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Abstract A PDE integration algorithm that associates a Method of Lines (MOL) strategy 
based on finite differences or high resolution space discretizations, with a collocation 
strategy based on increasing level one or two-dimensional dyadic grids is presented. It 
reveals potential either as a grid generation procedure for predefined steep localised 
functions, and as an integration scheme for moving steep gradient PDE problems, namely 
1D and 2D Burgers equations. Therefore, it copes satisfactorily with an example 
characterized by a steep 2D travelling wave and an example characterised by a forming 
steep travelling shock, which confirms its flexibility in dealing with diverse types of 
problems, with reasonable demands of computational effort. 
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1. INTRODUCTION  

It can be stated that the main purpose of science is to contribute for the understanding of the 
physical phenomena that surround us.  In order to achieve this goal, scientific researchers 
adopt the so called scientific method (or hypothetico-deductive model) which can be defined 
in the next four general steps: 
• Observation – use of experience and data available for recognition of problems that 

need to be solved. 
• Hypothesis – formulation of a potential explanation which would solve the problem 

detected. 
• Deduction – deduce a possible prediction which arises as a consequence from the 

hypothesis formulated. 
• Test (Experiment) – confirmation or rejection of the hypothesis formulated by testing 

the veracity of the prediction. 
A possible explanatory hypothesis can be a model, or more precisely, a mathematical model, 
that translates the observed phenomena to more easily treatable relations between abstract 
entities trough mathematical manipulations. In the specific field of mathematical modelling, 
one can narrow even more the range of interest to problems defined over space-time 
continuous domains, where phenomena are not only affected by the values of the variables 
that define its state, but also by the gradients of these variables relating to the independent 
coordinates. In this case, the mathematical models are defined by differential (or integral) 
equations established over multidimensional domains, i.e., partial differential equations 
(PDE’s). Nevertheless, the process of deducing a suitable model, or modelling, has to be 
completed by the not less important task of solving it effectively. 
It is obvious that it is not always feasible to solve mathematical problems using analytic 
procedures. In these cases (usually non-linear problems), one has to resort to numerical 
analysis, which generally implies the study of algorithms, i.e. sequential operation schemes 
that usually involve a discretization of continuous defined problems. These schemes can be 
applied in the solution of a variety of mathematical problems, such as optimization, 
interpolation, computation of integrals, resolution of algebraic or differential equations, etc. 

2. NUMERICAL METHODS 

Our particular concern resides on the numerical methods for the solution of time 
dependent partial differential equations (or systems of equations) defined over one- or 
multidimensional space domains. The main strategy behind the development of these 
schemes typically implies the construction of discrete grids that cover the total domain, 
and the approximation of the originally continuous solution by chosen suitable basis 
functions. Hence, the main classes of numerical methods developed for the solution of 
PDE’s differ between each other by the type of basis functions selected, e.g.: 
• Finite Differences (FD) – Taylor expansion series. 
• Finite Elements (FE) – Interpolating polynomials. 
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2.1. Method of Lines 

Our interest reside in a general strategy for the solution of PDE’s named Method of Lines 
(MOL)[1] which structure can hold different schemes of mesh discretization. Usually, the 
numerical solution of PDE’s implies the approximation of the original differential 
continuous problem, to a system of algebraic equations defined on a discrete domain. This 
transformation may be done simultaneously along every independent variable. Otherwise, 
one may apply a sequenced strategy: first, the discretization of the original problem in all 
directions but one (normally time for Initial-Boundary Value Problems) and, second, the 
integration in the remaining direction using a standard integrator package. The initial PDE 
problem is approximated to a system of ordinary differential equations (ODE’s), which is 
solved by an available ODE integrator. Therefore, one can resort to a wide variety of 
different basis functions to execute the discretization step, e.g., Taylor expansion 
approximations[1], different order polynomials, wavelets[2,3], radial basis functions[4], 
etc. 

2.2. Adaptation Concept 

The classical approach to these procedures is rigid and non-adjustable to its evolution. 
One way to overcome the problems that may possibly arise from the lack of flexibility of 
this approach is the adoption of the adaptation concept. Adaptivity implies the tuning of 
algorithm parameters to the specific conditions of the solution evolution. For the 
numerical solution of PDE´s it can assume the following general principles:  
• h-refinement – grid refinement and relaxation. 
• p-refinement – tuning approximating orders. 
• r-refinement – assignment of nodal velocities. 
These different strategies are not mutually exclusive and may be combined in mixed 
adaptive methods. The relevance of adaptivity in the PDE solving field has already been a 
subject of study for a few decades, and the variety of methods proposed is rather broad 
[5,6]. Nevertheless, the objectives of the adaptive procedure are always the same: the 
generation of grids that cluster nodes in the domain regions where the solution is more 
active (i.e. exhibits steeper gradients) and disperse them in the remaining areas, and/or 
follow efficiently the problematic features of the solution. The application of adaptivity 
into the wider MOL strategy concept is a fairly straightforward operation[7]. 

