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In previous works, a one-dimensional model was built to simulate the nonsteady radial combustion propagation on thin

disk-shaped samples of Fe2O3/aluminum thermite mixtures and was successfully tested. Now, the purpose is to extend

the referred model to the more sensible two-dimensional features of the samples, maintaining the main characteristics of

the previous model: zero-order kinetics, conductive/radiative heat transfer, assumption of phase transitions, temperature

and composition dependency for all system properties during propagation. Therefore, an adaptive numerical algorithm

that conjugates a method of lines (MOL) strategy based on finite differences space discretizations, with a collocation

scheme based on increasing level dyadic grids is applied for the solution of the problem. The particular integration

method proves to cope satisfactorily with the steep traveling thermal wave in 1D and 2D spatial domains, either for

trivial uniform mixing conditions, as in complex examples developed to feature more sophisticated circumstances, such

as nonhomogeneous reactant mixing, which realistically replicate the observed experimental conditions.
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1. INTRODUCTION

The self-propagating high-temperature reactions, such
as the Fe2O3/aluminum thermite combustion, are diffi-
cult to follow by experimentation due to fast chemical
and physical transformations and the high temperatures
achieved. Consequently, studies concerning theoretical
prediction of these combustion processes have been pub-
lished (Moore and Feng, 1995; Makino, 2001) and repre-
sent a valuable guideline for experimental work.

The Fe2O3/aluminum thermite reaction has already
been simulated in cylindrical geometry with a one-
dimensional coordinate system attached to the uniformly
propagating combustion wave (Raymond et al., 1998;
Shkadinsky et al., 1997, 2000), and with a fixed one-
dimensional coordinate system (Brito et al., 2004). The

availability of experimental data for radial combustion on
disk shaped samples (Durães et al., 2006a) has stimulated,
in an earlier work, the derivation of a one-dimensional
model to describe the Fe2O3/Al radial combustion prop-
agation (Brito et al., 2005). The main features of this
model are presented in the next section. The combustion
front propagation velocity, temperature, and final prod-
ucts composition were obtained, solving the model with
an adaptive numerical scheme, and the solution numerical
profiles proved to be fast moving steep fronts, which were
validated by experimental results (Durães et al., 2006b;
Brito et al., 2007).

Our particular interest resides in a general strategy
for the solution of partial differential equations (PDEs),
named “method of lines” (MOL) (Schiesser, 1991); its
structure can hold various schemes of mesh discretization.
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NOMENCLATURE

a spatial interval lower-boundary position Z sample thickness (m)
b spatial interval higher-boundary position
CP heat capacity [J/(kg K)] Greek Symbols
k thermal conductivity [W/(m K)] α mass stoichiometric coefficient
K zero-order kinetic constant [kg/(m3 s)] β1, β2 numerical collocation
L latent heat (J/kg) algorithm control parameters
M lower-resolution grid level ε emissivity
N higher-resolution grid level φ angular coordinate
Nint number of intervals of the ρ density (kg/m3)

lower-resolution 1D grid σ Stefan-Boltzmann constant
NRef maximum refinement level W/(m2·K4).
P pressure (Pa) τ time normalization constant (s)
Q reaction heat (J/kg) υ volume fraction
< reaction kinetic rate [kg/(m3s)] ω mass fraction
r radial coordinate (m)
R sample radius (m) Subscripts
R0 ignition zone radius (m) M mixture conditions
t time coordinate (s) i arbitrary component
T temperature (K) A Fe2O3

Tigni ignition temperature (K) B Al
Treact reaction temperature (K) C Fe
T ′ temperature normalization constant (K) D Al2O3

