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Abstract 

Coprinopsis atramentaria is a wild edible mushroom whose methanolic extract revealed 

a marked antioxidant activity; p-hydroxybenzoic (HA), p-coumaric (CoA) and cinnamic 

(CA) acids were identified in the extract. In the present work, it was evaluated the 

cytotoxicity of C.  atramentaria extract, previously identified organic acids and their 

synthesized derivatives (methylated compounds and  protected glucuronides). Among 

all the tested cell lines (MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung 

carcinoma, HCT15- colon carcinoma, HeLa- cervical carcinoma and HepG2- 

hepatocellular carcinoma), the extract presented good activity for the first three cell 

lines mentioned; in most of the cases methylated and glucuronide derivatives showed a 

higher activity than the corresponding parental compounds. The substitution of the 

carboxylic group (in parental organic acids) for an ester (in methylated derivatives) 

increased the cytotoxicity for tumor cell lines. Acetylated glucuronide derivatives 

showed higher cytotoxicity when compared with the corresponding parental acids.  
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1. Introduction 

Mushrooms consumption is increasing because of their unique and subtle flavor (Sadler, 

2003), nutritional properties (Kalac, 2009) and richness on bioactive compounds. The 

scientific community, searching for new therapeutic alternatives, studied many different 

species and has found variable therapeutic activities such as anti-inflammatory and 

antibiotic effects (Lindquist, Niedermeyer, & Jülich, 2005; Poucheret, Fons, & Rapior, 

2006; Alves et al., 2012; Heleno et al., 2013b). Moreover, mushrooms are a source of 

compounds with antitumor properties, including low-molecular-weight (e.g. quinones, 

sesquiterpenes, steroids) and high-molecular-weight (e.g. homo and 

heteropolysaccharides, glycoproteins) compounds (Ferreira, Vaz, Vasconcelos, & 

Martins, 2010). Our attention is being focused on the capacity of organic acids 

(including phenolic acids) from mushrooms to inhibit the growth of different tumor cell 

lines.  

Coprinopsis atramentaria (Bull.: Fr.) Redhead, Vilgalys & Moncalvo, commonly 

known as the common ink cap or inky cap, is a widespread wild edible mushroom 

found in Europe and North America. Previously known as Coprinus atramentarius, it is 

the second best known ink cap and previous member of the genus Coprinus after 

Coprinus comatus. Clumps of mushrooms arise after rain from spring to autumn, 

commonly in urban and disturbed habitats such as vacant lots and lawns, as well as 

grassy areas. This mushroom, previously characterized by us for its nutritional 

composition showed a notable antioxidant activity; phenolic acids were identified in its 

extract (Heleno, Barros, Queiroz, Santos-Buelga, & Ferreira, 2012) and have been 

reported as common compounds in mushrooms (Vaz et al., 2011).  

Dietary phenolic compounds, including phenolic acids, are widely considered to 

contribute to health benefits in humans (Ho, Lee, & Huang, 1992). Nevertheless, there 
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are very few studies dealing with cytotoxicity of phenolic acids and related compounds. 

Cinnamic and protocatechuic acids revealed cytotoxicity for a lung cancer cell line, and 

were implied in the capacity of Clitocybe alexandri to induce cell cycle arrest and 

apoptosis in the same cell line (Vaz, Almeida, Ferreira, Martins, & Vasconcelos, 2012). 

Cinnamic acid was also pointed out as possessing antitumor activity against human 

malignant tumors, including melanoma, glioblastoma, adenocarcinoma of the prostate 

and lung (Liu, Hudgins, Shack, Yin, & Samid, 1995) and colon adenocarcinoma 

(Ekmekcioglu et al., 1998).  Drupanin and baccharin, two cinnamic acid derivatives, 

were reported as inhibitors of the growth of HeLa-60 cell lines by inducing apoptosis 

(Akao et al., 2003).   

However, little is known about phenolic acids bioactive forms in vivo and the 

mechanisms by which they may contribute toward disease prevention. In fact, many 

studies have ignored the question of their metabolism (Scalbert & Williamson, 2000; 

Rechner et al., 2002; Manach, Williamson, Morand, Scalbert, & Remesy, 2005; Nardini 

et al., 2009). After absorption from the gastrointestinal tract, these molecules circulate 

in human plasma as conjugated forms namely glucuronide and methylated derivatives 

(Rechner et al., 2002; Piazzon et al., 2012).  