2.3. Dyadic Grids 

The overall adaptive grid is based in a series of embedded dyadic grids of increasing 
level, at each time step of the integration. A k-level one-dimensional uniform dyadic grid 
is defined by a nodal mesh with 2k equidistant intervals. Therefore, a higher level grid is 
generated by adding nodes to the previous one, at every interval centre position (vd. 
Figure 1). It is important to note that a grid of level k is always included in all grids of 
higher level. So, the principle is to construct grids that merge nodes of different resolution 
levels according to the estimative of the function activity over the different regions of the 
whole domain, accomplished by the definition of a collocation criterion. 
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Figure 1. Uniform 1D dyadic grids of increasing level. 
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Figure 2. Uniform 2D dyadic grids of increasing level. 

It is evident that the referred strategy can be extended to two-dimensional dyadic grids 
(vd. Figure 2), in a rather straightforward fashion. For that purpose, we establish 
collocation strategies that apply function dependent features, allowing the activation (or 
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deactivation) of nodes belonging to dyadic grids ranging from a minimum resolution level 
(M) – the basis level; to a maximum allowed resolution level (N). 

2.4. Numerical Collocation Algorithm 

Using the concept of dyadic grid associated with finite differences approximations, we 
construct a collocation algorithm for grid generation which can be introduced in a MOL 
algorithm general structure for the solution of PDE’s. As an example, consider a region of 
space domain defined by two consecutive one-dimension dyadic grids (vd. Figure 3). A 
collocation algorithm is developed for the activation of the required nodes by the 
following procedure[8-9]: 
 

• k = M 
• for  i =1, …, 2k –1 
• estimate n

iU  (order n derivative at node i) by finite differences 

• if  collocation criterion is met: select intermediate nodes of level k+1:
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Figure 3. Representation of the connection between nodes of consecutive levels. 

The collocation criteria obey to two different strategies. Initially, the grid size is 
calculated by, 
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Then, we define a criterion that pretends to identify oscillations on the finite difference 
approximation of degree n at each internal grid position i ( n
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A similar criterion named C1σ may also be developed, by the substitution of the average 
evaluation presented above by the correspondent standard deviation test.  
A second criterion that tracks high variations on the finite difference 1D profile is defined: 
 

Criterion C2 
• compute n

i
n
i UU 11 −−=δ   and  n

i
n
i UU −= +12δ  

• criterion verified if: 
 

  1ε>∆× xU n
i  or 021 ≤× δδ  

and  2
21

2
ε

δδ
>

+
 

 

ε1 and ε2 represent the criteria tolerances that define the sensibility of the process to the 
detection of non-uniformities in the solution numerical profiles. Both criteria are 
established to take advantage of the approximating nature of the space derivatives 
estimating finite difference scheme. The errors associated with the finite difference 
procedure induce artificial oscillations in the estimated derivative profiles especially near 
the steep fronts regions, which can be identified. Consequently, the grid resolution is 
increased on these regions by activation of higher level nodes that do not verify the more 
demanding collocation criteria. The assembly of all active nodes over every dyadic grid, 
generates the grid. One advantage of this scheme is the possibility of applying the 
collocation algorithm sequentially, analyzing several derivative orders by successive 
stages, e.g. verification of the first derivative condition and subsequent application of a 
second derivative analysis to the previous adaptive grid. 
The collocation algorithm depicted above can be extended to 2D domains by a wide 
variety of strategies. We chosen to select a particular scheme that implies a sweeping of 
the 2D domain by a sequence of 1D procedures over the 1D-x grids for each higher 
resolution level y position, followed by a similar procedure on the correspondent 1D-y 
grids at the higher resolution x positions, as described in [8]. 

3. GRID GENERATION 

As a first approach, we tested the performance of the collocation algorithm for the 
generation of grids that conform to the properties of selected one-dimensional functions. 
Therefore, we apply the collocation criteria to the next function, 

 ( ) ( )









 −−=
ε

2
0exp0,

xx
xu  (2) 

For ε = 10-4 and x0 = 0.5, which represents a steep wave centred at the domain middle 
position. The results for ε1 = ε2 = 10-2, are presented for criteria C1 and C2 in Figures 4 
and 5, respectively.  
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 Figure 4. Grid generated for the wave example (criterion C1). 
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Figure 5. Grid generated for the wave example (criterion C2). 
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We observe that both criteria deals rather satisfactorily with the difficulties posed by the 
example studied. The algorithm is able to detect and describe the steep wave and its 
curvature on the edges, and to represent the low activity regions at both sides of the wave. 
For equivalent tolerances the C1 criterion seems to be more sensitive than criterion C2, 
putting a larger amount of nodes for a similar support of the wave configuration.  