U, U′ heat transfer coefficient [W/(m2 K)] E air
Un
i derivative approximation of degree PMMA/air PMMA interface

n at internal grid positioni steel/air steel interface
W mass concentration (kg/m3) x first spatial coordinate
v radial combustion propagation y second spatial coordinate

velocity (m/s) 0 initial or surrounding conditions

Usually, the numerical solution of PDEs implies the ap-
proximation of the original differential continuous prob-
lem to a system of algebraic equations defined on a dis-
crete domain. This transformation may be done simulta-
neously along every independent variable, or a two-stage
strategy may be applied: First, the discretization of the
original problem in all directions but one (normally time
for initial-boundary value problems) and, second, the in-
tegration in the remaining direction using a standard inte-
grator package. The initial PDE problem is approximated
to a system of ordinary differential equations (ODEs) that
can be solved by an available ODE integrator. Hence, one
can resort to a wide variety of different basis functions
to execute the discretization step, e.g., Taylor expansion
approximations (Schiesser, 1991), different-order polyno-

mials, wavelets (Santos et al., 2003; Cruz et al., 2003), ra-
dial basis functions (Driscoll and Heryudono, 2007), etc.

The typical approach to the referred procedures is rigid
and nonadjustable to its evolution. One way to overcome
the possible problems that may arise from this lack of
flexibility is the adoption of the adaptation concept. Adap-
tivity implies the tuning of algorithm parameters to the
particular conditions of the solution evolution.

In the PDE solving field, the objectives of the adap-
tive procedures have always been the same: To gener-
ate grids that gather nodes in the domain regions where
the solution is more active (i.e., exhibits steeper gradi-
ents) and disperse them in the remaining areas, and/or
follow efficiently the problematic features of the solu-
tion. The introduction of the concept of adaptivity into
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the wider MOL procedure is a fairly straightforward op-
eration (Vande Wouwer et al., 2001).

In the present work we chose to construct an adaptive
grid based on a series of embedded dyadic grids of in-
creasing level, at each time step of the integration. Ak-
level one-dimensional uniform dyadic grid is defined by
a nodal mesh with 2k equidistant intervals. Therefore, a
higher-level grid is generated by adding nodes to the pre-
vious one, at every interval center position (see Fig. 1).
It is important to note that a grid of levelk is always
included in all grids of higher level. The principle is to
construct grids that merge nodes of different resolution
levels according to the estimative of the function activ-
ity over the different regions of the whole domain. This
is accomplished by the definition of a collocation crite-
rion. The referred approach can be rather easily extended
to two-dimensional dyadic grids (see Fig. 2). Hence, we
established a collocation strategy that applies function-
dependent features, allowing the activation (or deactiva-
tion) of nodes belonging to dyadic grids ranging from
a minimum resolution level (M) to a maximum resolu-
tion level (N). Then, we introduce this strategy for the
generation of spatial grids, in an overall MOL algorithm
devised for the adaptive numerical solution of one- and
two-dimensional evolutionary PDE systems, considering
the case study of Fe2O3/Al thermite combustion. For this
chemical system, we used the experimental results for the
radial combustion propagation velocities and temperature
from an earlier work to fit the model kinetic constant and
also for comparison with the calculated velocity profiles.

2. MODEL

2.1 1D Model

The 1D model was already presented in Brito et al. (2005,
2007) and Durães et al. (2006b), and is based on the fol-

FIG. 1: Uniform 1D dyadic grids of increasing level.

FIG. 2: Uniform 2D dyadic grids of increasing level.

lowing general assumptions: (i) one-dimensional radial
nonsteady propagation; (ii) general reaction with mass
stoichiometryαAA+αBB→ αCC+αDD and limiting re-
actant A; (iii) pseudo-homogeneous approach for the vol-
ume element, but considering the contribution of air to
simulate a porous medium; (iv) zero-order kinetics; (v)
conductive/radiative heat transfer mechanisms; (vi) neg-
ligible relative movement between species; (vii) sample
geometry and dimensions; (viii) nonadiabatic system con-
sidering the confinement materials’ properties and envi-
ronmental conditions.

