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Abstract Transglutaminases are a family of enzymes (EC
2.3.2.13), widely distributed in various organs, tissues, and
body fluids, that catalyze the formation of a covalent bond
between a free amine group and the γ-carboxamide group of
protein or peptide-bound glutamine. Besides forming these
bonds, that exhibit high resistance to proteolytic degradation,
transglutaminases also form extensively cross-linked, gener-
ally insoluble, protein biopolymers that are indispensable for
the organism to create barriers and stable structures. The
extremely high cost of transglutaminase of animal origin has
hampered its wider application and has initiated efforts to find
an enzyme of microbial origin. Since the early 1990s, many
microbial transglutaminase-producing strains have been
found, and production processes have been optimized. This
has resulted in a rapidly increasing number of applications of
transglutaminase in the food sector. However, applications of
microbial transglutaminase in other sectors have also been
explored, but in a much lesser extent. Our group has identified
a transglutaminase in the oomycete Phytophthora cinnamomi,
which is able to induct defense responses and disease-like
symptoms. In this mini-review, we report the achievements

in this area in order to illustrate the importance and the
versatility of transglutaminases.
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Introduction

Transglutaminases (TGases), also named protein-glutamine γ-
glutamyltransferases, are enzymes belonging to the proteases
class that catalyze post-translational modifications in many
proteins by inter- or intramolecular cross-linking through
acyl-transfer between y-carboxyamide groups of glutamine
residues and ε-amino groups of lysines, or other primary
amine, resulting in the formation of γ-glutamyl-ε-lysine pep-
tide chain bridges (Beninati et al. 2009; Campos et al. 2010;
Hu et al. 2011; Jung et al. 2012; Li et al. 2013; Lorand and
Graham 2003). In the latter case, it is able to modify the
protein substrate by “cationization” or by forming inter- or
intramolecular bridges through polyamines of different length
(Serafini-Fracassini et al. 2009). The results of this activity are
the modification of the protein conformation and other more
extensive conformational changes, due to bonding between
the same and different proteins, forming high molecular
weight conjugates (Carvajal et al. 2011).

TGases have been found in prokaryotes and eukaryotes,
including guinea pig (Folk and Cole 1966), and were actually
first extracted from this animal’s liver in 1973 (Folk and
Chung 1973). This TGase was the only form arriving at the
market by the end of the 80s, not arousing much interest from
the industrial point of view, since it was very expensive. In
addition it was a Ca2+-dependent enzyme, which led to the
precipitation of proteins of some foods containing casein,
soybean globulin, or myosin (Faria 2010; Serafini-Fracassini
and Del Duca 2008).
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Nevertheless, TGases are known to be widely distributed in
nature, being found in mammalian, vertebrates, invertebrates,
mollusks, plants, and microorganisms (Folk et al. 1980;
Icekson and Apelbaum 1987; Porta et al. 2013; Yasueda
et al. 1994), and were reported as a single-chain polypeptide
consisting of 331 amino acids (Della Mea et al. 2004; Macedo
and Sato 2005).

Although, it is associated to food industry, as a food additive
(texturing agent), and in wool textiles and biopolymers (Carvajal
et al. 2011), the interest in these enzymes is also focused on
several biological processes (blood clotting, wound healing,
epidermal keratinization, curing membranes) and clinical appli-
cations such as neurodegenerative diseases and blood coagula-
tion disorders, bone tissue healing processes and cell differenti-
ation processes, tissue stabilization, and even in apoptosis
(Brunner et al. 2002; Csosz et al. 2008; Lorand and Graham
2003). In addition, TGases are considered as responsible for
growth regulation, differentiation, and cell proliferation, as well
as having an important role in allergies prevention.

Mechanism of action of TGases

TGases catalyzes post-translational cross-link reactions be-
tween two substrates that can be two proteins or two residues
of the same protein, involving lysine and glutamine (Serafini-
Fracassini and Del Duca 2008). These cross-links occur along
time, and one critical step is the process of cell stabilization,
between the extensive range cross-existing ε-(γ-Glu)Lys and
N,N-bis(7-Glu)amine, that are the most frequent among those,
caused by the catalytic action of the enzyme.

The inter- and intraprotein cross-links of TGases are cata-
lyzed by inducing a modification of their structure at the
molecular level thereby affecting the functional properties of
these proteins, allowing further structural forms and creating
polymers of high molecular weight (Faria 2010). It is the
original molecular structure of proteins that determines wheth-
er a TGase cross-linking is possible and to what extent
(Macedo and Sato 2005). In food, protein cross-linking occurs
before the other reactions (Fig. 1).

