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Abstract A PDE integration algorithm that associates a Method of Lines (MOL) strategy
based on finite differences or high resolution space discretizations, with a collocation
strategy based on increasing level one or two-dimensional dyadic grids is presented. It
reveals potential either as a grid generation procedure for predefined steep localised
functions, and as an integration scheme for moving steep gradient PDE problems, namely
1D and 2D Burgers equations. Therefore, it copes satisfactorily with an example
characterized by a steep 2D travelling wave and an example characterised by a forming
steep travelling shock, which confirms its flexibility in dealing with diverse types of
problems, with reasonable demands of computational effort.
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1. INTRODUCTION

It can be stated that the main purpose of sciesi¢e contribute for the understanding of the
physical phenomena that surround us. In orderctoese this goal, scientific researchers
adopt the so called scientific method (or hypotteetieductive model) which can be defined
in the next four general steps:

. Observation — use of experience and data availfdsl recognition of problems that
need to be solved.

. Hypothesis — formulation of a potential explaoatwhich would solve the problem
detected.

. Deduction — deduce a possible prediction whiasearas a consequence from the
hypothesis formulated.

. Test (Experiment) — confirmation or rejectiontbé hypothesis formulated by testing

the veracity of the prediction.
A possible explanatory hypothesis can be a modehare precisely, a mathematical model,
that translates the observed phenomena to morly é@esatable relations between abstract
entities trough mathematical manipulations. In specific field of mathematical modelling,
one can narrow even more the range of interestrtdlgms defined over space-time
continuous domains, where phenomena are not ofggtafl by the values of the variables
that define its state, but also by the gradienttheke variables relating to the independent
coordinates. In this case, the mathematical moadedsdefined by differential (or integral)
equations established over multidimensional domaires, partial differential equations
(PDE’s). Nevertheless, the process of deducingitatde model, or modelling, has to be
completed by the not less important task of solvirgffectively.
It is obvious that it is not always feasible tov@lImathematical problems using analytic
procedures. In these cases (usually non-linearlgma), one has to resort to numerical
analysis, which generally implies the study of ailfpons, i.e. sequential operation schemes
that usually involve a discretization of continualefined problems. These schemes can be
applied in the solution of a variety of mathemdtigmoblems, such as optimization,
interpolation, computation of integrals, resolutmfralgebraic or differential equations, etc.

2. NUMERICAL METHODS

Our particular concern resides on the numericalhodd for the solution of time

dependent partial differential equations (or systemh equations) defined over one- or
multidimensional space domains. The main strateglyirid the development of these
schemes typically implies the construction of désergrids that cover the total domain,
and the approximation of the originally continuosslution by chosen suitable basis
functions. Hence, the main classes of numericalhoos developed for the solution of
PDE'’s differ between each other by the type of &snctions selected, e.qg.:

. Finite Differences (FD) — Taylor expansion series

. Finite Elements (FE) — Interpolating polynomials.
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2.1. Method of Lines

Our interest reside in a general strategy for thlateon of PDE’s named Method of Lines
(MOL)[1] which structure can hold different schenasmesh discretization. Usually, the
numerical solution of PDE’s implies the approxinoati of the original differential
continuous problem, to a system of algebraic equatdefined on a discrete domain. This
transformation may be done simultaneously along\ewrelependent variable. Otherwise,
one may apply a sequenced strategy: first, theeligation of the original problem in all
directions but one (normally time for Initial-Bouay Value Problems) and, second, the
integration in the remaining direction using a sl@aml integrator package. The initial PDE
problem is approximated to a system of ordinaryedéntial equations (ODE’s), which is
solved by an available ODE integrator. Thereforee @an resort to a wide variety of
different basis functions to execute the discrétiza step, e.g., Taylor expansion
approximations[1], different order polynomials, vedets[2,3], radial basis functions[4],
etc.

2.2. Adaptation Concept

The classical approach to these procedures is agul non-adjustable to its evolution.
One way to overcome the problems that may possibbe from the lack of flexibility of
this approach is the adoption of the adaptationrceph Adaptivity implies the tuning of
algorithm parameters to the specific conditions tbé solution evolution. For the
numerical solution of PDE’s it can assume the foihg general principles:

. h-refinement — grid refinement and relaxation.
. p-refinement — tuning approximating orders.
. r-refinement — assignment of nodal velocities.

These different strategies are not mutually exekisand may be combined in mixed
adaptive methods. The relevance of adaptivity mmRIDE solving field has already been a
subject of study for a few decades, and the varmdtynethods proposed is rather broad
[5,6]. Nevertheless, the objectives of the adapfvecedure are always the same: the
generation of grids that cluster nodes in the domragions where the solution is more
active (i.e. exhibits steeper gradients) and dspdéhem in the remaining areas, and/or
follow efficiently the problematic features of tls®lution. The application of adaptivity
into the wider MOL strategy concept is a fairlyasghtforward operation[7].