The energetic and mass partial balances become

ρMCPM

∂T

∂t
=

1

r

∂

∂r

[

kM

(

r
∂T

∂r

)]

+Q · <

−
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)

(T − T0) + 2σεM

×
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T 4 − T 4
0

)]

/Z (1)

dWA

dt
= −αA< (2)

whereWA is the mass concentration of the limiting reac-
tant (Fe2O3). The reaction enthalpy, –Q(T) is computed
considering the enthalpy variations [CP(T) integral and
phase transitions] at constant pressure of reactants and
products in the temperature path:T0 → T. The reaction
kinetics is defined by< = H(T – Treact) K, whereH is the
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Heaviside function andK a non-temperature-dependent
kinetic constant. This constant is adjusted for each spe-
cific chemical system considering the stationary combus-
tion propagation velocity observed experimentally (see
Section 3). The last term in Eq. (1) accounts for heat
losses through the sample top and bottom to the surround-
ing (atT0). The differential problem is completed by the
definition of initial and boundary conditions:

t = 0

{

0 ≤ r ≤ R0 ⇒ T = Tigni

r > R0 ⇒ T = T0
(3)

t > 0; r = 0 ⇒
∂T

∂r
= 0 (4)

t > 0; r = R ⇒ kM
∂T

∂r
= −

[

U ′

steel/air (T − T0)

+ σεM
(

T 4 − T 4
0

)]

(5)

Equation (3) simulates ignition by a temperature spatial
pulse with heightTigni and lengthR0 at the initial time.
On the inner and outer boundaries, a symmetry condition
and conductive/radiative heat transfer are considered, re-
spectively.

The thermophysical properties are allowed to vary
with the temperature and composition of the mixture. The
mixing rules for each property, to obtain the averaged
mixture properties (mixture properties) for the pseudo-
homogeneous volume element, are:

CPM =
∑

i

ωiCPi; ρM = 1

/

∑

i
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ρi
;

kM=

(
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/

∑

i

υi

ki
+
∑

i

υiki

)/

2; εM=
∑

i

υiεi (6)

whereωi andυi are the mass and volumetric fractions of
componenti, beingi = A, B, C, D, and E. The pseudo-
homogeneous approach can be justified, in these hetero-
geneous condensed systems with self-propagating high-
temperature reactions; since the reaction zone width (mil-
limeters) is usually much larger than the heterogeneous
scale of the medium (particles with micrometric size), the
melting and homogenization phenomena that occur help
to give consistency to this approximation (Varma and Le-
brat, 1992; Mukasyan et al., 1996, 1999; Varma et al.,
1998; Durães, 2007).

The mixture conductivity was taken as the average
value between the conductivity of a serial and a paral-
lel rearrangement of the components on a very narrow

film (thickness∆r) centered on each spatial node posi-
tion. An equivalent conductivity component is introduced
in air conductivity estimative (k′E = kE+4σεMT3

E∆r),
for the radiation on the void spaces of the serial arrange-
ment, since this phenomenon is significant above 200◦C
(Tavman, 1996; Gonzo, 2002). This thermal conductivity
model was developed by the conjunction of ideas/models
found in the literature to define the effective thermal con-
ductivity for several types of composite solid matrices
(Jakob, 1949; Bowen and Derby, 1995; Tavman, 1996;
Gonzo, 2002). The introduction of air in the mixture had
two main purposes: (i) approximating the mixture prop-
erties to those of a porous mixture; for instance, reducing
the material density; (ii) introducing the radiation phe-
nomenon equivalent to that existing in the transparent
voids, which is of major importance for the heat trans-
fer in the energetic composite. Of an experimental point
of view, the voids also induce an increase of the specific
surface area of the material, enhancing its reactivity, an
increase of the combustion intensity in the voids’ bound-
aries due to the radiation effect, and an increase in the tur-
bulence/mixing of melted reactants. Although the devel-
oped approach still is simplified, as it is based on pseudo-
homogeneous volume elements and thus it cannot take
into account part of these effects, it constitutes an added
value of the present combustion model in relation to the
major part of the models found in the literature for this
kind of reactions (see Durães, 2007).