Several studies revealed that the level of ε-(γ-Glu)Lys is rather
high in processed, especially cooked, foods compared to raw
materials (Sakamoto et al. 1995; Seguro et al. 1996b). Other
studies reported that humans have long been ingesting ε-(γ-
Glu)Lys cross-links, and both of the cross-linked proteins and
the lysine in the ε-(γ-Glu)Lys moiety have been confirmed to be
metabolized in the organism (Seguro et al. 1995, 1996a).

Microbial transglutaminase

The search for novel chemotherapeutic and chemoprevention
drugs with less toxicity, particularly from natural sources, is of

great importance. Some literature data reveals the important
anti-cancer effects of phytochemicals linked to the reduction
of polyamine production and to the induction of tumor cell
differentiation, through the activation of intracellular TGases
(Facchiano et al. 2006; Lentini et al. 2010). Lentini et al.
(2009) reported the direct correlation between TGase activa-
tion, reduction of cancer growth, and stimulation of melanoma
cell differentiation.

Studies conducted in this field performed the isolation of
microbial TGases (MTG) from Streptoverticillium sp. (Ando
et al. 1989; Folk and Cole 1966) and from Bacillus sp. (Marx
et al. 2008). Obtaining TGases by microorganisms has be-
come a step of great industrial importance, from
Streptoverticillium S-8112 (an actinomycete isolated from
the soil), since it can be isolated as enzyme Ca2+-independent,
with simplified purification procedures, reducing the costs.
MTG showed to be able to make cross-links in the majority
of food proteins such as caseins, soybean globulin, gluten,
actins, myosin, and egg proteins, as efficiently as the animal-
derived mammals TGases.

Protein cross-linking catalyzed by MTG has attracted the
greatest interest, owing its application in food and industrial
processes (Camposa et al. 2013). Due to their effects on the
physical and chemical properties of proteins, they have many
biotechnological applications particularly in the food process-
ing industry, in medicine, and in cosmetics, increasing the
demand for an inexpensive, efficient, and safe source of
recombinant enzymes (Capell et al. 2004; Faria 2010;
Serafini-Fracassini and Del Duca 2008; Shleikin and
Danilov 2011).

Regarding their application in medicine, the metabolites
produced by Streptoverticillium sp. have an anti-inflammatory
effect (Da Cruz et al. 2013). Recently, new data was published
about the importance of TGases in chronic inflammatory
diseases, in wound healing, in repair of tissues and develop-
ment of fibrosis and autoimmune reactions, in chronic degen-
erative diseases (arthritis, atherosclerosis, and neurodegener-
ative states), and in oncologic pathology (Shleikin and
Danilov 2011). In addition, it is known that TGase causes
modification of surface viral glycoproteins gp41 and gp120
that mediate penetration of HIV into cell (Shleikin and
Danilov 2011; Tabolacci et al. 2012).

The reaction mechanism of all known TGases is based on a
Cys-His-Asp triad or, less frequently, a Cys-His dyad.
Nucleophilic attack on the substrate is performed by the
sulfhydryl group of the cysteine following activation by a
thiolate-imidazolium ion pair involving the histidine side
chain. The cysteine and the histidine residues are principally
involved in the acyl-transfer reaction, where the aspartic acid
residue hydrogen bonds with the histidine, maintaining a
catalytically competent orientation. The crystal structure of
MTG revealed that this triad is not conserved; rather, it was
proposed that MTG uses a cysteine protease-like mechanism
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in which Asp plays the role of the histidine residue in factor
XIII-like TGases (Rachel and Pelletier 2013) (Fig. 2).

Concerning the substrates for MTG reactions, recent stud-
ies have shown that among milk proteins, casein is the best for
binding while among the animal tissue are gelatin and myosin.
Also, well bound are soybean globulins, egg proteins, gliadin,
and wheat glutenin (Lim et al. 2011; Shleikin and Danilov
2011). Thus, MTG-induced gelation, performed under mild
conditions, may be a better alternative to encapsulate probiotic
cells. Li et al. (2013) reported that the MTG produced by
Streptomyces mobaraensis is commercially available and
widely used in the food industry, biopolymers and cosmetics,
clinical applications, and wool textiles . With respect to TGase
heterologous production, only TGase from Streptoverticillium
sp. is currently commercially available (Kobayashi et al. 1998;
Kuraishi et al. 2001), with a low production by overexpression
in Escherichia coli (Yokoyama et al. 2000). However, in the

last decade, the interest in TGases of plants and oomycetes has
increased.

