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Pterospartum tridentatum (L.) Willk., Gomphrena globosa L. and Cymbopogon citratus (DC) Stapf. are examples of
medicinal plants that demand a more detailed characterization. Therefore, phenolic composition (e.g., phenolic
acids and flavonoids) was analyzed by chromatographic and mass spectrometry techniques and the antioxidant
activity was also accessed through free radicals scavenging activity, reducing power and inhibition of lipid
peroxidation in brain homogenates.
C. citratus revealed the highest β-carotene bleaching and lipid peroxidation inhibitions, being luteolin 2″-O-
rhamnosyl-6-C-glucoside themain compound. P. tridentatum presented the highest 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical scavenging activity and reducing power and mainly dihydroflavonol and isoflavone derivatives
were detected. Otherwise, G. globosa presented kaempferol 3-O-rutinoside as the most abundant phenolic
compound and betacyanins were only present in this sample. It is very interesting to study the phytochemical
composition of these plants, given the importance of their consumption.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Free radicals are produced in natural metabolism of aerobics cells,
mostly in the form of oxygen reactive species (ROS) (Ferreira, Barros,
& Abreu, 2009). Oxidative stress is a serious imbalance between the
generation of ROS and antioxidant protection in favor of the former,
causing excessive oxidative damage (Halliwell, 2011). In fact, the non-
controlled production of free radicals can be related not only to various
chronic diseases such as cancer, cardiovascular and neurodegenerative
diseases, but also to the aging process (Ferreira et al., 2009).

Antioxidant species that can be generated internally can counteract
the high amounts of ROS. Nevertheless, despite its high efficiency, the
endogenous defenses are not enough, being necessary to obtain antiox-
idants through diet, in order to maintain the values of free radicals at
low levels, so that the antioxidant defense systems of the body is not
compromised (Carocho & Ferreira, 2013). One of theways to get antiox-
idants through the diet is by incorporating a high variety of vegetables
and fruits. Plants are full of antioxidants (e.g., phenolic compounds),
because they are subject to severe oxidative stress as they produce
oxygen during photosynthesis (Halliwell, 2012).

Pterospartum tridentatum (L.) Willk., Gomphrena globosa L. and
Cymbopogon citratus (DC.) Stapf. could be explored as sources of
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antioxidant phytochemicals. P. tridentatum, plant similar to a broom, is
a species from the Fabaceae family that grows spontaneously in
thermo-Mediterranean conditions of the Iberian Peninsula and North
Africa (Carvalho, 2010). There are countless purposes for which this
species is used, among them are the treatment of diseases of the respi-
ratory system and of type 2 diabetes (Vitor et al., 2004). G. globosa,
known as globe amaranth, is a plant native from Brazil, Panama and
Guatemala from the Amaranthaceae family usually recommended to
treat respiratory system diseases (Cai, Xing, Sun, & Corke, 2006), diabe-
tes, jaundice, hypertension, urinary system conditions, aswell as kidney
and prostate problems (Dinda et al., 2006; Lans, 2007). C. citratus is a
tropical plant of the Poaceae family from Southeast Asia, commonly
referred as lemongrass. Studies previously conducted reportedhypogly-
cemic, hipolipidemic, anxiolytic and sedative effects (Adeneye &Agbaje,
2007; Blanco, Costa, Freire, Santos, & Costa, 2009), and various other
uses for inflammation, diabetes, and nervous disorders.

Some researchers have studied wild samples of P. tridentatum
regarding antioxidant properties (Coelho, Gonçalves, Alves, & Martins,
2011; Pinela, Barros, Carvalho, & Ferreira, 2011; Vitor et al., 2004) and
composition in phenolic compounds (Paulo et al., 2008; Vitor et al.,
2004), commercial samples of G. globosa concerning betacyanins and
phenolic compounds (Ferreres, Gil-Izquierdo, Valentão, & Andrade,
2011; Silva et al., 2012), and wild and commercial samples of C. citratus
regarding antioxidant properties and phenolic composition (Cheel,
Theoduloz, Rodríguez, & Schmeda-Hirschmann, 2005; Figueirinha,
Paranhos, Pérez-Alonso, Santos-Buelga, & Batista, 2008; Koh, Mokhtar,
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& Iqbal, 2012). Nevertheless, as far as we know, this is the first study
reporting antioxidant properties and a detailed characterization in
phenolic compounds of certified commercial samples from Portugal, ob-
tained according sustainable harvesting and organic farming principles.

2. Materials and methods

2.1. Samples

Plantmaterial of P. tridentatum (L.)Willk.,G. globosa L. and C. citratus
(DC) Stapf. was purchased from Ervital, a Portuguese company from
Castro Daire (Portugal). This company, settled in a high diverse moun-
tain region (Montemuro, a Natura 2000 site), markets several certified
plantmaterialswith different origin, such as sustainablewild harvesting
of spontaneous local species and organic farming of exogenous species.
P. tridentatum flowers were wild gathered in spring 2012 (respecting
plant phenology and abundance) and the other studied species were
grown, also in 2012, with organic farming methods. Harvested plants
were processed using in-storage and low temperature drying methods
(solar heated air, average daily temperature around 30–32 °C in shade
conditions and controlled relative humidity). Samples for analysis
were prepared from dried plant materials provided by the company,
and botanical identification was confirmed by Ana Maria Carvalho,
responsible of the medicinal plant collection of the Herbarium of the
Escola Superior Agrária (BRESA), of the Polytechnic Institute of Bragança
(Trás-os-Montes, Portugal).

2.2. Standards and reagents

HPLC-grade acetonitrile was obtained fromMerck KgaA (Darmstadt,
Germany) and was purchased from Fisher Scientific (Lisbon, Portugal).
Formic and acetic acids were purchased from Prolabo (VWR Interna-
tional, France). Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid) was purchased from Matreya (Pleasant Gap, PA, USA).
2,2-Diphenyl-1-picrylhydrazyl (DPPH) was obtained from Alfa Aesar
(Ward Hill, MA, USA). Phenolic standards were from Extrasynthèse
(Genay, France).Water was treated inMilli-Qwater purification system
(TGI Pure Water Systems, Greenville, SC, USA).