As far as we know, nothing has been reported on cytotoxicity of C. atramentaria extract 

and glucuronide or methylated derivatives of phenolic acids. Detailed knowledge 

concerning the conjugative and metabolic events following the ingestion of these 

organic acids is crucial to the understanding of their bioactivity effect, in order to clarify 

the role of the metabolites in the pharmacology of the parental substance. Therefore, in 

the present work, it was evaluated the cytotoxicity of C.  atramentaria extract, organic 

acids (p-hydroxybenzoic, p-coumaric and cinnamic acids) and their synthesized 

derivatives: methylated derivatives and  protected glucuronides. 
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2. Materials and methods 

2.1. Wild mushroom and preparation of the extract 

Samples of Coprinopsis atramentaria (Bull.: Fr.) Redhead, Vilgalys & Moncalvo were 

collected in Bragança (Northeast Portugal). After taxonomic identification of the 

sporocarps (Oria de Rueda, 2007), specimens were deposited at the herbarium of School 

of Agriculture of Polytechnic Institute of Bragança. The samples were lyophilized 

(FreeZone 4.5 model 7750031, Labconco, Kansas, USA), reduced to a fine powder (20 

mesh) and kept at room temperature inside a desiccator until further analysis (within a 

week).  

The powder (∼10 g) was extracted with methanol (250 ml) at -20 °C for 6 h. The 

extract was sonificated for 15 min, centrifuged at 4000g for 10 min and filtered through 

Whatman No.4 paper. The residue was then re-extracted with three additional 150 ml 

portions of methanol. The combined extracts were evaporated (rotary evaporator Büchi 

R-210; Flawil, Switzerland) at 40 °C to dryness. 

 

2.2. Organic acids 

p-Hydroxybenzoic acid (HA), p-coumaric acid (CoA) and cinnamic acid (CA) were 

identified in C. atramentaria extract (Heleno et al., 2012). For cytotoxicity assays, these 

compounds were purchased from Sigma (St. Louis, MO, USA; CAS numbers 99-96-7, 

501-98-4 and 140-10-3, respectively). 

 

2.3. Acetylated glucuronide derivatives (protected forms of p-coumaric, p-

hydroxybenzoic and cinnamic acid glucuronides) 
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2.3.1. Synthesis of 2,3,4-tri-O-acetyl-1-p-coumaroyl-D-glucuronic acid methyl ester 

(CoAGP).  

p-Coumaric acid (0.100 g, 0.609 mM), acetobromo-α-D-glucuronic acid methyl ester 

(0.362 g, 0.914 mM) and potassium carbonate (0.084 g, 0.609 mM) were dissolved in 

10 ml of DMSO under argon and the mixture was stirred for 24h. The reaction mixture 

was diluted with 50 ml of ethyl acetate and then washed with water (7×10 ml). The 

organic layer was dried over MgSO4 and the solvent was evaporated. The product 

obtained was purified by a column chromatography using silica gel 60A (60-200 

micron) and a mixture of ethyl acetate/petroleum ether (55/45, v/v) as eluent. The 

product was then crystallized with acetone and was isolated as a white solid (0.095 g, 

33%). M.p. = 201-202ºC  1H NMR (300 MHz, CDCl3): δ= 2.03 (s, 3H), 2.06 (s, 3H), 

2.07 (s, 3H), 3.75 (s, 3H), 4.25 (d, J= 9.3 Hz, 1H), 5.27 (ap t, J= 9.3 and 8.1 Hz, 1H), 

5.28 (t, J= 9.3 Hz, 1H), 5.38 (t, J= 9.3 Hz, 1H), 5.90 (d, J= 8.1 Hz, 1H), 6.14 (d, J= 16 

Hz, 1H),6.84 (d, J= 8.7 Hz, 2H), 7.38 (d, J= 8.7 Hz, 2H), 7.61 (d, J= 16 Hz, 1H) (*). 13C 