TGase in plants

TGases and their functionality have been less studied in plants
rather than in humans and animals (Carvajal et al. 2011).
TGase in plants has been studied since 1987, with primary
focus on the molecular mechanisms linking the protein chang-
es with polyamines to form inter- and intramolecular bonds,
influencing the growth and differentiation of plants (Brunner
et al. 2002; Serafini-Fracassini and Del Duca 2008). The
physiological role of TGase in plants appears to be related to
photosynthesis, fertilization, response to abiotic and biotic
stresses, senescence, and programmed cell death (Beninati
et al. 2013).

Fig. 1 Reactions catalyzed by TGase: catalysis of acyl-transfer reactions
between the γ-carboxyamide group of peptide or protein-bound gluta-
mine (acyl donor) and primary amines (acyl acceptor) including the ε-
amino group of lysine residues (a); when the ε-amino group of protein-
bound lysine reacts as an acyl acceptor, intramolecular and/or

intermolecular cross-links (isopeptide bonds) are formed, resulting in
the polymerization of proteins (b); in the absence of primary amines,
water can react as acyl acceptor, leading to the deamidation of the
glutamine residue under formation of glutamic acid and ammonia (c).
Figure reprinted from (Jaros et al. 2006)

Fig. 2 Crystal structure of MTG
(PDB ID: 3 IU0). The active site
of the zymogen is covered (a) by
an α-helix (gold), which is
cleaved upon activation, exposing
the active site cysteine residue (b,
yellow spheres) that is critical for
activity. Figure reprinted from
(Rachel and Pelletier 2013)
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The few TGases sequenced by plants have little similarity
with the animal enzymes but can share an homologous struc-
ture, since they have functional similarities, among which (1)
the production of derivatives of glutamyl-polyamine reaction,
(2) being recognized by antibodies of animal TGase, and (3)
being Ca2+-dependent (Serafini-Fracassini and Del Duca
2008). Therefore, it is difficult to obtain information of plant
TGases through homologous comparison with other sources.
However, most of its features and properties remain a mystery.
It is known that TGases have a ubiquitous character and are
present in various structures of plants involved in specific
processes of changes in the protein structure. In chloroplasts,
despite its precise function is unclear, TGase appears to stabi-
lize the photosynthetic complexes and ribulose bisphosphate
carboxylase/oxygenase, being regulated by light and other
factors, possibly exerting a positive effect on photosynthesis
and photoprotection (Beninati et al. 2013; Campos et al.
2010). In the cytosol, TGase modifies cytoskeletal proteins
as observed in the pollen tube which regulates the growth;
furthermore, some reports suggest an involvement in the
pollen tube cell wall construction/organization (Del Duca
et al. 2009; Di Sandro et al. 2010; Faria 2010; Serafini-
Fracassini and Del Duca 2008). Other features are reported,
highlighting the hypersensitive response which consists of
programmed cell death upon infection by plant pathogens.

TGase in Phytophthora

Phytophthora species are pathogens that infect various plants,
leading to major economic and environmental damage (Reiss
et al. 2011). In recent years several studies have been under-
taken, linking interactions between Phytophthora and resis-
tant plants in order to understand the mechanisms of infection,
hypersensitive response, and resistance of the host (Kamoun
2001). Phylogenetic studies, developed by Kamoun, proved
that oomycetes have developed unique capabilities to infect
plants as well as unique mechanisms to achieve (1) hypersen-
sitive response, (2) response with hypersensitive cell death,
and (3) faster hypersensitive response with programmed apo-
ptosis. The immune response consists of the recognition of
pathogen-associated molecular patterns (PAMPs) from the
infected organism and consequent attack response, provided
by the infected cells (Bent and Mackey 2007; Chisholm et al.
2006). The faster the immune response is, the smaller will be
the proliferation of the pathogen agent.