2.3. Dyadic Grids

The overall adaptive grid is based in a series mbedded dyadic grids of increasing
level, at each time step of the integration. A keleone-dimensional uniform dyadic grid
is defined by a nodal mesh witli quidistant intervals. Therefore, a higher levet gs
generated by adding nodes to the previous oneyetyenterval centre position (vd.
Figure 1). It is important to note that a grid efél k is always included in all grids of
higher level. So, the principle is to constructdgrthat merge nodes of different resolution
levels according to the estimative of the functamivity over the different regions of the
whole domain, accomplished by the definition ofodlacation criterion.
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Figure 1. Uniform 1D dyadic grids of increasing éév
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Figure 2. Uniform 2D dyadic grids of increasing éév

It is evident that the referred strategy can beeedéd to two-dimensional dyadic grids
(vd. Figure 2), in a rather straightforward fashidmror that purpose, we establish

collocation strategies that apply function dependeatures, allowing the activation (or



Paulo Brito and Anténio Portugal

deactivation) of nodes belonging to dyadic gridsgiag from a minimum resolution level
(M) — the basis level; to a maximum allowed resolutevel (N).

2.4. Numerical Collocation Algorithm

Using the concept of dyadic grid associated withitdéi differences approximations, we
construct a collocation algorithm for grid geneoatiwhich can be introduced in a MOL
algorithm general structure for the solution of PREAs an example, consider a region of
space domain defined by two consecutive one-dineendiadic grids (vd. Figure 3). A

collocation algorithm is developed for the actieati of the required nodes by the
following procedure[8-9]:

e k=M
e for i=1,..,%-1
» estimateU," (ordern derivative at nod@ by finite differences

« |f collocation criterion is met: select intermediateodes of level k+1:

k+1.  k+1. L k+1
Xoi-10 %o 1 Xoi41

e k=k+1 (repeafor k=M, ...,N-1)

® ® ® o k+1
xr(+12i-l Xk+12i Xk+12i+l
® ® ° k
...... X<, X4 X

Figure 3. Representation of the connection betwestes of consecutive levels.

The collocation criteria obey to two different g&gies. Initially, the grid size is
calculated by,

k ok
Ax = Xi+12Xi—1 (1)
Then, we define a criterion that pretends to idgntiscillations on the finite difference

approximation of degree at each internal grid positian(U."):

Criterion C1
. computed, =U;"xU ', andd, =U/,, xU;
. criterion verified if:
. 6,<0
UP x> &, or {5250
[RRE VAES VAW
and 3 >E,
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A similar criterion named G4 may also be developed, by the substitution ofabherage
evaluation presented above by the correspondemiiatd deviation test.
A second criterion that tracks high variations ba finite difference 1D profile is defined:

Criterion C2
. computed, =U;"-U", and J,=U/, -U
. criterion verified if:
‘Ui”xAx1>gl or 6, %x9,<0
o, +|0.
and % > 52

& and & represent the criteria tolerances that defineseesibility of the process to the
detection of non-uniformities in the solution numeat profiles. Both criteria are
established to take advantage of the approximatiagure of the space derivatives
estimating finite difference scheme. The errorsoasded with the finite difference
procedure induce artificial oscillations in theiesited derivative profiles especially near
the steep fronts regions, which can be identifi€dnsequently, the grid resolution is
increased on these regions by activation of hidgéeel nodes that do not verify the more
demanding collocation criteria. The assembly ofaailive nodes over every dyadic grid,
generates the grid. One advantage of this schemiheispossibility of applying the
collocation algorithm sequentially, analyzing selederivative orders by successive
stages, e.g. verification of the first derivativendition and subsequent application of a
second derivative analysis to the previous adapgnck

The collocation algorithm depicted above can beemdéd to 2D domains by a wide
variety of strategies. We chosen to select a pddaicscheme that implies a sweeping of
the 2D domain by a sequence of 1D procedures dwerlDx grids for each higher
resolution levely position, followed by a similar procedure on therrespondent 13-
grids at the higher resolutionpositions, as described in [8].

3. GRID GENERATION

As a first approach, we tested the performancehef ¢ollocation algorithm for the
generation of grids that conform to the propertéselected one-dimensional functions.
Therefore, we apply the collocation criteria to trext function,

u(x0) = ex;{—MJ @

&

For € = 10* andxo = 0.5, which represents a steep wave centredeatiimain middle
position. The results fog, = & = 102 are presented for criteria C1 and C2 in Figures 4
and 5, respectively.