2.3. Phenolic compounds composition

Phenolic compounds were determined by High-Performance Liquid
Chromatography (HPLC, Hewlett-Packard 1100, Agilent Technologies,
Santa Clara, CA, USA) as previously described by the authors (Barros
et al., 2013). Double online detection was carried out in the diode
array detector (DAD) using 280 nm and 370 nm as preferred wave-
lengths and in amass spectrometer (MS) connected to theHPLC system
via the DAD cell outlet. The phenolic compounds were identified by
comparing their retention time, UV–vis and mass spectra with those
obtained from standard compounds, when available. Otherwise, peaks
were tentatively identified comparing the obtained information with
available data reported in the literature. For quantitative analysis, a cal-
ibration curve for each available phenolic standard was constructed
based on the UV signal. For the identified phenolic compounds for
which a commercial standard was not available, the quantification
was performed through the calibration curve of other compounds
from the same phenolic group. The results were expressed in μg per g
of dry weight.

2.3.1. Betacyanins
Each sample (1 g) was extractedwith 30mL ofmethanol containing

0.5% trifluoroacetic acid (TFA), and filtered through a Whatman No. 4
paper. The residue was then re-extracted twice with additional 30 mL
portions of 0.5% TFA in methanol. The combined extracts were evapo-
rated at 35 °C to remove the methanol, and re-dissolved in water. For
purification, the extract solution was deposited onto a C-18 SepPak®
Vac 3 cc cartridge (Phenomenex), previously activated with methanol
followed by water; sugars and more polar substances were removed
by passing through 10 mL of water and betalain/betacyanin pigments
were further eluted with 5 mL of methanol:water (80:20, v/v) contain-
ing 0.1% TFA. The extract was concentrated under a vacuum, was lyoph-
ilized, was re-dissolved in 1 mL of 20% aqueous methanol and was
filtered through a 0.22-μm disposable LC filter disk for HPLC analysis.
Betacyanins were determined by HPLC as previously described by the
authors (using anthocyanins analysis methodology; Guimarães et al.,
2013). Double detection was carried out by DAD, using 520 nm as the
preferred wavelength, and in a MS connected to the HPLC system via
the DAD cell outlet. The betacyaninswere tentatively identified by com-
paring their UV–vis and mass spectra with available data information
reported in the literature and expressed as relative percentage (%) of
their areas recorded at 520 nm.

2.4. Evaluation of antioxidant activity

2.4.1. Extracts preparation
Themethanolic extractswere obtained from the plantmaterial. Each

sample (1 g) was extracted by stirringwith 25mL of methanol (25 ºC at
150 rpm) for 1 h and subsequently filtered through Whatman No. 4
paper. The residue was then extracted with 25 mL of methanol (25 °C
at 150 rpm) for 1 h. The combinedmethanolic extracts were evaporated
at 40 °C (rotary evaporator Büchi R-210, Flawil, Switzerland) to dryness.

2.4.2. Antioxidant activity assays
DPPH radical-scavenging activity was evaluated by using an ELX800

microplate reader (Bio-Tek Instruments, Inc.; Winooski, VT, USA), and
calculated as a percentage of DPPH discolouration using the formula:
[(ADPPH− AS) / ADPPH] × 100, where AS is the absorbance of the solution
containing the sample at 515 nm, and ADPPH is the absorbance of the
DPPH solution. Reducing power was evaluated by the capacity to con-
vert Fe3+ into Fe2+, measuring the absorbance at 690 nm in the micro-
plate reader mentioned above. Inhibition of β-carotene bleaching was
evaluated though the β-carotene/linoleate assay; the neutralization of
linoleate free radicals avoids β-carotene bleaching, which is measured
by the formula: β-carotene absorbance (after 2 h of assay/initial absor-
bance) × 100. Lipid peroxidation inhibition in porcine (Sus scrofa) brain
homogenateswas evaluated by the decrease in thiobarbituric acid reac-
tive substances (TBARS); the color intensity of the malondialdehyde-
thiobarbituric acid (MDA-TBA) was measured by its absorbance at
532 nm; the inhibition ratio (%) was calculated using the following
formula: [(A − B) / A] × 100%, where A and B were the absorbance of
the control and the sample solution, respectively The results were
expressed in EC50 values (sample concentration providing 50% of anti-
oxidant activity or 0.5 of absorbance in the reducing power assay) and
trolox was used as the standard (Barros et al., 2013).

2.5. Statistical analysis

For each species, three samples were analyzed and all the assays
were carried out in triplicate, and the results are expressed as mean
values and standard deviation (SD). The results were analyzed using
one-way analysis of variance (ANOVA) followed by Tukey's HSD Test
with α = 0.05. This treatment was carried out using the SPSS v.22.0
program.

3. Results and discussion

3.1. Phenolic compounds characterization

The phenolic compound profiles of G. globosa (Gg), C. citratus (Cc)
and P. tridentatum (Pt) are shown in Figs. 1 and 2. Data (retention time,
λmax in the visible region, molecular ion and main fragment ions
observed in MS2) obtained by HPLC–DAD–ESI/MS analysis regarding
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phenolic compounds and betacyanins, identification of compounds and
individual quantification are presented in Tables 1–3. 5-O-Caffeoylquinic
acid (peak 1Cc), caffeic acid (peak 2Cc), trans-p-coumaric acid (peak 9Cc;
peak 4Gg), trans-ferulic acid (peak 7Gg), isorhamnetin 3-O-rutinoside
(peak 13Gg), isorhamnetin 3-O-glucoside (peak 15Gg), genistein
(peak 12Pt), kaempferol 3-O-rutinoside (peak 12Gg), kaempferol 3-O-
glucoside (peak 14Gg), luteolin 6-C- glucoside (isoorientin, peak 7Cc),
luteolin 7-O-glucoside (peak 13Cc), luteolin (peak 18Cc), quercetin 3-O-
rutinoside (peak 8Gg and peak 5Pt) and quercetin 3-O-glucoside (peak
10Gg andpeak 6Pt)were positively identified according to their retention,
mass and UV–vis characteristics by comparison with commercial
standards.