A fragment of an oligopeptide, called Pep-13, was identi-
fied inside of glycoprotein gp42 present in the cell wall of
Phytophthora sojae (Brunner et al. 2002). When introduced
into salsa, Pep-13 induced a number of defense mechanisms,
leading to a hypersensitive response, followed by death of the
infected cells. Brunner and collaborators determinate that
gp42 is a Ca2+-dependent TGase, the first identified in

oomycetes. In addition, with the induction of gene mutations
in Pep-13, they found that the amino acids responsible for
inducing an immune response in plants are the same amino
acids needed by the TGase to initiate the activity (Brunner
et al. 2002). Apart from this factor, Pep-13 has similar evolu-
tionary characteristics to PAMPs, starting an immune re-
sponse in vertebrates and invertebrates organisms.
Summarizing, the plants can recognize PAMPs with similar
characteristics, known by trigger innate immune responses in
animals. This factor is of great importance, since it relates to
the ability of immune response of different realms (Brunner
et al. 2002).

TGases structural sequences with elicitin activity, associat-
ed to plant defense mechanisms, were isolated and character-
ized by our group in Phytophthora cinnamomi (partial cds).
Thermal asymmetric interlaced-PCR, and hemispecific PCR
amplification protocols, that combine nested insert ion-
specific primers (designed in highly conserved region of
Phytophthora transglutaminases), with degenerate primers,
were used to amplify DNA flanking of a known sequence
using genomic P. cinnamomi DNA as template (Choupina
et al. 2014; Martins et al. 2014). In this process, a 2,218-bp
DNA fragment was sequenced (GenBank: AM403129.1, un-
published results). That fragment encodes a 533 deduced
amino acid protein which includes an ORF with high homol-
ogy with P. sojae (70 %), Phytophthora megasperma (70 %),
and Phytophthora infestans (61 %) transglutaminases, besides
a deduced similar structure. Alignment of a transglutaminase
gene with several transglutaminase proteins revealed that our
protein contains the conserved domain [GT]-Q[CA]-W-V-
X-[SA]-[GAS]-[VT]-x(2)-T-x[LMSC]-R-[CSAG]-[LV]-G,
(Fig. 3).

TGase application in food processing industry

TGase is classified, by some authors, as glue to meat, being
increasingly used in gastronomy. As previously referred, it is
able to form stable and covalent links between proteins. This
transformation operates in all types of food proteins (fish,
meat, tofu, jelly, flours). Basically, in foods that contain pro-
teins, TGase is responsible for the polymer formation, raising
interest in food processing (Lorenzen 2007). Its application
modifies food characteristics, acting in terms of solubility and
hydration capacity, among others (Faria 2010).

Because the ε-(y-Glu)Lys (inter- and intramolecular) are
covalent bonds, they are more stable than ionic or hydropho-
bic bonds. These connections, even in small amounts, can
have a significant effect in food properties (Faria 2010;
Kuraishi et al. 1996, 2001). Functionality of the proteins can
be drastically altered, causing dramatic changes in the size,
organization, stability, and other protein properties (Truong
et al. 2004). Due to this ability to change the functionality of
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food proteins, what is one of the most innovative uses of en-
zymes in food technology during the last decade, TGases have
been the object of study in processed food containing soybean
protein, myosin, gluten, globulin, whey proteins, and casein,
(Lorenzen 2007; Macedo and Sato 2005). However, despite its
beneficial application, the usage of TGases as food additive has
to be declared to ensure transparency for the consumers.

Concerning the food processing industry, MTG is active
over a wide range of temperatures and stable between pH 5
and 9, which is the pH range for most food processing (Ando
et al. 1989; Seguro et al. 1996b). According to Ajinomoto
(2011), TGase, when added to food, influences the following
properties:

1. Gelatinization capacity: a protein that is initially unable to
form gel by itself can form gel and become firmer.

2. Viscosity: when increasing the molecular weight of the
protein, the protein solution viscosity increases.

3. Thermal stability: the covalent bonds formed, inter- and
intramolecular, are stable as temperature changes.

4. Capacity of water retention: the capacity of water reten-
tion increases, independently of changes in temperature or
physical forces.

5. Nutritional value: the polymerization by biological trans-
formations is considered safer than by chemical
transformations.

Ozer et al. (2007) and Yüksel and Erdem (2010) reported
that the cross-linking reaction induced by TGase resulted in an

increase of the gel strength, stability, viscosity, and water-
holding capacity of yogurt . Indeed, previous studies reporting
the effects of TGase on yogurt have been published (Lauber
et al. 2000; Lorenzen et al. 2002). In the processing of pre-
pared foods, especially meat products, salt and/or some phos-
phates are usually added to improve or increase the water-
holding capacity, binding, consistency, and overall texture
(Kuraishi et al. 2001). Among dairy proteins, casein can be
easily cross-linked by TGase, mainly owing to its high-
ly accessible and flexible open chain (Jaros et al. 2007).
Furthermore, the use of this enzyme was shown to
increase the shelf life of certain products and reduce
the allergen potential for others (Macedo and Sato
2005). Also, TGase could prevent syneresis improving
viscosity, water-holding capacity, and preventing ice
crystal growth, so it is expected that TGase may allow
the replacement of stabilizers used during the manufac-
ture of dairy products to enhance and maintain certain
characteristics (Kuraishi et al. 2001).