NMR (75.4 MHz, CDCl3): 20.48 (CH3), 20.56 (CH3), 20.58 (CH3), 53.15 (OCH3), 

69.08 (CH), 70.13 (CH), 71.81 (CH), 72.84 (CH), 91.35 (CH), 112.85 (CH), 115.97 

(2×CH), 126.33 (C), 130.47 (2xCH), 147.39 (CH), 158.69 (C), 164.91 (C=O), 167.26 

(C=O), 169.45 (C=O), 169.55 (C=O), 169.96  (C=O). HRMS (ESI) calcd. for 

C22H24NaO12 (M++Na) 503.1160, found 503.1164. 

(*) The proton of the OH group was not detected in the proton NMR spectrum. 

2,3,4-tri-O-acetyl-1-p-hydroxybenzoyl-D-glucuronic acid methyl ester (HAGP) and 

2,3,4-tri-O-acetyl-1-cinnamoyl-D-glucuronic acid methyl ester (CAGP) were obtained 

according to the procedure described by Heleno et al. (2013a).  

 

2.4. Methylated derivatives of p-coumaric, p-hydroxybenzoic and cinnamic acids 



	   7	  

2.4.1. Synthesis of methyl 3-(4-hydroxyphenyl)acrylate (CoAM1), methyl 4-

hydroxybenzoate (HAM1) and methyl 3-phenylacrylate (CAM) 

p-Coumaric (CoA), p-hydroxybenzoic (HA) and cinnamic (CA) acids (0.100 g) were 

stirred at room temperature with 7.5 ml of methanol, containing 0.2 ml of concentrated 

H2SO4 for 5 days (Reis et al., 2010). The solvent was then partially evaporated under 

reduced pressure, and the solution was neutralized with aqueous 1 M Na2CO3. The 

mixture was extracted with diethyl ether (3×15 ml). The organic phases were combined, 

washed with water (3×10 ml), dried over MgSO4, and the solvent was evaporated.  

The products: CoAM1, HAM1 and CAM were isolated as yellow solids (0.080 g, 74%; 

0.075 g, 68%; 0.083 g, 75%, respectively). CoAM1 M.p.= 120-122ºC 1H NMR (400 

MHz, DMSO-d6): δ= 3.68 (s, 3H), 6.38 (d, J= 16 Hz, 1H), 6.78 (d, J= 8.8 Hz, 2H), 7.54 

(d, J= 8.8 Hz, 2H), 7.55 (d, J= 16Hz, 1H), 9.99 (OH). 13C NMR (75.4 MHz, DMSO- 

d6): 51.19 (OCH3), 113.89 (CH), 115.73 (2xCH), 125.04 (C), 130.28 (2xCH), 144.72 

(CH), 159.82 (C), 167.02 (C=O). HRMS (EI-TOF) calcd. for C10H10O3 (M+) 178.0630, 

found 178.0630. 

HAM1 and CAM are known and commercially available reagents (Sigma, St. Louis, 

MO, USA; CAS numbers 99-76-3 and 103-26-4, respectively). Mp are in agreement 

with the ones reported by Sigma Aldrich HAM1= 128-130ºC, CAM= 44-46ºC. 

 

2.4.2. Synthesis of methyl 3-(4-methoxyphenyl)acrylate (CoAM2) and methyl p-anisate 

(HAM2)  

p-Coumaric and p-hydroxybenzoic acids (0.300 g), dimethyl sulphate (1 equiv.) and 

potassium carbonate (2 equivs) were stirred with acetone (50 ml) at 45-50ºC for 24 h 

(Deng et al., 2006). The solvent was evaporated. The residue was suspended in an 

ammonia solution (3.6% w/v; 7 ml) and extracted with ethyl acetate (3×3 ml). The 
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combined ethyl acetate extracts were dried over MgSO4, and the solvent was evaporated. 

