree of management objects of distinct SNMP agents in
a single file system. Resuming, the goals of this approach are the following:

– allow the use of simple files and directories handling tools (cd, cp, cat, ...);
– allow to consult and change the values through simple tools (file redirection, text

editors);
– allow the creation of pipes:
cat sysUpTime | toxml | mail --s ‘‘sysUpTime’’ admin@host.com;

1 http://www.dropbox.com

SNMPFS 3

– allow using office tools, such as Calc or Excel, to view and alter tabular information;
– allow reducing the complexity of the management system.

The information generated by each SNMP agent is accessed through a specific file
system (SNMPFS), working as a gateway between the regular file operations (open, read,
write, append, close, . . .) and SNMP commands (Figure 1).

Workstation

Network

SNMP
agent

SNMP
agent... SMB share

SNMPFS SNMPFS SMB
NTFS

Virtual File System

APP APP APP APP APP APP

Fig. 1: SNMPFS global architecture.

As other file systems, like Server Message Block (SMB), also known as Common
Internet File System (CIFS), to access SMB (Windows) shares across a network or
NTFS for local storage, applications access data through a uniform layer (VFS - Virtual
File System). Specific file system details are of the responsibility of each file system
technology (SNMPFS, SMB, NTFS and so on). As a result, all the information is stored
under the same naming tree.

2.1 Topology

The system topology is straightforward: on one side, several SNMP agents, associated
with diverse enterprise resources; on the other side, one or more workstations mount
the agents’ information through the SNMPFS (Figure 2). It is possible that two or more
workstations mount the same agents in its local file system. For read operations this does
not present any problem. However, for update operations it is possible that potentially
many processes try to change the same value.

2.2 Locking

In conventional distributed file systems, file locking is essential for coordinating access
to shared information among cooperating processes. If multiple processes are writing to

4 Rui Lopes et al.

Fig. 2: Simplified topology.

the same file it is necessary to regulate the access through some kind of locking mech-
anism. In SNMPFS, locking is performed by the agent, in accordance with the managed
object definition, since SNMP agents may also be updated by network management
applications concurrently. Some MIBs provide a mechanism to regulate concurrent ac-
cess. The Expression MIB [7], for example, has tables with a special column used to
instantiate the row – RowStatus [8].

2.3 Security

SNMP is inherently insecure. Although true for the versions 1 and 2c, SNMPv3 present
a modular security architecture based on cryptographic protocols and algorithms. It is
mandatory that SNMPv3 implementations support the HMAC-MD5-96 protocol for
authentication. They can also support the HMAC-SHA-96 for authentication and the
CBC-DES for privacy [9]. More recently, a new privacy protocol was added. [10] de-
scribes the Advanced Encryption Standard (AES) for SNMPv3 in the SNMP User-
based Security Model which can be used as an alternative to the CBC-DES.

The SNMPv3 security service provides data integrity, data origin authentication,
data confidentiality and message timeliness as well as limited replay protection. It is
based on the concept of a user, identified by a userName, with which security infor-
mation is associated. In addition to the user name, an authentication key (authKey)
is shared between the communicating SNMP engines, ensuring authentication and in-
tegrity. A privacy key (privKey), also symmetric, ensures confidentiality.

Complementing the communication security, the SNMPv3 model also provides ac-
cess control through a view-based access control model [11]. This model grants or de-
nies access to MIB portions (view subtrees) according to the predefined configuration
and the current user permissions.

The security details for SNMPv3, either for authentication, integrity, confidentiality
and access control, dictates the security functions for the SNMPFS. We have to pass to
the file system the authentication and the access control required by the SNMP model.

SNMPFS 5

The authentication problem is performed by the system when mounting the file system.
A similar approach is followed for NFS or SMB shares:
mount -t smb //server/share /mnt -o username=aUser,password=xxx.
If the server recognizes the username and password, the host is allowed to access the
file system and a user ID (uid) is associated with it.

Access control is enforced by file permissions. In Unix, each file has a set of per-
missions (read, write, execute) for the file owner, group and others. For example, the
permissions
-rwxr-x---
gives the owner the possibility to read, write and execute the file, the group to read and
execute and no other user can read, write or execute.

SNMPFS translates each file permission to the View-based Access Control mecha-
nism of the SNMPv3.

2.4 Attributes

File system entries, such as files or directories, are characterized by a set of attributes
which describes their fundamental aspects, such as size, date, permissions, name and
others. The name and number of attributes is typically static, meaning that it is not
possible to add or remove further information to each file system entry latter on.