Twenty-one flavonoids were detected in P. tridentatum (Table 1).
Peaks 1Pt and 2Pt presented the same pseudomolecular ion [M-H]− at
m/z 465, and their UV spectra (Fig. 1A) and main MS2 fragments point
to they could be dihydroflavonol C-glycosyl derivatives. Thus, ions at
m/z 375 and 345 would result, respectively, from the losses of 90 mu
and 120 mu, characteristics of C-attached hexoses and due to partial
cleavage of the glycosyl residue (Cuyckens & Claeys, 2004). Fragments
at m/z 447, 357 and 327 could be explained by the loss of H2O
(−18 mu) from the original compound and the mentioned ions,
respectively, probably by cleavage of the\OH at position C-3 of the fla-
vonoid. The ion atm/z 317may be due to the loss of CO (−28mu) from
the majority fragment at m/z 345, and the fragment at m/z 167 could
correspond to the 0, 2A0

− ion from the cleavage of the aglycone. The ob-
servation of Ferreres, Silva, Andrade, Seabra, and Ferreira (2003) that
the loss −90 mu (ion m/z at 375) is unusual in 8-C-hexoses allowed
tentatively assigning peaks 1 and 2 as 6-C-hexosides. All in all, the com-
pounds were tentatively identified as dihydroquercetin 6-C-hexosides,
and theymight be speculated to be two stereoisomers due to the asym-
metric nature of C2 and C3 of dihydroquercetin. As far as we know,
dihydroflavonol C-glycosides, namely different dihydroquercetin 6-C-
glucoside isomers, have only been reported in two natural sources:
Ulmus wallichiana (family Ulmaceae; Rawat, Manmeet, Kunal, Naibedya,
& Rakesh, 2009) and Paepalanthus argenteus (Eriocaulaceae; Dokkedal,
Lavard, Santos, & Vilegas, 2007). Therefore, this would be the first report
to this type of unusual compounds in Fabaceae.

Peak 3Pt presented a pseudomolecular ion [M-H]− at m/z 479,
yielding a product ion at m/z 359 by loss of −120 mu, characteristic of
C-hexosyl flavones, whereas fragments at m/z 341, 221, and 167 are
compatible with an ortho-trihydroxylated B ring of a flavonol and a
5,7-dihydroxy A ring (Fabre, Rustan, Hoffmann, & Quetin-Leclercq,
2001;Wu, Yan, Li, Liu, & Liu, 2004). The compoundwas tentatively iden-
tified as myricetin 6-C-glucoside, already described in P. tridentatum by
Paulo et al. (2008). Peaks 4Pt and 7Pt presented UV spectra with λmax
352–356 nm and an MS2 product ion at m/z 301, indicating that they
correspond to quercetin derivatives. According to their pseudomolecular
ions, they were assigned as quercetin O-deoxyhexosyl-hexoside
([M-H]− at m/z 609) and quercetin O-hexoside ([M-H]− atm/z 463).

The remaining phenolic compounds were identified as isoflavone
derivatives based on their characteristic UV spectra and mass fragmen-
tation patterns. Peaks 8Pt, 10Pt and 12Pt were identified as genistein
derivatives. Peak 8Pt, with a pseudomolecular ion [M-H]− at m/z 431
releasing a fragment at m/z 269 ([M-162]−, (loss of a glycosyl moiety)
was tentatively associated with genistein 7-O-glucoside (genistin),
owing to its previous description in P. tridentatum (Paulo et al., 2008;
Vitor et al., 2004), although the nature and position of the glycosyl moi-
ety could not be established in our case. Peak 10Pt ([M-H]− atm/z 431)
released two MS2 fragment ions at m/z 311 and 269, corresponding to
the losses of 120 and 42 mu, characteristic of C-hexosyl flavones. This
compound was tentatively assigned as genistein 8-C-glucoside, previ-
ously reported in Genista tenera by Rauter et al. (2005) and in other
Fig. 1. HPLC phenolic profiles of (A)—P. tridentatum (recorded at 280 nm); (A1)—UV spectra of
(recorded at 520 nm).
Fabaceae species (Talhi & Silva, 2012). Peak 12Pt ([M-H]− at m/z 269)
would correspond to genistein aglycone.

A compound with the same pseudomolecular ion and fragmentation
characteristics as peak 9Ptwas isolated from P. tridentatum and fully iden-
tified by Vitor et al. (2004) as 5,5′-dihydroxy-3′-methoxyisoflavone-7-O-
β-glucoside, so that the compound herein detected was associated with
this structure.

Peaks 14Pt, 15Pt, 16Pt and 17Pt were identified as biochanin A deriva-
tives according to their UV and mass spectra characteristics. Peak 15Pt,
with a pseudomolecular ion [M-H]− at m/z 431 releasing a fragment at
m/z 283 ([M-H-162]−, loss of a glycosylmoiety)was tentatively assigned
as sissotrin (i.e., biochanin A 7-O-glucoside) owing to its previous identi-
fication in P. tridentatum flowers (Paulo et al., 2008; Vitor et al., 2004).
Peak 14Pt with a pseudomolecular ion [M-H]− atm/z 607, and fragment
ions resulting from the consecutive losses of two hexosyl residues (m/z
at 445 and 283) was identified as a biochanin A O-hexoside-O-hexoside.
Similarly, peak 16Pt ([M-H]− atm/z 649), 42 mu greater than 14Pt could
be assigned as biochanin A O-acetylhexoside-O-hexoside. As far as we
know, these compounds have not been reported in P. tridentatum.

Peaks 18Pt and 19Pt presented the same pseudomolecular ion [M-H]−

at m/z 283, coherent with a methylgenistein. They were tentatively
identified as prunetin (7-O-methylgenistein), previously reported
in P. tridentatum (Paulo et al., 2008), and biochanin A (4′-O-
methylgenistein), owing to the presence of other biochanin A derivatives
in the analyzed sample. Peak 21Pt ([M-H]− at m/z 297), 14 mu greater
than peaks 18Pt and 19Pt could be associated with a methyl derivative
of prunetin or biochanin A. Peak 20Pt presented a pseudomolecular ion
[M-H]− at m/z 299 releasing a fragment at m/z 284 (−15 mu, loss a
methyl group), compatible with a trihydroxymethoxy-isoflavonoid. A
compound with similar characteristics was reported in P. tridentatum
by Paulo et al. (2008) and assigned to a 7-O-methylorobol.