The products CoAM2 and HAM2 were isolated as white solids, (0.213g, 61%; 0.224g, 

62%). CoAM2 M.p. = 87-89ºC 1H NMR (300 MHz, CDCl3): δ= 3.80 (s, 3H), 3.85 (s, 

3H), 6.32 (d, J= 15.9 Hz, 1H), 6.91 (d, J= 8.7 Hz, 2H), 7.48 (d, J= 9.0 Hz, 2H), 7.66 (d, 

J= 15.9 Hz, 1H). 13C NMR (75.4 MHz, CDCl3): 51.57 (OCH3), 55.36 (OCH3), 114.30 

(2xCH), 115.24 (CH), 127.10 (C), 129.71 (2xCH), 144.52 (CH), 161.37 (C), 167.77 

(C=O). HRMS (EI-TOF) calcd. for C11H12O3 (M+) 192.0786, found 192.0790. 

HAM2 is a known and commercially available reagent (Sigma, St. Louis, MO, USA; 

CAS number 121-98-2). Mp are in agreement with the one reported by Sigma Aldrich 

HAM2= 52-54ºC.  

 

2.4.3. Synthesis of 3-(4-methoxyphenyl)acrylic acid (CoAM3) and 4-methoxybenzoic 

acid (HAM3)  

Methyl 3-(4-methoxyphenyl)acrylate (CoAM2) and methyl p-anisate (HAM2) (0.100 

g), NaOH (3 equivs) were stirred in ethanol at 65ºC for 3h. The solvent was evaporated. 

The residue was dissolved in water and adjusted to pH=3 with a solution of HCl 37%. 

The residues was then filtered and the products CoAM3 and HAM3 were isolated as 

white solids (0.050 g, 54% and 0.074 g, 80%, respectively). 

CoAM3 and HAM3 are known and commercially available reagents (Sigma, St. Louis, 

MO, USA; CAS numbers 830-09-1 and 100-09-4, respectively). Mps are in agreement 

with the ones reported by sigma Aldrich. CoAM3= 175-177ºC, HAM3= 185-187ºC. 

 

2.5. Cytotoxicity assays 

Five human tumor cell lines were used: MCF-7 (breast adenocarcinoma) from DSMZ 

(Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen 
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GmbH), NCI-H460 (non-small cell lung carcinoma), HCT15 (colon carcinoma), HeLa 

(cervical carcinoma) and HepG2 (hepatocellular carcinoma) from ECACC (European 

Collection of Cell Cultures). Cells were routinely maintained as adherent cell cultures at 

37 ºC, in a humidified air incubator containing 5% CO2. Cells were cultured in: i) 

RPMI-1640 medium supplemented with10% heat-inactivated fetal bovine serum (FBS) 

and 2 mM glutamine, for the MCF-7, NCI-H460 and HCT15 cell lines and ii) DMEM 

supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml 

streptomycin, for HeLa and HepG2 cells. To assess the cytotoxicity of the 

extract/compounds, the Sulforhodamine B assay was performed according to a 

procedure previously described by the authors (Abreu et al., 2011). For this, each cell 

line was plated at an appropriate density (7.5×103 cells/well for MCF-7, NCI-H460 and 

HCT15 cells or 1.0×104 cells/well for HeLa and HepG2 cells) in 96-well plates.  

For the evaluation of toxicity towards liver cells, a primary cell culture was prepared 

from a freshly harvested porcine liver obtained from a local slaughter house, according 

to a procedure previously established by some of us (Abreu et al., 2011), these cells 

were designated as PLP2 cells. Cell culture was continued with direct monitoring every 

two to three days using a phase contrast microscope. Before confluence was reached, 

cells were sub-cultured and plated in 96-well plates at a density of 1.0×104 cells/well, 

and cultured in DMEM medium with 10% FBS, 100 U/ml penicillin and 100 µg/ml 

streptomycin.   

Cells were treated for 48h with the different extract/compound solutions (the extract 

was dissolved in water at 8mg/ml; methylated and glucuronide compounds were 

dissolved in DMSO at 100 mM and 40 mM, respectively) and the procedure for SRB 

assay was followed, as described above. The results were expressed in GI50 values 
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(concentrations that inhibited 50% of the net cell growth). Ellipticine was used as 

positive control. 

 

2.6. Statistical analysis 

One-way analysis of variance (ANOVA) was performed followed by Tukey’s honestly 

significant difference post hoc test with α = 0.05, coupled with Welch’s statistic. This 

treatment was carried out using SPSS v. 18.0 program.  