Phase transitions of the components are also consid-
ered in the model, over a temperature range (∆T) of
1 K, each time its transition temperatures are crossed, by
means of an equivalentCP: C′

Pi = CPi+Li/∆T (Li is la-
tent heat).

The thermophysical properties of the components and
their dependencies with temperature were given in Brito
et al. (2005), as well as the confinement materials’ prop-
erties.

The model solution comprises temperature and com-
position spatial and temporal profiles. The composition
profiles were used to estimate the combustion wave prop-
agation velocity, considering the front position vs time.
The location of the front was obtained by localizing the
position of the 50% conversion point.

2.2 2D Model

The 2D model defined over a cylindrical reference system
was constructed by adding the angular direction to the 1D
model described above. Therefore, the energetic balance
becomes
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and the correspondent boundary conditions are

t > 0; r > 0 ⇒







T (φ = 0) = T (φ = 2π)

∂T

∂φ
(φ = 0) =

∂T

∂φ
(φ = 2π)

;

r = 0 ⇒
∂T

∂φ
= 0 (8)

These conditions represent the coincident and contin-
uously differentiable nature of radial profiles for angular
positionsφ = 0 andφ = 2π, and the nonvariability of
properties on the sample center position (r = 0) for all φ
coordinates.

3. NUMERICAL METHODS

3.1 Adaptive Collocation Strategy

Using the concept of dyadic grid associated with finite
differences approximations, we constructed a collocation
algorithm for grid generation which can be applied in a
MOL algorithm general context. For instance, consider a
region of the spatial domain defined by two consecutive
one-dimensional dyadic grids [see Fig. 3(a)]. A colloca-
tion algorithm is devised for the activation of nodes by
the scheme presented in Fig. 3(b) (Brito, 2010). Using the
local mesh size computed by

∆x =
xk
i+1 − xk

i−1

2
(9)

we created a criterion that intends to identify oscillations
on the finite difference approximation of degreen at each
internal grid positioni (Un

i )—criterion C1; alternatively,
a second criterion is defined which tracks high variations
on the finite difference 1D profile—criterion C2 (see Ta-
ble 1). A criterion C1σ was also developed, by the sub-
stitution of the average evaluation presented above by a
standard deviation test.

β1 andβ2 represent the criteria tolerances that con-
trol the sensibility of the process to the identification of
nonuniformities in the solution numerical profiles. The
grid resolution is increased by the activation of higher-
level nodes that do not verify the collocation criteria. The
set of all active nodes over each dyadic grid generates the
overall adaptive grid.

(a)

(b)

FIG. 3: Representation of the(a) connection between
nodes of consecutive 1D levels and(b) collocation algo-
rithm for the activation of nodes.

TABLE 1: Collocation criteria for adaptive 1D grid
generation

Criterion C1 computeδ1 = Un
i × Un

i−1

andδ2 = Un
i+1 × Un

i

criterion verified if:

|Un
i ×∆x| > β1 or

{

δ1 ≤ 0

δ2 ≤ 0

and

∣

∣Un
i−1

∣

∣+ |Un
i |+

∣

∣Un
i+1

∣

∣

3
> β2

Criterion C2 computeδ1 = Un
i − Un

i−1

andδ2 = Un
i+1 − Un

i

criterion verified if:

|Un
i ×∆x| > β1or δ1 × δ2 ≤ 0

and
|δ1|+ |δ2|

2
> β2

The collocation algorithm described above may be eas-
ily extended to 2D domains by a wide variety of strate-
gies. We chose to select a specific scheme named C52,
which is based on a 2D domain sweeping, by sequenc-
ing 1D procedures over the 1D-x grids for each higher-
resolution levelyposition, followed by similar procedures
on the correspondent 1D-y grids at the higher-resolution
x positions, as described in Brito (2010).
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3.2 1D Algorithm