No definite structures could bematched for peaks 11Pt, 13Pt and 17Pt.
This latter presented a pseudomolecular ion [M-H]− atm/z 491, 46 mu
greater than peak 15Pt, whichmight be explained as due to a formic acid
adduct, whose formation has been discussed in literature (de Rijke,
Zappey, Ariese, Gooijer, & Brinkman, 2003, 2004). Thus, it could be spec-
ulated to correspond to an artifact (formic acid adduct of sissotrin)
formed under the experimental conditions used. Similar speculation
could be made for peak 11Pt (ion [M-H]− atm/z 505) that might corre-
spond to a formic acid adduct of methylprunetin or methylbiochanin A
O-hexoside. As for peak 13Pt with a pseudomolecular ion [M-H]− atm/z
341 and fragments at m/z 298 (−43 mu) and 283 (−43–15 mu), it
could be only speculated to be a methylprunetin or methylbiochanin
A derivative.

Dihydroflavonol C-derivatives (namely peak 1Pt, 3873.55 μg/g dw)
were the major compounds found in P. tridentatum (Table 1). Paulo
et al. (2008) and Vitor et al. (2004) studied a wild sample of
P. tridentatum from Portugal and presented some similarities in the phe-
nolic composition. However, those authors only detected up to nine
compounds of the groups of flavanols and isoflavones, but they did
not report dihydroflavonol derivatives and did not present quantifica-
tion results. The identification of dihydroflavonol C-derivatives in our
samples is particularly important, not only as they aremajority phenolic
compounds, but also for their possible biological activity. Indeed, the
dihydroflavonol C-hexosides identified in Ulmus wallichiana were
found to possess relevant in vitro osteogenic activity being able to pro-
mote osteoblast differentiation in primary cultures of rat osteoblasts,
making them good candidates to be used in osteoporosis therapy
(Rawat et al., 2009).

Twenty-seven phytochemicals were detected in G. globosa, six of
which were phenolic acid derivatives, fifteen flavonoids, mainly flavo-
nol derivatives (Fig. 1B), and six betacyanins (Table 2, Fig. 1C). Peaks
peaks 1 and 2; (B)—G. globosa (recorded at 370 nm); (C)—G. globosa betacyanin profile
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3Gg and 5Gg were assigned as the cis isomers of p-coumaric acid and
ferulic acid, whereas the corresponding trans isomers (i.e., peaks 4Gg

and 7Gg) were confirmed by comparison with standards, as described
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an MS2 fragment at m/z 193 ([ferulic acid-H]−) from the loss of a
hexosyl moiety (−162 mu) were tentatively assigned as cis and trans
ferulic acid hexoside, respectively.

Peaks 9Gg, 11Gg, 16Gg, 20Gg and 21Gg were identified as kaempferol
derivatives, based on their UV spectra and the production of an MS2

product ion at m/z 285. Similarly, peaks 6Gg and 17Gg (MS2 product
ion at m/z 301) were assigned as quercetin derivatives. Peaks 9Gg and
11Gg presented pseudomolecular ions [M-H]− at m/z 725 and 579 and
MS2 fragments atm/z 593 and 447 ([M-H-132]−, loss of a pentosyl moi-
ety), respectively, which further lost a rutinosyl (−308 mu; peak 9Gg)
or a hexosyl moiety ([M-H-162]−; peak 11Gg) to yield the aglycone
fragment at m/z 285. Compounds with the same pseudomolecular ions
were also found in extracts of G. globosa inflorescences by Ferreres
et al. (2011) and Silva et al. (2012), and identified as kaempferol 3-
O-(2-pentosyl, 6-O-rhamnosyl)-hexoside and kaempferol 3-O-(2-
pentosyl)-hexoside, respectively, so that these structures were as-
sumed for the compounds detected in our sample. Similarly, peak 6Gg,
with a pseudomolecular ion [M-H]− at m/z 595 and an MS2 fragment
atm/z 301 ([M-H-132-162]− loss of pentosyl and hexosyl moieties). A
compound with the same pseudomolecular ion was also found by
Ferreres et al. (2011) in G. globosa inflorescences, which was identified
as quercetin 3-O-(2-pentosyl)-hexoside. In those cases, the assignment
of the substitution position of the pentosewas based on the observation
by the authors of fragment ions from the loss of the pentosyl residue
(−132 mu) and of pentosyl + water (−150 mu), characteristic of
such an interglycosidic linkage (Cuyckens, Rozenberg, Hoffmann, &
Claeys, 2001). In our case, no fragment ion resulting from the loss of
the pentosyl residue was noticed, which would suggest that it was
linked at position 6″ of the hexose, so that peak 6Gg was tentatively
assigned as quercetin 3-O-(6-pentosyl)-hexoside.

A compound with the same characteristics as peak 20Gg ([M-H]− at
m/z 593, MS2 fragment ion at m/z 285 from the loss of rhamnosyl and
hexosyl moieties) was also identified by Ferreres et al. (2011) and
Silva et al. (2012) in G. globosa inflorescences and assigned as
kaempferol 3-O-(6-rhamnosyl)-hexoside. The observation in our case
of an MS2 fragment ion at m/z 447 from the loss of the rhamnosyl
residue might indicate its location at position 2″ of the hexose, so that
the compound was tentatively identified as kaempferol 3-O-(2-
rhamnosyl)-hexoside. Peak 16Gg was associated with a kaempferol O-
acetylhexoside according to its pseudomolecular ion [M-H]− at m/z
489 and MS2 fragment released at m/z 285 ([M-H-42-162]−, loss of
acetyl and hexosyl moieties).

Peaks 17Gg ([M-H]− at m/z 639) and 21Gg ([M-H]− at m/z 623)
should correspond to quercetin and kaempferol derivatives bearing
glucuronyl and hexosyl moities. In both cases the observation of MS2

fragments resulting from the alternative losses of each residue (i.e.,
−176 and −162 mu) might suggest that each sugar was located on a
different position of the aglycone. Therefore, these compounds were
tentatively assigned as quercetin O-glucuronide-O-hexoside (peak
17Gg) and kaempferol O-glucuronide-O-hexoside (peak 21Gg).