 

3. Results and Discussion 

3.1. Synthesis of acetylated glucuronide and methylated derivatives 

p-Coumaric acid (CoA) was reacted with acetobromo-α-D-glucuronic acid methyl ester 

(1.5 equiv.) according to the procedure described by our group (Heleno et al., 2013a), 

affording the corresponding 2,3,4-tri-O-acetyl-1-p-coumaroyl-D-glucuronic acid methyl 

ester (CoAGP, Scheme 1), with 33% yield after purification, which is in agreement with 

the yields previously reported for HAGP and CAGP (38% and 32%, respectively; 

Heleno et al., 2013a). As far as we know, this is the first report on the synthesis of 

protected glucuronide derivatives of CoA. Nevertheless, there are studies describing the 

synthesis of protected glucuronide derivatives of p-hydroxybenzoic (HA) and cinnamic 

(CA) acids (HAGP and CAGP; Heleno et al., 2013a), ferulic acid (25% yield; Piazzon et 

al., 2012) and of ethyl-4-hydroxybenzoate (Zhang et al., 2012). The yields obtained in 

the chemical synthesis of these compounds are considered good, since the in vivo 

glucuronidation that occur in animal metabolism involve specific enzymes.  

CoA, HA and CA were reacted with methanol and sulphuric acid according to the 

procedure described by Reis et al. (2010), to afford the corresponding CoAM1, HAM1 

and CAM in good yields (74%, 68% and 75%, respectively). An esterification reaction 
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was carried out in order to prepare the carboxylic ester derivatives, the para-hydroxyl 

groups were unreacted under these conditions for HAM1 and CoAM1. These methylated 

compounds are common metabolites obtained in vivo from organic acids. HAM1 and 

CAM are commercially available compounds, but our group synthesized them to 

perform the biological assays. Otherwise, as far as we know, CoAM1 is a new 

compound, being fully characterized herein.  

CoA and HA were reacted with dimethyl sulphate (1 equiv.) and potassium carbonate (2 

equiv.) (Deng et al., 2006) to give CoAM2 and HAM2 in good yields (61% and 62% 

respectively), affording in both cases dimethylated derivatives. These compounds are 

possible methylated metabolites also circulating in the organism; HAM2 is a 

commercially available reagent, while CoAM2 is a new compound fully characterized 

herein. 

CoAM2 and HAM2 were reacted with NaOH (3 equiv.) in ethanol to perform a 

regioselective hydrolysis of the ester group affording CoAM3 and HAM3 in moderate to 

good yields (54% and 80%, respectively), with a free carboxylic group.  Despite 

CoAM3 and HAM3 are commercially available compounds, they were synthesized in 

order to complete the series of methylated metabolites and compare the bioactivity of 

the different possible methylations of each parental organic acid. 

 

3.2. Cytotoxicity of C. atramentaria extract 

C. atramentaria extract showed high cytotoxicity for MCF-7, NCI-H460 and HCT15 

cell lines (Table 1). Furthermore, it did not show any activity against liver primary cells 

(GI50 > 400 µg/ml). The obtained values are relevant in comparison with other reports 

on cytotoxicity of mushroom extracts for tumor cell lines. Vaz et al. (2010) reported the 

following GI50 values of Clitocibe alexandri ethanolic extract: 24.8±2.3 µg/ml (NCI-
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H460), 17.9±1.3 µg/ml (MCF7), 21.7±2.3 µg/ml (HCT-15) and 26.0±1.3 µg/ml (AGS, 

gastric cancer). The same authors described GI50 values of Suillus collinitus methanolic 

extract of 62.5±6.3 µg/ml, 25.2±0.16 µg/ml, 103.2±9.9 µg/ml and 79.2±15.5 µg/ml, 

respectively for each of the previous mentioned cell lines (Vaz et al., 2012b). 