The node collocation procedure is incorporated in an
algorithm for the resolution of one-dimensional time-
dependent PDE’s. This strategy is based on the conju-
gation of a MOL algorithm where the space derivatives
are approximated by finite differences formulas or high-
resolution schemes (HRS), with grid generation proce-
dure at specified times that reformulate the space grid ac-
cording to the solution evolution (see Fig. 4). At these
intermediate times the solution profiles are reconstructed
through an interpolation scheme. The time integration
can be performed by the ODE integrators DASSL (Pet-
zold, 1982) or RKF-45 (Shampine et al., 1976). There-
fore, the presented algorithm can be included in the class
of h-refinement (static regridding) PDE solution adaptive
procedures. The finite difference coefficients are com-

puted using the recursive method of Fornberg (Fornberg,
1988), the HRS schemes are based on the NVSF method
(Darwish and Moukalled, 1994) associated to flux limit-
ing strategies, such as SMART or MINMOD procedures
(Alves et al., 2003), and the interpolation step is done by
linear or cubic splines approximations.

3.3 2D Algorithm

The collocation algorithm described above was also
adapted for its application in the solution of 2D models
over 2D dyadic grids of which the hierarchical relation is
presented in Fig. 5. This algorithm (see Fig. 6) is simi-
lar to the 1D procedure depicted in the preceding section,
the most important differences being related to the need
of developing an interface which translates the 2D origi-
nal problem into a 1D support for introduction in the time

FIG. 4: General flow sheet for the 1D integration algorithm.
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FIG. 5: Representation of the connection between nodes of consecutive 2D levels.

FIG. 6: General flow sheet for the 2D integration algorithm.
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integrator followed by the corresponding 2D problem re-
construction after the integration step.

4. EXPERIMENTAL

Industrial Fe2O3 (1.7 µm, 96%, Bayer) and aluminum
(18.6 µm, 89.3%, Carob) powders were mixed in sto-
ichiometric ratio, following the reaction scheme of
Eq. (10). Chemical and physical characterization of re-
actants, and the mixtures preparation procedure were pre-
sented in previous papers (Durães et al., 2006a, 2007).

Fe2O3 + 2Al → 2Fe+ Al2O3 (10)

Reactant mixtures were compressed in a stainless steel
circular box with an inner PMMA lid (Durães et al.,
2006a). Samples combustion was initiated in an igni-
tion central channel, via a nichrome wire instantaneously
heated by a capacitor discharge. Radial flame propaga-
tion was monitored by digital video-chrono-photography.
Combustion thermograms were registered at two different
radii, using W/Re thermocouples.

Figure 7 presents an example of the video frames col-
lected from the radial combustion propagation in one of
the tested samples. From these frames, it was possible to
draw the corresponding combustion front radial profiles
(see Fig. 7), from which the radial combustion propaga-
tion velocities could be evaluated in four perpendicular

axes of the samples (as later presented). With these data,
the average combustion velocity for stationary propaga-
tion conditions (in the radii interval of 5–25 mm) was
obtained: 0.0269±0.0022 m/s. The average temperature
obtained with the thermocouples was∼2300 K. Note that
the radial combustion propagation profiles, velocities, and
temperatures were more deeply discussed in Durães et al.
(2006a).

5. RESULTS AND DISCUSSION

5.1 1D Model

First we defined the general system conditions. The pur-
pose is to integrate a normalized version of the described
1D and 2D models, in which all process state and in-
dependent variables are normalized by suitable parame-
ters. The conditions used in all 1D and 2D simulations
are listed in Table 2 and the most of them were defined
considering experimental conditions/measurements.

The 1D procedure described in Section 3 (see Fig. 4)
was applied to the 1D model using the numerical condi-
tions depicted in Table 3.