4. SIMULATION EXPERIMENTS 

The node collocation procedure is incorporated in an algorithm for the resolution of one-
dimensional time-dependent PDE´s. This strategy is based on the conjugation of a MOL 
algorithm where the space derivatives are approximated by finite differences formulas or 
high resolution schemes(HRS), with grid generation procedure at specified times that 
reformulate the space grid according to the solution evolution. At these intermediate times 
the solution profiles are reconstructed through an interpolation scheme. The time 
integration is performed by the ODE integrators DASSL[10] or RKF-45[11]. Therefore 
the presented algorithm can be included in the class of h-refinement PDE solution 
adaptive procedures. 
The finite difference coefficients are computed using the recursive method of 
Fornberg[12] and the HRS schemes are based on the NVSF method[13] associated to flux 
limiting strategies, like the SMART or MINMOD procedures[14]. 

4.1. 1D Burgers Equation 

The first test model is the widely studied 1-D general Burgers equation[4], 
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defined in the domain x∈ [0,1], with the Dirichlet boundary conditions: 
 ( ) ( ) 0,1,0 == tutu  (4) 
This problem corresponds to an advection-diffusion problem, which may present some 
interesting challenges, depending of the initial condition applied. Hence, for the particular 
sinusoidal initial condition, 

 ( ) ( ) ( )xxxu ππ sin
2

1
2sin0, +=  (5) 

as the advection velocities represent the solution itself, the problem develops from a 
smooth sinus type profile to a rather steep front, which forms at x ≈ 0,60 by t ≈ 0,20. From 
this instant on, the front moves on the positive direction of x until it eventually crashes 
onto the right boundary (x=1) and gradually fades away. The moving front thickness 
depends on the significance of the diffusion term, i.e., it is proportional to the magnitude 
of the diffusion coefficient (ν). Therefore, we test the performance of both collocation 
criteria by fixing the algorithm run conditions shown in Table 1 (for ν = 10-3). The 
simulation results for criteria C1 and C2 are presented in Figures 6 and 7, respectively. 
We observe that, in both cases, the algorithm effectively follows the formation and 
movement of the steep front, with hardly any difficulty. The results obtained using the two 



Paulo Brito and António Portugal 

 9 

collocation criteria seem to be very similar.  
Now, the Burgers’ equation is tested in more challenging circumstances, by decreasing the 
diffusivity by a factor of 10, fixing the parameter ν = 10-4. In these conditions, we apply 
again the sequential first and second derivative analysis, associated with criterion C1. On 
the other hand, the maximum resolution level is increased to N=12, in order to account the 
reduced thickness of the moving steep front. The general conditions chosen for this 
implementation with integrator DASSL are resumed in Table 2.  

 

Collocation criterion C1 or C2 
Derivative order for collocation  n=1 and 2; or n=1  
Time step 10-3 
Finite Difference approximation 5 nodes centred - uniform grid 
Interpolation strategy Cubic splines with 9 nodes 
Time integrator tolerances 10-6 
Dyadic grids levels M=4; N=10 

ε1 = ε2 =10-2 

Table 1. Simulation parameters for 1D Burgers equation (ν = 10-3). 
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Figure 6. Numerical implementation for 1D Burgers equation (criterion C1; ν = 10-3). 



Paulo Brito and António Portugal 

 10 

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

x

u

t=0 t=0.2 t=0.5

t=1 t=3 t=10

 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

x

t

 
Figure 7. Numerical implementation for 1D Burgers equation (criterion C2; ν = 10-3). 

Collocation criterion C1 
Derivative order for collocation  n=1 and 2  
Time step 10-3 
Finite Difference approximation 5 nodes centred - uniform grid 
Interpolation strategy Cubic splines with 9 nodes 
Time integrator tolerances 10-6 
Dyadic grids levels M=4; N=12 

ε1 = ε2 =10-2 

Table 2. Simulation parameters for 1D Burgers equation (ν = 10-4). 

In Figure 8, we condense the simulation numerical results for the conditions of Table 2. It 
is obvious that due to the smooth characteristics of the initial profile, the grid is relatively 
coarse at the start. However, the situation changes radically for t=0.20 (vd. Figure 8). At 
this instant, the front is fully developed, and the procedure has to take advantage of the 
maximum level nodes generating a localized high resolution grid, which adequately 
conforms to the front and its positive and negative edges.  
After the formation of the steep front, the algorithm shows its ability to follow the 
movement of the front without introducing numerical distortions on the edges. The 
algorithm also proves its suitability by providing a adequately simulation of the front 
crash at the right boundary. In general, we may conclude that the simulation is 
successfully carried out.  
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The evolution of the size of the adapted grids for the three examples presented is 
monitorized along each problem execution (vd. Figure 9) in order to access the relative 
computational effort demand. It is clear that the steepest example (ν = 10-4) is more 
exigent promoting the generation of heavier grids to account the formation of a steeper 
moving front. In similar conditions the criterion C1 seems to be more demanding than 
criterion C2 leading to the generation of relatively denser grids. The procedures tend to 
generate lighter grids, as the front slowly fades out through the right boundary, until it 
eventually disappears all together. 
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Figure 8. Numerical implementation for 1D Burgers equation (criterion C1; ν = 10-4). 
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Figure 9. Time evolution of the dimension of the adaptive grid generated by the 1D Burgers equation 

numerical implementation. 
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4.2. 2D Burgers Equation 