An attribute which is necessary to better describe the data types and the structure
of an SNMP agent is the MIB tree it implements. The MIB tree is described in a set
of MIB files which contain each node name, data type, restrictions and role. With this
information, the SNMPFS can present to the user a more meaningful set of file names as
well as file types (a table, a string, an int, etc). In particular, this information is valuable
for tables, which the SNMPFS exports as Coma Separated Values (CSV) format and can
be opened and edited by a spreadsheet, such as Microsoft Excel or OpenOffice Calc.

To be able to access the meta-information about management data, the SNMPFS has
the possibility to load MIB files from a specific directory. This information will allow
the files to have a more meaningful name as well as adapting the content to the nature
of the information it stores.

3 IMPLEMENTATION DETAILS

The SNMPFS implements a gateway between regular file system access primitives and
SNMP commands. Generally, file systems are implemented at kernel space, however,
we chose to implement the file system in userspace to facilitate the development and test
process. We used FUSE [12], a stable and well known API for file system development.

The SNMP information is somehow austere, mainly because of the Object IDs
(OIDs) that it uses to identify each managed object. The OID is a sequence of inte-
ger values, separated by a ‘.’ (dot): 1.3.6.1.2.1.1.1.0. This sequence defines a path in the
agent’s tree of objects, referring to a specific value (Figure 3). This path, for example,
points to a specific object, which refers to a value resulting from device instrumentation.

6 Rui Lopes et al.

1

1 2

1 2

1 2 3

3 4

3

"Joe" "Somewhere" 1234
1.2.2.1.0 1.2.2.2.0 1.2.2.3.0

Fig. 3: Scalar values organization in the agent.

In Figure 3, for example, the OID 1.2.2.1 refers to the lower left node in the tree.
This node is associated with a specific value, a scalar, in this case, which contains the
string “Joe”. The scalar is viewed as an additional node, a leaf, and is referred by adding
a ’.0’ to the OID.

Each object, the circles in the figure, has a set of attributes or meta-information,
which allows the user to get the semantics of the value (what does “Joe” stands for).
The attributes, as well as the overall structure, is described in a file, called a Man-
agement Information Base (MIB), which associates a descriptive, meaningful, name to
each object and further describes the data type, access restrictions, OID structure and
others. From the user perspective, this also allows mapping the sequence of integers to
a short name: it is easier to refer to each object by the short name, instead of the OID
(get sysDescr, instead of get 1.3.6.1.2.1.1.1.0).

After parsing the MIB files, the SNMPFS performs this mapping, storing the meta-
information to improve the information provided to the user by the file system. The OID
in the sequence of integers format will only be used when the MIB is not available.

3.1 The MIB parser

As mentioned above, the MIB structure is important to SNMPFS to provide a more useful
and meaningful view of the file system. MIB files are written in a subset of the Abstract
Syntax Notation One (ASN.1), called “Structure of Management Information” [13].

SNMPFS 7

The MIB must be parser so that the tree, nodes, types and objects extracted. We are
using Marser [14], an API to parse SMI (v1 and v2).

Moreover, the information from the MIB allows to identify tabular information,
which further helps the file system to present the information to the user in a more
manageable way. In this case, tables will be available is CSV format, allowing the user
to read and modify it using a spreadsheet application.

Tables are represented as a further extension to the OID tree (Figure 4). As in the
previous case, where each scalar is retrieved from a leaf, tabular values are retrieved
from several leafs, hanging on the OIDs that represent the columns (in the figure, the
table is referred with the OID 1.2.3, which has the columns 1.2.3.1 and 1.2.3.2).

1

1 2

1 2

1 2

3 4

3

192.168.1.1 192.168.100.254
192.168.64.12
193.136.34.10

192.168.100.253
192.168.100.252

Fig. 4: Tabular values organization in the agent.

One or more of the columns are the index, which allows to retrieve the rows
in the table. So, to get the first value of the table, it is necessary to issue: get
1.2.3.2.192.168.1.1, which yields 192.168.100.254.

8 Rui Lopes et al.

3.2 Files

When dealing with agents with an unknown structure, the user usually has to explore
the management information tree, retrieving all the information that the agent stores.
This operation is called ‘walk’, because it allows to visit all the places “hidden” in the
agent. The SNMPFS has a special file which allows doing precisely this. The file, called
walk.txt, lists all the managed objects retrieved as the result of a ’walk’ operation.