The numerical propagation results are presented in
Figs. 8 and 9, for kinetic constantK = 80,000 kg·m−3·s−1

with uniform mixing conditions for a stoichiometric reac-
tant ratio. The givenK value was the one that resulted

FIG. 7: Example of the experimental combustion front propagation in the stoichiometric thermite mixture. Some
of the video frames were omitted for simplicity. On the rightbottom are presented the corresponding combustion
propagation profiles in the interval 0–0.76 s (one profile pereach 0.04 s; the external profile is the circular box
confinement; T indicates the direction of positioning of thermocouples).
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TABLE 2: General data for the simulation

Q|
T0

(J/kg) T0 (K) P (Pa) Tigni (K) Treact (K) R (m) R0 (m)

5322746 298.15 101325 2300 1200 0.025 0.0015

Z (m) τ (s)a T ′ (K)a ∆r (m) υair0
b

0.0015 0.1 1000 1×10−5 0.392

αA αB αC αD ωA ωB

–1 –0.33792 0.69943 0.63848 0.747 0.253
a Time and temperature normalization constants
b Experimental mean porosity of the samples

TABLE 3: Numerical implementation conditions for 1D simulations

RKF45 tols.
Algorithm tol.

Finite diff. approximations First-level grid uniform;
β1 β2

1× 10−6 1× 10−1 centered; 5 nodes 40 intervals
Criterion Derivative Routine Interpolation

C2 first gridgen1 cubic splines; seven nodes

Time step Spatial derivative scheme Max. refinement level

1× 10−3 Finite differences; centered five nodes 2

in a better fit to the experimental stationary combustion
propagation velocity (see Section 3). Low variations in
the predicted velocity (∼ 1 mm/s, which is less than the
experimental error) were observed with step changes of
10,000 kg·m−3·s−1 in this constant.

The numerical algorithm is able to follow the ther-
mal and mass propagation waves rather efficiently as the
high-mesh activity zones accompany the movement of
the steep fronts. Therefore, we conclude that the adap-
tive method is suitable to simulate propagation in uniform
mixing conditions.

Additionally, the propagating velocity tends to a con-
stant value at most of the radial domain and is propor-
tional to the value of the kinetic constant, as would be
expected (see Fig. 10). The behavior of the local ve-
locities observed in experimental tests [see example in
Fig. 10(a)] is well followed by the predicted radial ve-
locity [Fig. 10(b)]. The main difference is noted in the
outer boundary region (r = R), where the predicted radial
velocity increases, and this was not detected in experi-
mental conditions. This is possibly caused by a boundary
condition effect.

In experimental conditions, for the initiation of the
charges, an instantaneous discharge of a large amount of
energy is introduced in the ignition channel (in the cen-
tral region), which leads to an elevation of the local tem-

FIG. 8: Thermal wave 1D propagation forK =
80,000 kg·m−3·s−1. Time gap between profiles – 0.1 s.

perature in this region. Although this temperature effect
was not directly measured, it is confirmed by the higher
combustion velocity that is achieved in lower radii [exper-
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FIG. 9: Mass wave 1D propagation forK =
80,000 kg·m−3·s−1. Time gap between profiles – 0.1 s.

(a)

(b)

FIG. 10: (a) Radial combustion velocities obtained ex-
perimentally in four perpendicular axes of one of the sam-
ples;(b) calculated wave propagation velocity spatial pro-
files.

imental: Fig. 10(a)]. This higher velocity is also observed
in the 1D simulation, as can be seen in Fig. 10(b). In addi-
tion, the referred temperature effect is also visible in the
thermal wave profiles at early stages in Fig. 8 (t = 0.1–
0.3 s).

Concerning the predicted combustion temperature
(higher value on the thermal wave front of Fig. 8), it is
higher than the experimental mean value (see Section 4).
This is justified by the heat losses due to the spraying of
products away from the combustion system and by the
incompleteness of the reaction, observed experimentally
(Durães et al., 2006a, 2007, Durães, 2007) and not con-
sidered in the model.