Peaks 18Gg and 19Gg ([M–H]− atm/z 475 and 517 mu, respectively)
originated a base peak at m/z 313 mu, which could correspond to a
trihydroxy-methylenedioxyflavone, probably gomphrenol (3,5,4′-
trihydroxy-6,7-methylenedioxyflavone) early described in G. globosa
leaves (Bouillant, Redolfi, Cantisani, & Chopin, 1978). Peaks with the
same pseudomolecular ions were detected in G. globosa inflorescences
by Ferreres et al. (2011) and Silva et al. (2012) and suggested to corre-
spond to gomphrenol-3-O-hexoside and gomphrenol-3-O-(6-acetyl)-
hexoside, so that those identities were also tentatively assumed in our
case.

Compounds 22Gg to 27Gg were identified as betacyanin derivatives
(Table 2) already described in G. globosa (Fig. 1C); no anthocyanins
were found together with the betacyanins, which is in agreement with
the previous reports (Cai, Sun, & Corke, 2001; Cai et al., 2006; Ferreres
et al., 2011; Kugler, Stintzing, & Carle, 2007; Silva et al., 2012). These
pigments would belong to the (iso)gomphrenin-type betacyanins



Table 2
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification, quantification of phenolic compounds and relative percentage of
betacyanins in G. globosa (mean ± SD).

Peak Rt (min) λmax (nm) Molecular ion
[M-H]− (m/z)

Main MS2 fragments (m/z) Tentative identification Quantification (μg/g dw)

1Gg 11.43 326 355 193(100) cis-Ferulic acid hexoside 20.41 ± 0.76
2Gg 13.10 326 355 193(100) trans-Ferulic acid hexoside 15.13 ± 0.57
3Gg 16.07 312 163 119(100) cis-p-Coumaric acid 1.09 ± 0.16
4Gg 16.98 312 163 119(100) trans-p-Coumaric acid 5.92 ± 0.66
5Gg 18.44 322 193 178(16), 134(100), 117(3) cis-Ferulic acid 7.95 ± 0.27
6Gg 18.79 360 595 301(100) Quercetin 3-O-(6-pentosyl)-hexoside 2.93 ± 0.25
7Gg 19.17 324 193 178(35), 134(100), 117(2) trans-Ferulic acid 27.73 ± 0.44
8Gg 19.48 354 609 301(100) Quercetin 3-O-rutinoside 23.76 ± 0.17
9Gg 19.71 344 725 593(5), 285(30) Kaempferol 3-O-(2-pentosyl, 6-O-rhamnosyl)-hexoside 16.71 ± 0.21
10Gg 20.81 358 463 301(100) Quercetin 3-O-glucoside 8.67 ± 0.70
11Gg 21.67 350 579 447(5), 285(50) Kaempferol 3-O-(2-pentosyl)-hexoside 7.67 ± 0.18
12Gg 22.95 350 593 285(100) Kaempferol 3-O-rutinoside 48.44 ± 0.16
13Gg 23.93 354 623 315(100) Isorhamnetin 3-O-rutinoside tr
14Gg 24.46 348 447 285(100) Kaempferol 3-O-glucoside 18.81 ± 0.43
15Gg 25.40 354 477 315(100) Isorhamnetin 3-O-glucoside tr
16Gg 26.93 350 489 285(100) Kaempferol O-acetylhexoside 4.89 ± 0.04
17Gg 32.27 340 639 463(32), 301(34) Quercetin O-glucuronide-O-hexoside 1.64 ± 0.15
18Gg 32.59 274,340 475 313(100) Gomphrenol 3-O-hexoside 3.87 ± 0.22
19Gg 34.14 274,340 517 313(100) Gomphrenol 3-O-(6-acetyl)-hexoside 14.18 ± 0.37
20Gg 34.99 352 593 447(9), 285(60) Kaempferol 3-O-(2-rhamnosyl)-hexoside 8.68 ± 0.23
21Gg 35.34 348 623 447(4), 285(23) Kaempferol O-glucuronide-O-hexoside 11.25 ± 0.08

Total phenolic acids 78.23 ± 2.32
Total flavonoids 171.50 ± 2.62
Total phenolic compounds 249.73 ± 4.95

Peak Rt (min) λmax (nm) Molecular ion
[M + H]+ (m/z)

Main MS2 fragments (m/z) Identification Relative percentage (%)

22Gg 28.79 550 697 551(2), 389(22) Gomphrenin II 7.66 ± 0.56
23Gg 31.91 550 697 551(3), 389(39) Gomphrenin II 12.99 ± 0.41
24Gg 32.48 550 727 551(4), 389(41) Gomphrenin III 50.21 ± 0.94
25Gg 34.27 550 697 551(2), 389(21) Isogomphrenin II 6.13 ± 0.11
26Gg 35.40 546 727 551(4), 389(38) Isogomphrenin III 17.23 ± 0.24
27Gg 36.65 500 683 507(2), 345(22) 17-Descarboxy-amaranthin 4.10 ± 0.11

tr—traces; dw—dry weight.
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(substituted at C-6 of betanidin/isobetanidin), differing from betanin-
type betacyanins (substituted at C-5 of betanidin/isobetanidin) (Cai
et al., 2001, 2006; Heuer, Wray, Metzger, & Strack, 1992). The mass
differences of 146 mu (m/z 697–551) and 176 mu (m/z 727–551) indi-
cated the presence of aromatic acyl groups (i.e., coumaroyl and feruloyl)
at the C-6 of glucose in gomphrenins/isogomphrenins. Thus, peaks 22Gg,
23Gg and 25Ggwere identified as gomphrenin II/isogomphrenin II, based
on the observation of two main fragments at m/z 551, loss of a p-
coumaroyl group (−146 mu) and atm/z 389, further loss of a hexosyl
moiety (−162 mu). For peaks 24Gg and 26Gg a pseudomolecular ion
[M + H]+ at m/z 727, was observed, so that they were identified as
gomphrenin III/isogomphrenin III. The main fragments at m/z 551 and
389 indicated the loss of a feruloyl group (−176 mu) and the further
loss of a hexosyl moiety (−162 mu), respectively. The later elution of
peaks 25Gg and 26Gg allowed their identification as isogomphrenins II
and III, respectively. Finally, peak 27Gg was identified as decarboxylated
amaranthin ([M + H]+ at m/z 683), previously reported in red petals
and in flowers ofG. globosa (Kugler et al., 2007). Those authors indicated
that the higher retention time and the hypsochromic shift of the maxi-
mum UV spectra (around 33 nm) as compared to amaranthin
(betanidin 5-O-β-glucuronosylglucoside), suggested a 17-descarboxy
structure. Similar observation was described in the literature for 17-
descarboxybetanin from red beet (Stintzing, Trichterborn, & Carle,
2006) and erect spiderling (Stintzing et al., 2004).