By simply opening this file in a text editor, the user will be able to immediately see the
objects the SNMP agent implements:

sysDescr;1.3.6.1.2.1.1.1.0
sysObjectID;1.3.6.1.2.1.1.2.0
sysUpTime;1.3.6.1.2.1.1.3.0
sysContact;1.3.6.1.2.1.1.4.0
sysName;1.3.6.1.2.1.1.5.0
sysLocation;1.3.6.1.2.1.1.6.0
sysServices;1.3.6.1.2.1.1.7.0
sysORLastChange;1.3.6.1.2.1.1.8.0
sysORID;1.3.6.1.2.1.1.9.1.2.1
sysORID;1.3.6.1.2.1.1.9.1.2.2
sysORID;1.3.6.1.2.1.1.9.1.2.3
sysORID;1.3.6.1.2.1.1.9.1.2.4
sysORID;1.3.6.1.2.1.1.9.1.2.5
sysORID;1.3.6.1.2.1.1.9.1.2.6
...

With the information obtained in the file, the user can configure the file system,
describing which files should be available and what is the name they should have. The
configuration is written is XML and define all the aspects of the file-system: the agent’s
address, access credentials, MIBs to load, which nodes to show and where to mount:

<device name="device">
<mount dir="tmp" />

<mibs dir="../mibs/">
<mib file="SNMPv2-MIB"/>
<mib file="RFC1213-MIB"/>
<mib file="IF-MIB"/>

</mibs>

<snmp address="192.168.1.1" port="161"
version="v2c" community="public" />

<entries>
<scalar label="sysUpTime" />
<scalar label="sysDescr" />
<table label="ifTable" />

SNMPFS 9

<table oid=".1.3.6.1.4.1.63.501.3.2.2"
file="myTable">

<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.1" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.2" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.3" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.4" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.5" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.6" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.7" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.8" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.9" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.10" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.11" />
<col oid=".1.3.6.1.4.1.63.501.3.2.2.1.12" />

</table>
</entries>

</device>

The previous configuration file will result in the appearance of 5 files in the ‘tmp’
directory – two tables, two scalars and the walk.txt (Figure 5).

Fig. 5: Screenshot of an SNMPFS directory.

10 Rui Lopes et al.

3.3 Values and Tables

Each file representing a scalar simply has to get the value from the agent each time it is
read. In the previous configuration file, the scalar ’sysUpTime’ and ’sysDescr’ show as
files, containing the information from the agent located in 192.168.1.1.

Tables, because of the tree like structure, require more processing. The algorithm
we follow is:

read configuratiom file;
for each entry
if is table

read columns;
if columns empty

read columns from MIB;
for each column

while has more leafs
get leaf;
store in row,column;

end;

The fetch of values and store in row and column format allows to build the content
around the CSV format, that can be manipulated by a spreadsheet application (Figure 6).

Fig. 6: Editing the ifTable with a spreadsheet.

4 USE CASES

In system and network management, the administrators are used to create scripts to
automate some of the typically repetitive and/or boring maintenance activities. Many
of this scripts work by reading, writing and updating configuration files, altering the
way daemons and services work (such as e-mail, HTTP, SSH, . . .). The SNMPFS enables

SNMPFS 11

mapping SNMP information to a file system structure, thus contributing to the integra-
tion of monitoring, configuration and accounting processes. In other words, the SNMPFS
will foster administrators to develop new tools easier and to use the same tools in differ-
ent scenarios because of the transparency and integration of the file system paradigm.

The extension of the file system with files related to instrumentation and configura-
tion information from network devices will further alleviate the burden. By mounting
several devices in the same file system, where each directory represents a different
agent, enables the administrators to be able to make queries or change values on all the
equipment, just by browsing the file system.

4.1 Monitoring

Monitoring operations require the user to retrieve, process, analyse and visualize instru-
mentation information. For example, several parameters can be queried to get the status
of remote hosts (Table 1).

Table 1: Monitoring examples.

Query Object Type
the number of users on a system hrSystemNumUsers scalar
the bytes transmitted ifInOctets;ifOutOctets table
the storage areas hrStorageTable table
the processor load hrProcessorLoad table

Other common operation is to build the topology map of the network, representing
the connections and hosts structure. This is done with the help of the IP forwarding
table, maintained in the switches and routers. Each table gathers the MAC addresses
in each port, allowing the correlation of addresses into building a visual representation
of the network topology. By replicating this information (a simple copy will do), will
enable to create a view of the network a specific times.

4.2 Configuration

One challenge on integrated management of networks is how to apply policies that are
transversal to more that one equipment. The integration of several SNMP agents in the
same file system can enable the administrator to create sound scripts to apply the policy.

In complement to these use cases, one that is being currently addressed is the use of
version control systems for maintaining snapshots of SNMP agents’ configuration. Each
type and version of equipment has different ways for manipulating their configurations,
because of the MIBs they implement. With the SNMPFS, administrators can make use of
already accepted solutions for version control. A Distributed Version Control, such as
GIT2 enables to have a master repository for each agent as well as a local repository in
the management stations.