The introduction of randomly distributed reactant pro-
files, as effectively occurs in the experimental mixtures
[see Fig. 10(a)], originates visible perturbations in the ve-
locity evolution profile, as can be observed in Fig. 10(b).
The example shown in this figure corresponds to initial
Fe2O3 and Al profiles randomly generated by a procedure
described in Brito et al. (2007), in similar conditions for a
41 node uniform mesh (see Fig. 11). It is visible that the
profile is significantly affected by the nonhomogeneity of
the initial reaction media, promoting more instability in
the thermal wave propagation. The velocity profile shows
evident oscillations around the average reference value,
with no definition of an asymptotic value. The simulated
profiles are clearly more realistic when compared with
experimental propagation results of Fig. 10(a). This sug-
gests that 1D radial propagation experimental variability
can be at least partially explained by nonuniform mixing
of reactants.

5.2 2D Model

Now we simulate the 2D system using the numerical con-
ditions resumed in Table 4.

In a first approach we tested the uniform mixing
reagent conditions. The numerical results obtained for
K = 80,000 kg· m−3·s−1 at three time instants (t = 0.1 s,
t = 0.45 s,t = 0.8 s) are given in Fig. 12. We conclude

FIG. 11: Initial mass concentration of randomly gener-
ated profiles for A: Fe2O3 and B: Al.
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TABLE 4: Numerical implementation conditions for 2D simulations

RKF45 ATol
Algorithm tol.

Finite diff. approximations First level dyadic grid unifor m;
β1 β2

1 × 10−5 1× 10−1 centered; five nodes 25 intervals in r and 23 in φ

Criterion Derivative Routine Interpolation

C52/C2 first gridgen6 cubic splines; seven nodes

Time step Spatial derivative scheme Max. refinement level

1 × 10−3 Finite differences; centered five nodes 2 inr; 0 inφ

that the algorithm does not seem to have any problem in
dealing with the selected problem. Each radial propaga-
tion profile is very similar to the correspondent 1D pro-
file, since the angular propagation is rather residual in
these circumstances. This is experimentally confirmed by
the observed circularity of the obtained combustion front
propagation profiles (i.e., for a given profile, the front is
nearly in the same radius position for all directions), as
seen in Fig. 7. In addition, the light intensity emitted by
the combustion front is almost the same in the major part
of the profiles and for all directions, showing that the front
does not exhibit high-temperature variations. This is also
confirmed by the nearly stationary temperature registered
by the two thermocouples located in different radii posi-
tions (see Durães et al., 2006a).

Finally, we have performed the 2D simulation us-
ing the randomly generated profiles shown in Fig. 11
in eight different propagation directions, uniformly dis-
tributed. The obtained thermal wave results are presented
in Fig. 13. The registered oscillations in the temperature
profiles follow the same trends observed for the 1D re-
sults and the experimental results, confirming that the 2D
approach does not significantly affect the simulation per-

formance. A similar strategy to this variation of concen-
trations can be used in the future to replicate more so-
phisticated nonuniformities in the reactant medium that
are usually observed in experimental conditions, such as
the local lack of reactants due to the presence of an obsta-
cle, density variations, and thickness variations, among
others.

6. CONCLUSIONS

An adaptive numerical algorithm that conjugates a
“method of lines” (MOL) strategy based on finite dif-
ferences space discretizations, with a collocation scheme
based on increasing level dyadic grids, is applied for the
solution of the thermite combustion propagation prob-
lems.

The particular integration method proves to cope sat-
isfactorily with the steep traveling thermal wave in 1D
and 2D spatial domains, either for trivial uniform mix-
ing conditions, as for nonhomogeneous reactant mixing,
which intends to replicate realistically observed experi-
mental conditions.

(a) (b) (c)

FIG. 12: Thermal wave 2D propagation forK = 80,000 kg·m−3·s−1 and uniform mixing conditions:(a) t = 0.1 s,
(b) t = 0.45 s,(c) t = 0.8 s.

Volume 4, Number 2, 2012



148 Brito, Durães, & Portugal

(a) (b) (c)

FIG. 13: Thermal wave 2D propagation forK = 80,000 kg·m−3·s−1 and nonuniform mixing of reactants:(a) t =
0.1 s,(b) t = 0.45 s,(c) t = 0.8 s.
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