Paulo Brito and Anténio Portugal

NP=103

0.8

0.6 q

¢4 ¢¢

0.4 4

0.2 4

11

w A& O N ®© ©
*
*
.
*
*
*

Figure 4. Grid generated for the wave exampleddon C1).
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Figure 5. Grid generated for the wave example édon C2).
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We observe that both criteria deals rather satisfdg with the difficulties posed by the
example studied. The algorithm is able to deteat describe the steep wave and its
curvature on the edges, and to represent the lowitgaegions at both sides of the wave.
For equivalent tolerances the C1 criterion seemBetanore sensitive than criterion C2,
putting a larger amount of nodes for a similar suppf the wave configuration.

4. SIMULATION EXPERIMENTS

The node collocation procedure is incorporatednralgorithm for the resolution of one-
dimensional time-dependent PDE’s. This stratedyaised on the conjugation of a MOL
algorithm where the space derivatives are approtathay finite differences formulas or
high resolution schemes(HRS), with grid generatpocedure at specified times that
reformulate the space grid according to the sofuéwolution. At these intermediate times
the solution profiles are reconstructed through iaterpolation scheme. The time
integration is performed by the ODE integrators [3AfL0] or RKF-45[11]. Therefore

the presented algorithm can be included in the sclas h-refinement PDE solution
adaptive procedures.

The finite difference coefficients are computed ngsithe recursive method of
Fornberg[12] and the HRS schemes are based on\s#-Nnethod[13] associated to flux
limiting strategies, like the SMART or MINMOD proderes[14].

4.1. 1D Burgers Equation

The first test model is the widely studied 1-D gehdurgers equation[4],
ou__ du_ 0%

Y PRV (3)
ot oX oX
defined in the domair(] [0,1], with the Dirichlet boundary conditions:
u(0t)=u(Lt)=0 (4)

This problem corresponds to an advection-diffuspgsoblem, which may present some
interesting challenges, depending of the initialaition applied. Hence, for the particular
sinusoidal initial condition,

u(x,0) = sin(277x) + %sin(ﬂx) (5)

as the advection velocities represent the solutiself, the problem develops from a
smooth sinus type profile to a rather steep frauich forms atx = 0,60 byt = 0,20. From
this instant on, the front moves on the positiveeclion ofx until it eventually crashes
onto the right boundaryx£l) and gradually fades away. The moving front Khe&ss
depends on the significance of the diffusion term, it is proportional to the magnitude
of the diffusion coefficient\). Therefore, we test the performance of both altmn
criteria by fixing the algorithm run conditions sk in Table 1 (forv = 10°%). The
simulation results for criteria C1 and C2 are pneésd in Figures 6 and 7, respectively.
We observe that, in both cases, the algorithm @ffely follows the formation and
movement of the steep front, with hardly any diffig. The results obtained using the two
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collocation criteria seem to be very similar.

Now, the Burgers’ equation is tested in more chglieg circumstances, by decreasing the
diffusivity by a factor of 10, fixing the parameter= 10*. In these conditions, we apply
again the sequential first and second derivativadyamns, associated with criterion C1. On
the other hand, the maximum resolution level iseased tdN=12, in order to account the
reduced thickness of the moving steep front. Theega conditions chosen for this

implementation with integrator DASSL are resumed able 2.

Collocation criterion ClorC2
Derivative order for collocation n=1 and 2; or n=1
Time step 18

Finite Difference approximation

5 nodes centredifarm grid

Interpolation strategy

Cubic splines with 9 nodes

Time integrator tolerances

i)

Dyadic grids levels

M=4; N=10

€176 =102

Table 1. Simulation parameters for 1D Burgers eigna = 10°).
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Figure 6. Numerical implementation for 1D Burgegmiation (criterion C1ly = 10°).
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Figure 7. Numerical implementation for 1D Burgecsiation (criterion C2y = 10°).

Collocation criterion C1
Derivative order for collocation n=1and 2
Time step 18
Finite Difference approximation 5 nodes centredifarm grid
Interpolation strategy Cubic splines with 9 nodes
Time integrator tolerances 10
Dyadic grids levels M=4; N=12
€176 =102

Table 2. Simulation parameters for 1D Burgers eigna = 10%).

In Figure 8, we condense the simulation numerieaults for the conditions of Table 2. It
is obvious that due to the smooth characteristidh® initial profile, the grid is relatively
coarse at the start. However, the situation changeally fort=0.20 (vd. Figure 8). At
this instant, the front is fully developed, and gh®cedure has to take advantage of the
maximum level nodes generating a localized higholtgen grid, which adequately
conforms to the front and its positive and negatdges.

After the formation of the steep front, the algbnit shows its ability to follow the
movement of the front without introducing numeriadistortions on the edges. The
algorithm also proves its suitability by providireg adequately simulation of the front
crash at the right boundary. In general, we maychate that the simulation is
successfully carried out.