It should be highlighted that the C. atramentaria methanolic extract showed higher 

activity than individual compounds. This can be due to additive and synergistic effects 

of compounds such as p-hydroxybenzoic (4.71 mg/100 g dry weight), p-coumaric (0.82 

mg/100 g) and cinnamic (1.70 mg/100 g) acids previously identified in the extract 

(Heleno et al., 2012).  Besides the organic acids previously mentioned, C. atramentarius 

is well known to produce coprine, a cyclopropyl amino acid that generates a metabolite, 

which inhibits alcohol dehydrogenase and, therefore, it cannot be simultaneously 

consumed with alcohol. All these compounds could be responsible for the cytotoxicity 

showed by the extract. Regarding the other cell lines, HeLa and HepG2, the extract did 

not show activity at the highest tested concentration (400 µg/ml), which indicates that 

the compounds present in the extract are not active for these cell lines, or that antagonist 

effects could occur. 

 

3.3. Cytotoxicity of p-coumaric acid and derivatives 

p-Coumaric acid (CoA) revealed very weak cytotoxicity for three cell lines, and no 

activity for HeLa and HePG2 cells. Nevertheless, the activity of its glucuronide 

derivative (CoAGP) was moderate for all the tumor cell lines, being more active against 

HePG2 cells (Table 1). The methylated derivatives CoAM1 and CoAM2 also presented 

moderate activity against all the tested tumor cell lines. This could be attributed to the 

presence of ester groups; in both compounds the carboxylic group of the parental 

molecule was replaced by an ester; CoAM1 has a hydroxyl group in the para position, 
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while CoAM2 presents a methoxyl group in the same position. However, CoAM3 that 

remains the carboxylic group of CoA but with a methoxyl group in the para position 

showed a very weak activity.  

 

3.4. Cytotoxicity of p-hydroxybenzoic acid and derivatives 

p-Hydroxybenzoic acid (HA) did not show activity against none of the tumor cell lines 

(Table 1). This in in agreement with Vaz et al. (2012a) that also reported the lack of 

activity of HA against NCI-H460 cells at the highest tested concentration (3000 µM). 

Nonetheless, its glucuronide derivative, HAGP, gave a moderate activity against the 

tested cell lines, with the exception of HePG2 cells in which this compound revealed a 

good activity. The methylated derivatives, HAM1 and HAM2 showed very weak 

activity, with the exception of HAM1 for HeLa cells that presented a moderate activity; 

HAM3 had no activity. Once more, the presence of an ester group increased the growth 

inhibitory activity of the compounds; HAM1 has the carboxylic group replaced by an 

ester group and a hydroxyl group in the para position, while HAM2 has also a 

carboxylic group replaced by an ester group and a methoxy group in the para position. 

HAM3 that remains with the carboxylic group, revealed no activity. 

 

3.5. Cytotoxicity of cinnamic acid and derivatives 

Cinnamic acid (CA) has also a weak activity against NCI-H460, HCT15 and HeLa cell 

lines, and no activity for the other cell lines (Table 1). Vaz et al. (2012a) reported a GI50 

value of cinnamic acid for NCI-H460 cells (845.9±97.5 µM) similar to the one 

described herein. Otherwise, Ekmekcioglu et al. (1998) reported that CA has 

antiproliferative effects against colon cancer cells with a maximal effect at 8.0 mM with 

GI50 values between 4.0-5.0 mM. The glucuronide derivative (CAGP) revealed a 
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moderate activity against all the cell lines. The methylated derivative presented low 

activity for HCT15 cell line and no activity for the other tested cell lines.  

CAM has also the carboxylic group replaced by an ester and has no groups in para 

position. In this case the presence of the ester group did not increased the activity.  

It should be highlighted that despite the high GI50 values obtained for the individual 

compounds (much higher than the values for ellipticine), they did not present any 

toxicity for non-tumor cells PLP2; meaning that we could increase the therapeutic doses 

without toxicity effects. This is very important regarding the high toxicity revealed by 

the positive control/antitumor compound (in which the range between therapeutic and 

toxic doses is very short). 