Now, we study the 2D version of the Burgers equation in its inviscid form (with a 
vanished viscosity coefficient (νx = νy = 0) in both spatial directions): 
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with f(u) = u2/2; completed by the boundary and initial conditions: 
 ( ) ( ) ( ) ( ) 0,1,,1,,,1,,1 ==−==− txutxutyutyu  (7) 
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which stands for an unitary cylindrical pulse, centred on the [0.5;0.5] position of the 
spatial 2D domain [-1,1]2. The execution is implemented using the time integrator RKF-45 
and the numerical parameters resumed in Table 3. We conclude that the grid generation 
procedure is successful in representing the steep gradients that characterise the initial 
pulse solution with a reasonable number of nodes (vd. Figure 10). 
 

Collocation criterion C1σ or C2 
Derivative order for collocation  n=1; or n=1  
Time step 10-2 
Finite Difference approximation 5 nodes centred - uniform grid 
Discretization scheme NVSF; SMART/MINMOD 
Interpolation strategy Cubic splines with 7 nodes 
Time integrator tolerances 10-5 
Dyadic grids levels Mx=My=4; Nx=Ny=8 

ε1 = ε2 =10-1 

Table 3. Simulation parameters for 2D Burgers equation. 

NP = 10499 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

y

 
Figure 10. Initial grid generated for the 2D Burgers equation (NVSF discretization with a SMART 

limiter and collocation criterion C1σ). 
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Figure 11. Contour numerical solution profiles (t = 0.5) for the 2D Burgers equation (NVSF 

discretization with a SMART limiter and collocation criterion C1σ). 
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Figure 12. Grid generated (t = 0.5) for the 2D Burgers equation (NVSF discretization with a SMART 

limiter and collocation criterion C1σ). 



Paulo Brito and António Portugal 

 14 

 
Figure 13. Contour numerical solution profiles (t = 1.5) for the 2D Burgers equation (NVSF 

discretization with a SMART limiter and collocation criterion C1σ). 
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Figure 14. Grid generated (t = 1.5) for the 2D Burgers equation (NVSF discretization with a SMART 

limiter and collocation criterion C1σ). 
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The problem solution exhibits a migration of the initial pulse in the positive direction of x 
and y, simultaneously (vd. Figure 10). However, the movement speed of each front that 
constitutes the pulse is different. The downwind front has to force its movement through 
the plateau in its path which remains static (for the Burgers equation, the displacement 
characteristic velocity associated to each node coincides with the solution itself). On the 
other hand, the upwind front faces no resistance to its movement at the upper edge, but it 
is kept fixed to the plateau at the lower edge. Therefore the solution is characterized by 
the propagation of a steep downwind front which is eventually caught by the faster fading 
upwind front. The analysis of Figures 11 to 14 (for SMART limiter with collocation 
criterion C1σ) demonstrates the algorithm ability to follow the movement of the two 
fronts without introducing numerical distortions on its edges. The collocation procedure 
proves its suitability by providing an adequately simulation of the solution numerical 
profiles. The results obtained for the alternative runs (vd. Figure 15) are equivalent to the 
data presented above. So, we may conclude that the simulation is successfully carried out. 
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Figure 15. Time evolution of the dimension of the adaptive grid generated by the 2D Burgers equation 

numerical implementation. 

Again, the progression of the size of the adapted grids for each example tested is 
monitorized along the algorithm implementation (vd. Figure 15). Now, the criterion C2 
tends to generate a relatively denser grid than the corresponding criterion C1. The 
procedures present similar performances for limiters MINMOD and SMART conjugated 
with collocation criterion C1. 

5. CONCLUSIONS 

We conclude that an integration MOL algorithm that conjugates finite differences and/or 
high resolution space discretizations, with a collocation scheme based on increasing level 
1D or 2D dyadic grids, reveals potential either as a grid generation procedure for 
predefined functions, and as an integration scheme for moving steep gradient PDE 
problems. It copes satisfactorily with an example characterized by a steep 2D travelling 
wave and an example characterised by a forming steep travelling shock, which proves its 
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flexibility in dealing with different types of problems, with reasonable demands of 
computational effort. 
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