2 http://git-scm.com/

12 Rui Lopes et al.

The first mount of the agent, a new repository is created and the files are added,
tagged as the initial commit. This local repository is pushed to the master repository,
which will work as another, more general, versioning peer. The master is configured for
post commit routines, that will update the directory where the agent is mounted. The
master will apply the changes in the file system, configuring the equipment accordingly
and changing the properties that enables the updated of the configurations. This enables
that different administrators can work on their stations using the repositories for chang-
ing configurations and the push the configurations to the master that will change the
agents’ status. Moreover, using tags to identify specific configuration versions allows to
easily change form one configuration to another.

4.3 Scheduling operations

Modern operating systems have tools that enables users to schedule jobs (commands
or shell scripts) to run periodically at certain times or dates. One such tool, popular un
Unix-like operating systems, is cron, used to automate system maintenance or admin-
istration. Proper configured cron jobs allows to activate some options at some time on
agents, for example, to shutdown several devices at a specific time. Moreover, it also
allows to watch files for specific values for, for example, triggering some configuration
change or event (send emails, executing commands).

5 CONCLUSIONS

Accessing and updating information is a frequent operation in virtually any activity. Be-
cause of the evolution of computing platforms, the electronic information is associated
with the concept of files, residing in a generic storage mechanism. Usually, the files are
updated by general use applications, such as office suites or drawing editors. Often, the
content is in plain text, allowing standard editors to retrieve and update the information.

Because of the ubiquity of files, modern operating system have an extensive set of
tools to deal with the maintenance of files, such as renaming, creating, copying, backing
up and restore, and so on. In enterprises, work files are typically stored in network
storage, made available through a virtual file system in local desktop computers.

Network and system management (NSM) is a major concern for maintaining the
system in good working conditions. Many of the tasks involved in NSM require moni-
toring and updating information resulting from instrumentation procedures in applica-
tions, services and equipment. The paradigm in traditional NSM models rely on client-
server protocols, through special purpose applications.

The SNMPFS, proposed in this paper, integrates network devices, applications and
service management in a common platform and paradigm – the file system. In this
way, network management operations can benefit from the existing powerful operating
system tools to monitor, update instrumentation, configuration and monitoring informa-
tion.

SNMPFS 13

References

1. Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M., Noveck, D.:
NFS version 4 Protocol. RFC 3010 (Proposed Standard) (December 2000) Obsoleted by
RFC 3530.

2. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. Technical report, Google
(2003)

3. Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Sidebotham,
R.N., West, M.J.: Scale and performance in a distributed file system. ACM Transactions on
Computer Systems 6(1) (feb 1988) 51–81

4. Anderson, T.E., Dahlin, M.D., Neefe, J.M., Patterson, D.A., Roselli, D.S., Wang, R.Y.: Serv-
less network file systems. ACM Transactions on Computer Systems 14(1) (feb 1996) 41–79

5. Harrington, D., Presuhn, R., Wijnen, B.: An Architecture for Describing Simple Network
Management Protocol (SNMP) Management Frameworks. RFC 3411 (Standard) (December
2002)

6. Durham, D., Boyle, J., Cohen, R., Herzog, S., Rajan, R., Sastry, A.: The COPS (Common
Open Policy Service) Protocol. RFC 2748 (Proposed Standard) (January 2000) Updated by
RFC 4261.

7. Kavasseri, R.: Distributed Management Expression MIB. RFC 2982 (Proposed Standard)
(October 2000)

8. McCloghrie, K., Perkins, D., Schoenwaelder, J.: Textual Conventions for SMIv2. RFC 2579
(Standard) (April 1999)

9. Blumenthal, U., Wijnen, B.: User-based Security Model (USM) for version 3 of the Simple
Network Management Protocol (SNMPv3). RFC 3414 (Standard) (December 2002)

10. Blumenthal, U., Maino, F., McCloghrie, K.: The Advanced Encryption Standard (AES)
Cipher Algorithm in the SNMP User-based Security Model. RFC 3826 (Proposed Standard)
(June 2004)

11. Wijnen, B., Presuhn, R., McCloghrie, K.: View-based Access Control Model (VACM) for
the Simple Network Management Protocol (SNMP). RFC 3415 (Standard) (December 2002)

12. FUSE: Filesystem in userspace. http://fuse.sourceforge.net (2011)
13. McCloghrie, K., Perkins, D., Schoenwaelder, J.: Structure of Management Information Ver-

sion 2 (SMIv2). RFC 2578 (Standard) (April 1999)
14. Marser: Marser - a mib parser. http://marser.sourceforge.net (2007)