Flavonoids were the main phenolic compounds found in G. globosa
being kaempferol 3-O-rutinoside (peak 12Gg, 48.44 μg/g dw) the main
flavonol (Table 2). Gomphrenin III (peak 24Gg, 50.21%) was the major
betacyanidin found (Table 2). Silva et al. (2012) and Ferreres et al.
(2011) presented a slightly different profile in the samples studied
by them, presenting flavonol (quercetin, kaempferol and isorhamnetin
derivatives) and gomphrenol derivatives as the main phenolic
compounds. They also reported the presence of eight betacyanins, al-
though with a different profile of that found in our samples. Further-
more, Silva et al. (2012) showed higher values in their quantification
results for all the compounds identified. Kugler et al. (2007) and
Cai et al. (2001, 2006) presented a more complex identification of
betacyanins in petals of G. globosa.

Eighteen phenolic compounds were identified in C. citratus (Table 3,
Fig. 2A). But for three hydroxycinnamoyl derivatives (peaks 1Cc, 2Cc and
9Cc) the rest of peaks corresponded to flavone derivatives, which were
identified based on the fragmentation patterns described for C- and O-
glycosyl flavones by Ferreres et al., 2003; Ferreres, Llorach, &
Gil-Izquierdo, 2004; Ferreres et al., 2007 (Fig. 2B). From them, only
two peaks (12Cc and 13Cc) were found to be O-glycosylated on the agly-
cone. Peak 13Cc was positively identified as luteolin 7-O-glucoside by
comparisonwith a standard,whereas peak 12Cc,with a pseudomolecular
ion [M-H]− at m/z 593 releasing two fragment ions at m/z 447 ([M-H-
146]−, loss of a deoxyhexosyl moiety) and at m/z 285 ([M-H-162]−,
further loss of an hexosyl moiety), was assigned as luteolin 7-O-
neohesperoside, based on the previous identification of this compound
in C. citratus leaves by Figueirinha et al. (2008).

Peak 3Cc ([M-H]− atm/z 579) andpeaks 4Cc and5Cc (bothwith [M-H]−

at m/z 563) presented a fragmentation pattern characteristic of asym-
metric di-C-glycosides (Ferreres et al., 2003). The fragments at m/z
489 and 473 ([(M-H)-90]−) and 459 and 443 ([(M-H)-120]−) indicated
the presence of a C-hexosyl unit. For peak 3Cc, fragments showing the
loss of 60 mu, typical of pentosyl units, were observed at m/z 519
([(M-H)-60]−), 399 ([(M-H)-120-60]−) and 369 ([(M-H)-120-90]−);
and similarly occurred for peaks 4Cc and 5Cc (fragment at m/z 503;
[(M-H)-60]−). For peak 3Cc, the observation of a base peak at m/z 459
([(M-H)-120]−; partial loss of a hexosylmoiety) and its high abundance
in relation to that at m/z 519 ([(M-H)-60]−; partial loss of a pentosyl



Table 3
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and quantification of phenolic compounds in C. citratus
(mean ± SD).

Peak Rt
(min)

λmax

(nm)
Molecular ion
[M-H]− (m/z)

Main MS2 fragments (m/z) Tentative identification Quantification
(μg/g dw)

1Cc 8.19 324 353 191(100), 179(4), 161(5), 135(3) 5-O-Caffeoylquinic acid 101.56 ± 1.56
2Cc 11.28 326 179 135(100) Caffeic acid 21.27 ± 0.79
3Cc 12.73 350 579 561(10), 519(6), 489(56), 459(100), 399(52), 369(47) Luteolin 6-C-hexosyl-8-C-pentoside 97.33 ± 3.75
4Cc 14.94 336 563 545(27), 503(40), 473(100), 443(83), 383(90), 353(85) Apigenin 6-C-pentosyl-8-C-hexoside 246.70 ± 4.82
5Cc 15.26 336 563 545(20), 503(37), 473(100), 443(83), 383(73), 353(83) Apigenin 6-C-pentosyl-8-C-hexoside 31.75 ± 0.50
6Cc 15.87 350 593 473(100), 429(37), 357(26), 339(12), 309(20), (35) Luteolin 2″-O-deoxyhexosyl-6-C-glucoside 2138.07 ± 32.61
7Cc 16.24 350 447 429(30), 357(100), 339(15), 327(86), 297(22), 285(15) Luteolin 6-C-glucoside 93.93 ± 0.47
8Cc 16.43 350 549 531(18), 489(36), 459(100), 441(25), 429(21), 399(55),

369(52)
Luteolin 6-C-pentosyl-8-C-pentoside 270.05 ± 7.47

9Cc 16.96 310 163 119(100) trans-p-Coumaric acid 32.83 ± 0.88
10Cc 17.98 350 549 531(12), 489(32), 459(100), 441(18), 429(18), 399(76),

369(60)
Luteolin 6-C-pentosyl-8-C-pentoside 20.00 ± 1.02

11Cc 19.04 344 577 457(26), 413(100), 341(15), 311(14), 293(77) Apigenin 2″-O-deoxyhexosyl-C-hexoside 127.70 ± 6.59
12Cc 20.66 350 593 447(6), 285(22) Luteolin 7-O-neohesperoside 926.42 ± 15.71
13Cc 20.81 348 447 285(100) Luteolin 7-O-glucoside 1410.24 ± 37.12
14Cc 22.07 352 563 503(3), 473(100), 417(17), 399(53), 357(23), 327(25),