10
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The evolution of the size of the adapted grids floe three examples presented is
monitorized along each problem execution (vd. FegJ in order to access the relative
computational effort demand. It is clear that theepest examplev(= 10% is more
exigent promoting the generation of heavier gridsatcount the formation of a steeper
moving front. In similar conditions the criterionlGeems to be more demanding than
criterion C2 leading to the generation of relatwelkenser grids. The procedures tend to
generate lighter grids, as the front slowly fades through the right boundary, until it
eventually disappears all together.
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Figure 8. Numerical implementation for 1D Burgegmiation (criterion C1ly = 10%).
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Figure 9. Time evolution of the dimension of theaptive grid generated by the 1D Burgers equation
numerical implementation.
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4.2. 2D Burgers Equation

Now, we study the 2D version of the Burgers equmtio its inviscid form (with a
vanished viscosity coefficienv{ = vy = 0) in both spatial directions):

% _ _(af (u), of (u)j 6)
t 0x ay
with f(u) = u?/2; completed by the boundary and initial condision
u(-1y,t)=u(Ly.t) =u(x-1t) =u(x1t)=0 (7)
2 2 2
u(x y,0) = 1 (x+ 0.5) +(y+05) < 20.4 ®)
0, else in [x, y] O [— ],1]

which stands for an unitary cylindrical pulse, gedt on the [0.5;0.5] position of the
spatial 2D domain [-1,%] The execution is implemented using the time irdeyy RKF-45
and the numerical parameters resumed in Table 3cdvelude that the grid generation
procedure is successful in representing the steadients that characterise the initial
pulse solution with a reasonable number of nodds Figure 10).

Collocation criterion Cloor C2
Derivative order for collocation n=1; or n=1
Time step 16
Finite Difference approximation 5 nodes centredifarm grid
Discretization scheme NVSF; SMART/MINMOD
Interpolation strategy Cubic splines with 7 nodes
Time integrator tolerances 10
Dyadic grids levels MM,=4; N=N,=8

€1=8& =101

Table 3. Simulation parameters for 2D Burgers eignat
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Figure 10. Initial grid generated for the 2D Burgequation (NVSF discretization with a SMART
limiter and collocation criterion Gi).
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Figure 11. Contour numerical solution profilés=(0.5) for the 2D Burgers equation (NVSF
discretization with a SMART limiter and collocati@niterion Cl).
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Figure 12. Grid generateti£ 0.5) for the 2D Burgers equation (NVSF discratian with a SMART
limiter and collocation criterion Gf).
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Figure 13. Contour numerical solution profilés=(1.5) for the 2D Burgers equation (NVSF
discretization with a SMART limiter and collocati@niterion Cl).
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Figure 14. Grid generatetl€ 1.5) for the 2D Burgers equation (NVSF discrati@an with a SMART
limiter and collocation criterion Gi).
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The problem solution exhibits a migration of théial pulse in the positive direction of
andy, simultaneously (vd. Figure 10). However, the ntoeat speed of each front that
constitutes the pulse is different. The downwinainhfrhas to force its movement through
the plateau in its path which remains static (loe Burgers equation, the displacement
characteristic velocity associated to each nodeaides with the solution itself). On the
other hand, the upwind front faces no resistandéstmovement at the upper edge, but it
is kept fixed to the plateau at the lower edge.réfee the solution is characterized by
the propagation of a steep downwind front whicleventually caught by the faster fading
upwind front. The analysis of Figures 11 to 14 (BMART Ilimiter with collocation
criterion Clo) demonstrates the algorithm ability to follow th®sovement of the two
fronts without introducing numerical distortions @s edges. The collocation procedure
proves its suitability by providing an adequatelynglation of the solution numerical
profiles. The results obtained for the alternativas (vd. Figure 15) are equivalent to the
data presented above. So, we may conclude thairhdation is successfully carried out.
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Figure 15. Time evolution of the dimension of thliaptive grid generated by the 2D Burgers equation
numerical implementation.

Again, the progression of the size of the adaptedsgfor each example tested is
monitorized along the algorithm implementation (Wgure 15). Now, the criterion C2
tends to generate a relatively denser grid than dbeesponding criterion C1. The
procedures present similar performances for limit@iNMOD and SMART conjugated
with collocation criterion C1.

5. CONCLUSIONS

We conclude that an integration MOL algorithm thanjugates finite differences and/or
high resolution space discretizations, with a amdbon scheme based on increasing level
1D or 2D dyadic grids, reveals potential either aggrid generation procedure for
predefined functions, and as an integration schdatemoving steep gradient PDE
problems. It copes satisfactorily with an exampharacterized by a steep 2D travelling
wave and an example characterised by a formingpdteeelling shock, which proves its

15
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flexibility in dealing with different types of prdéms, with reasonable demands of
computational effort.
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