 

Overall, the extract showed higher activity than individual compounds, maybe due to 

synergistic effects among the present molecules. This study allowed a comparison 

between parental molecules and derived metabolites; it is important to understand the 

behavior of organic acids (including phenolic acids) regarding their bioactivity after 

metabolism, and this study, gives clues on this matter. Organic acids are extensively 

metabolized in humans, being methylation and glucuronation two of the conjugated 

forms occurring in the organism and giving methylated and glucuronide metabolites, 

respectively. In this work, it was proved that the substitution of the carboxylic group (in 

parental organic acids) for an ester (in methylated derivatives) increased the cytotoxicity 

of the parental compounds. The acetylated glucuronide derivatives had considerably 

increase the cytotoxicity when compared with the respectively parental compounds.   

Although future studies should be carried out in order to clarify specific mechanistic 

pathways, the present study contributes to compare the bioactivity of organic acids and 

derivative compounds, including possible human metabolites.  
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Scheme 1. Glucuronidation of p-coumaric, p-hydroxybenzoic and cinnamic acids.  

CoA- p-coumaric acid; CoAGP- p-coumaric acid glucuronide protected form; HA- p-

hydroxybenzoic acid; HAGP- p-hydroxybenzoic acid glucuronide protected form; CA- 

cinnamic acid; CAGP- cinnamic acid glucuronide protected form.  

* Synthesis and structural characterization previously reported by the authors (Heleno et 

al., 2013). 
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Scheme 2. Methylations of p-coumaric, p-hydroxybenzoic and cinnamic acids. HA- p-hydroxybenzoic acid; CoA- p-coumaric acid; CA- 

cinnamic acid.	  
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 Table 1. Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronide derivatives on 
various human tumor cell lines and in liver primary cells. 

The results are expressed as GI50 values (µg/ml for extract and µM for compounds) corresponding to the extract/compound concentration, which 
inhibited 50% of cell growth. Results are from three independent experiments (performed in triplicate), and are expressed as mean ± standard 
deviation (SD). Different letters in each column, and for each compound series, mean significant differences between GI50 values (p<0.05).*Due 
de low solubility of the compound, the maximum concentration tested was 500 µM. 

 MCF7 

(breast carcinoma) 

NCI-H460 

(non-small lung carcinoma) 

HCT15 

(colon carcinoma) 

HeLa 

(cervical carcinoma) 

HepG2 

(hepatocellular carcinoma) 

PLP2 

(liver cells) 

Extract 53.10±4.72 15.13±1.35 36.44±3.30 ˃400 ˃400 ˃400 

CoA 1152.84±58.65ª 1082.50±81.32a 1177.46±32.54a ˃1250a ˃1250a ˃1250 

CoAGP 334.62±8.20c 384.21±16.85c 284.99±2.39c 205.56±6.93c 134.35±14.68d ˃500* 

CoAM1 295.42±6.41c 282.75±8.44c 274.94±12.72c 199.09±13.44c 680.46±49.02b ˃1250 

CoAM2 333.35±10.87c 344.91±26.36c 315.56±15.85c 247.98±2.16b 632.90±6.68c ˃1250 

CoAM3 1013.97±36.21b 915.79±81.70b 995.72±23.16b ˃1250a ˃1250a ˃1250 

HA ˃1250ª ˃1250ª ˃1250ª ˃1250ª ˃1250ª ˃1250 
HAGP 257.66±18.12c 310.92±1.80c 195.49±0.75d 192.39±7.72d 57.78±5.65c ˃500* 

HAM1 1140.70±4.51b 1060.69±70.13b 942.55±2.33c 507.38±31.06c 1169.42±64.37b ˃1250 

HAM2 ˃1250ª ˃1250ª 1149.49±5.69b 850.73±14.75b ˃1250ª ˃1250 

HAM3 ˃1250a ˃1250ª ˃1250ª ˃1250ª ˃1250ª ˃1250 

CA ˃1250ª 887.24±21.76b 847.44±7.57b 1073.01±54.84b ˃1250ª ˃1250 

CAGP 306.40±16.69b 311.12±12.34c 174.65±7.89c 121.42±2.79c 289.92±11.25b ˃500* 

CAM ˃1250ª ˃1250ª 1195.99±3.87ª ˃1250ª ˃1250ª ˃1250 

Ellipticine 0.91±0.04 1.42±0.00 1.91±0.06 1.14±0.21 3.22±0.67 2.06±0.03 