298(40)
Luteolin 2″-O-deoxyhexosyl-C-pentoside 1029.80 ± 41.40

15Cc 22.55 350 417 399(42), 357(100), 339(19), 327(90), 311(7), 297(35) Luteolin 6-C-pentoside 38.53 ± 1.29
16Cc 25.22 350 575 531(33), 429(38), 411(100), 367(65), 357(15), 337(20),

309(10)
Luteolin 2″-O-deoxyosyl-6-C-(6-deoxy-pento-hexos-
ulosyl)

1122.62 ± 7.15

17Cc 27.67 350 577 487(10), 473(40), 413(100), 371(15), 323(27) Methyl-luteolin 2″-O- deoxyhexosyl-6-C-hexoside. 58.63 ± 0.95
18Cc 34.37 350 285 175(14), 151(18), 133(32) Luteolin 187.18 ± 1.35

Total phenolic acids 155.65 ± 1.47
Total flavonoids 7798.96 ± 70.79
Total phenolic compounds 7954.61 ± 69.32

dw—dry weight.
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moiety), suggested that the hexose was located at position 6 of the
aglycone. Conversely, for peaks 4Cc and 5Cc, the base peak at m/z 473
([(M-H)-90]−) and the high abundance of the fragment at m/z 503
([(M-H)-60]−) would indicate a 6-C-pentosyl unit. The ions at m/z
369 and 353 [aglycone + 83]− and 399 and 383 [aglycone + 113]−,
supported the conclusion that luteolin and apigenin, respectively,
were the aglycones, which allowed the identification as a luteolin 6-C-
hexoside-8-C-pentoside (peak 3Cc) and apigenin 6-C-pentoside-8-C-
hexoside (peak 4Cc and 5Cc). Peak 15Cc presented a pseudomolecular
ion [M-H]− atm/z 417, 30mu lower than peak 7Cc (positively identified
as luteolin-6-C-glucoside by comparison with a standard) suggesting a
pentosyl unit bound to the aglycone,which togetherwith the fragments
atm/z 357 ([(M-H)-60]-; base peak) and 327 ([(M-H)-90]-) allowed its
tentative identification as a luteolin 6-C-pentoside. Peaks 8Cc and 10Cc

presented the same UV spectra and pseudomolecular ion [M-H]− at
m/z 549. Their MS2 fragmentation suggested the presence of two
pentosyl units linked at positions 6 and 8, so that they could be identi-
fied as luteolin 6-C-pentoside-8-C-pentoside. The existence of two
peaks should be explained by different substituting pentoses in each
case. The presence of all the previous peaks in C. citratus leaves was
also reported by Figueirinha et al. (2008).

Peaks 11Cc showed a pseudomolecular ion [M-H]− at m/z 577,
releasing five MS2 fragments ions. The loss of 120 mu (ion at m/z 457)
is characteristic of a C-hexosyl flavone, whereas the fragment at m/z
413 ([M-H-146-18]−) would indicate a deoxyhexose O-glycosylated
on the hydroxyl group at position 2″ of the C-glycosylating sugar
(Ferreres et al., 2007). The other three product ions at m/z 341
([aglycone + 71)]−), m/z 311 ([aglycone + 41)]−) and m/z 293
([aglycone + 41-18]−) are usual in mono-C-glycosyl derivatives O-
glycosylated on 2″ position (Ferreres et al., 2007, 2011). Thus, this
peak could be tentatively identified as apigenin 2″-O-deoxyhexosyl-C-
hexoside. Similar reasoning can be applied for the assignment of peak
6Cc ([M-H]− at m/z 593). The base peak at m/z 473 (loss of 120 mu)
indicated a C-hexosyl flavone, and the fragment at m/z 429 ([M-H-
146-18]−) would be characteristic of the O-glycosylation at position
2″ of the C-attached sugar (Ferreres et al., 2007). Ions at m/z 357
([aglycone + 71)]−), m/z 339 ([aglycone + 71-H2O)]−) and m/z 309
([aglycone + 41-H2O]−) confirmed luteolin as aglycone. Therefore,
the peak was tentatively identified as luteolin 2″-O-deoxyhexosyl-6-C-
hexoside, also reported in C. citratus by Figueirinha et al. (2008). Peak
14Cc showed a pseudomolecular ion [M-H]− at m/z 563, 30 mu lower
than peak 6Cc. The observation of a weak ion atm/z 417 ([(M-H)-146]−)
and a major fragment at m/z 399 ([(M-H)-146-18]−) indicated an O-
linked deoxyhexose, and the observation of ions at m/z 503 ([(M-H)-
60]-) and 473 ([(M-H)-90]-) revealed a pentose directly linked to the
aglycone. This suggested the identification of this peak as a luteolin
2″-O-deoxyhexosyl-C-pentoside.

Peak 17Cc showed a pseudomolecular ion [M-H]− atm/z 577. In the
MS2 fragmentation, the observation of a [M-H-90]− ion (m/z at 487)
and the lack of a [M-H-60]− ion suggested a C-attached hexose,whereas
themain fragment atm/z 413 ([(M-H)-146-18]−) indicated anO-linked
deoxyhexose; the loss of −104 mu to give rise to the fragment at m/z
473 could be interpreted as corresponding to the partial fragmentation
of the deoxyhexose (0, 2X1

− ion), whereas fragments at m/z 371
([aglycone + 71]−) and 323 ([aglycone + 41-H2O]−) pointed to a
methyl-luteolin as aglycone (Ferreres et al., 2007). All in all, the com-
pound was tentatively assigned as methyl-luteolin 2″-O-deoxyhexosyl-
C-hexoside.

Finally, peak 16Cc showed a pseudomolecular ion [M-H]− atm/z 575
releasing fragment ions atm/z 411 ([(M-H)-146-H2O]−, base peak) and
atm/z 429 ([(M-H)-146]−) that suggested the presence of a 2″-O-linked
deoxyhexosyl moiety (Ferreres et al., 2007). The fragments at m/z 367
and 337, from further loss of 44 and 74 mu from the base peak, respec-
tively, indicated a C-linked 6-deoxyhexose, and the observation of
an unusual fragment at m/z 309 from the loss of 102 mu (instead of
104 mu) from the base peak could be interpreted as the existence of a
ketone carbon in the sugar residue. All in all, the compound was tenta-
tively identified as luteolin 2″-O-deoxyosyl-6-C-(6-deoxy-pento-hexos-
ulosyl) (Fig. 2C), similar to the compound previously reported in
C. citratus by Figueirinha et al. (2008).

