LIFE-CYCLE GREENHOUSE GAS EMISSIONS OF PORTUGUESE OLIVE OIL

Filipa Figueiredo¹, Vlad Constantin Coroama^{1*}, António Ramos^{2,3}, Arlindo Almeida¹, Elsa Ramalhosa⁴, Érica Geraldes Castanheira¹, Fátima Peres², João Carneiro^{2,3}, José Alberto Pereira⁴, Manuel Feliciano⁴, Paulo Gomes², Pedro Marques¹, and Fausto Freiro

1: ADAI-LAETA (Center for Industrial Ecology)
Department of Mechanical Engineering, University of Coimbra
Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
*e-mail: vlad.coroama@dem.uc.pt, web: http://www2.dem.uc.pt/CenterIndustrialEcology/

2: Escola Superior Agrária de Castelo Branco Qta. Sra de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal

- 3: CERNAS (Centro de Estudos de Recursos Naturais, Ambiente e Sociedade)
- 4: Mountain Research Centre (CIMO), ESA- Polytechnic Institute of Bragança Campus de St^a Apolónia, Apartado 1172, 5301 -854 Bragança, Portugal

Keywords: carbon footprint; olive plantations; environmental impact; extraction; greenhouse gas; life-cycle assessment;

Abstract The main goal of this paper was to assess the greenhouse gas (GHG) intensity of olive oil production in Portugal. A life-cycle model and inventory were implemented for the entire production process, including a comprehensive analysis of olive cultivation, olive oil extraction, packaging, and distribution. Data originates from five differently-sized Portuguese olive growers and from a total of six olive oil mills, representing the three extraction processes in use: three-phase extraction, two-phase extraction, and traditional pressing. The results show that the GHG intensity lies in the range 1.8-8.2 kg CO2eq/liter and that the main contributors were fertilizers (production and field emissions). Efficient use of fertilizers thus seems to be a key factor for mitigating the GHG intensity of olive oil production.