Kuraishi et al. (2001) reported that TGase has been used to
modify the functional properties of many food proteins in
seafood, surimi products, meat products, noodles/pasta, dairy
products, baked goods, and so on . MTG also has been
reported as useful to improve textural properties of protein
gel-based dairy products (Castro-Briones et al. 2009; Yew
et al. 2011; Yokoyama et al. 2004; Zhang et al. 2013).
Other studies reported some applications in seafood prod-
ucts, allowing changing their texture, especially in retorted
products, while frozen foods are prevented to some extent

Fig. 3 Multiple sequence alignment of transglutaminase from Phytophthora sp.
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by soaking raw materials in a solution of TGase and
caseinate (Kurakata et al. 1995; Sakai et al. 1996).
TGase is also used to treat salted cod roe and are
widely used in noodles and pasta production in Japan
(Kuraishi et al. 2001). More industrial applications of
TGase have been well reviewed by Nielsen (1995) and
Zhu et al. (1995).

Pharmacological application of TGase

TGases are involved in diverse physiological and physiopath-
ological processes, becoming a target of interest with high
potential for therapeutic use.

One of the best-known TGases is factor XIII in human
blood (Chung 1972). Factor XIII helps to stop bleeding by
forming cross-links of fibrin molecules and stabilizing fibrin
polymers (Faria 2010; Kuraishi et al. 2001). In addition,
this enzyme is involved in the prevention of blood loss
from traumatized vessels by formation of fibrin clot at
blood coagulation, activation of platelets, and layering
of granulation tissues representing primary healing of
local lesion (Shleikin and Danilov 2011). Besides, factor
XIII has been applied in the substitutive therapy at rare
genetic defects of blood coagulation caused by the
absence of TGase in blood plasma (Shleikin and
Danilov 2011).

TGase also presents several applications at the pharmaco-
logical level. It was developed by Noguchi et al. (1992), a
material that promotes absorption of minerals by the human
body. This material was obtained through the use of TGase in
casein; it promotes mineral absorption in the intestine and can
be used in the food industry and pharmaceutical for mineral
supplements for children and adults, reducing the allergenicity
of certain proteins (Macedo and Sato 2005). Some studies
have shown that TGase has multiple physiologic functions
and is associated with cancer cell survival and drug resistance
(Mehta et al. 2004), anti-apoptotic effects by promoting inter-
actions between cell-surface integrins (Akimov and Belkin
2001) by interacting with the retinoblastoma (Rb) protein
(Boehm et al. 2002), or by downregulation of caspase 3
(Yamaguchi and Wang 2006). Also, it is highly expressed in
drug-resistant cancer cells (Kim et al. 2006; Mehta et al.
2004). Other studies reported the use of TGase for grafting
of gelatin or ovalbumin with chitosan to prepare functional
biomaterials (Chen et al. 2003; Di Pierro et al. 2007).
Commercial application of TGases has been constantly in-
creased at a rising rate, in particular for the development of
new vaccination strategies in infectious and viral infections.
For example, it is known that some bacterial toxins, including
the cytotoxic factor 1 of E. coli, act as TGase (Shleikin and
Danilov 2011).

Conclusions

The growing world population leads to concerns for new
sources of food. The search for new sources of proteins and
the profitability of existing is an essential priority. Advances in
science have contributed greatly to produce sources of pro-
teins and meat alternatives in order to address the protein
deficiency in the human diet as well as contribute to the
development of healthier products, providing health and well-
ness. Targeting all these aspects, proteins modified with en-
zymes, notably through the use microbial transglutaminases,
are one of the most promising alternatives for the production
of new protein foods. On another hand, the potential of
transglutaminase is not confined to the food and pharmaco-
logical applications. Recent findings relate the importance of
this enzyme in the plant’s hypersensitive response, to diseases
responsible for the devastation of crops, and by introducing
new concepts in cross-immune response to different realms.

With all these findings and given the ubiquitous nature of
TGases in the activity of all organisms, it becomes essential to
classify all the features and properties of this enzyme.
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