In C. citratus, flavonoids were the major group found being luteolin
2″-O-deoxyhexosyl-6-C-hexoside (peak 6Cc, 2138.07 μg/g dw) the main
compound (Table 3). Figueirinha, Cruz, Francisco, Lopes, and Batista
(2010); Figueirinha et al. (2008) presented a very similar profile to the
one shown for C. citratus in this study. Otherwise, Marques and Farah
(2009) only detected the presence of caffeoylquinic, feruloylquinic and
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dicaffeoylquinic acid derivatives inmethanolic and infusions of C. citratus
from Brazil. Furthermore, Port's, Chisté, Godoy, and Prado (2013) also
studied a sample from Brazil, but they submitted their samples to a hy-
drolysis process revealing a completely different profile (gallic acid, cat-
echin, epicatechin, quercetin, rutin and myricetin).

3.2. Antioxidant activity

Antioxidant activity cannot be measured directly and numerous
tests have been developed for measuring the antioxidant capacity of
food and biological samples. However, there is no universal method
that can measure the antioxidant capacity of all samples accurately
and quantitatively (Prior,Wu, & Schaich, 2005). Furthermore, standard-
izedmethods for antioxidant activity shouldmeet certain requirements,
and therefore the methods of assessing antioxidant capacity fall into
two broad categories reflecting the focus on radicals scavenging activity
and lipid peroxidation inhibition (Magalhães, Segundo, Reis, & Lima,
2008). In the present study, the antioxidant activity was assessed by
DPPH scavenging activity, reducing power and inhibition of lipid perox-
idation (β-carotene bleaching inhibition and TBARS assays).

The results of the antioxidant activity of the three studied plant
species are presented in Table 4. P. tridentatum methanolic extract
gave the highest DPPH scavenging activity and reducing power. This
might be explained by its peculiar profile in phenolic compounds,main-
ly dihydroflavonol and isoflavone derivatives. Isoflavones have been ex-
tensively studied for their possible health-promoting effects. These
phenolic compounds have the potential to scavenge free radicals such
as superoxide and nitric oxide (Rimbach et al., 2003). Genistein and
daidzein are known to be the most effective isoflavones, possessing
direct free radical quenching ability (Arora, Nair, & Strasburg, 1998;
Ruiz-Larrea et al., 1997). Furthermore, isoflavones are also known to
have the ability to decrease oxidative damage in cells via indirectmech-
anisms, such as induction of antioxidant-scavenging enzymes (Cai &
Wei, 1996). Recently, dihydroflavonol has also received attention due
to its potential health benefits, attributed to the antioxidant activity. It
has been described that the antioxidant properties of these phenolic
compounds are the results of the high propensity to transfer electrons,
to chelate ferrous ions and to scavenge reactive oxygen species (Gong
et al., 2009; Montoro, Braca, Pizza, & De Tommasi, 2005).

Nevertheless, it was C. citratus that showed the highest β-carotene
bleaching and lipid peroxidation inhibitions. This could be explained
by its higher amount in flavonoids, especially apigenin and luteolin
derivates. Moreover this species also revealed a high amount of C-
glycosylflavones, which have been found to present an antioxidant
properties (Talhi & Silva, 2012). Figueirinha et al., 2008 proved that
the flavonoid fraction of C. citratus (mostly apigenin and luteolin C-
glycosylflavones derivatives) demonstrated to have a good scavenger
capacity for superoxide anion and hydroxyl radical, revealing that
these compounds possess a protective effect against those reactive
species which are involved in inflammatory and degenerative diseases.

G. globosa methanolic extract gave the lowest activity in all the
assays, presenting also the lowest phenolic concentrations, which
might explain the less effect shown by this sample.

The studied C. citratus extract gave higher DPPH scavenging activity
than methanolic extracts obtained from a commercial sample from
Taiwan (23.5% at 1 mg/mL; Tsai, Tsai, Chien, Lee, & Tsai, 2008) and
Table 4
Antioxidant activity (EC50 values, mg/mL) of P. tridentatum, G. globosa and C. citratusmethanol

Pterospartum tridentatum

DPPH scavenging activity 0.18 ± 0.01c

Reducing power 0.11 ± 0.00c

β-Carotene bleaching inhibition 0.48 ± 0.09b

TBARS inhibition 1.18 ± 0.06b

EC50 values correspond to the extract concentration achieving 50% of antioxidant activity or 0
differences (p b 0.05).
Malaysia (EC50 value 994.77 μg/mL; Koh et al., 2012), and also higher
reducing power than an ethanolic extract from a Korean sample (absor-
bance 0.32 at 0.2 mg/mL; Oh, Jo, Cho, Kim, & Han, 2013). Nonetheless, it
gave lower DPPH scavenging activity than a methanolic extract
prepared with samples from Chile (67.9% at 33 μg/mL; Cheel et al.,
2005) and Brazil (0.08 μg/mL; Port's et al., 2013).

G. globosa extract presented a lower DPPH scavenging activity (EC50
value 421 μg/mL) when compared to an aqueous extract of a commer-
cial sample of G. globosa also from Portugal, but from a different distrib-
utor (Silva et al., 2012). Finally, the studied P. tridentatum sample gave
higher DPPH scavenging activity and reducing power, but lower lipid
peroxidation inhibition when compared to the one described by the
authors for a wild sample traditionally shade-dried (Pinela et al., 2011).

Overall, C. citratus showed the highest β-carotene bleaching and
lipid peroxidation inhibitions, that can be due to its high amount in
flavonoids, especially apigenin and luteolin derivatives (luteolin 2″-O-
rhamnosyl-6-C-glucoside was the main compound). P. tridentatum
revealed the highest DPPH radical scavenging activity and reducing
power, that may be explained by its peculiar profile in phenolic com-
pounds, mainly dihydroflavonol and isoflavone derivatives. Otherwise,
G. globosa showed the highest content of kaempferol 3-O-rutinoside
and betacyanins were only present in this sample.
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