
Universidade de Aveiro
Electrónica, Telecomunicações e Informática
Departamento de

2013

Tiago Miguel
Ferreira Guimarães
Pedrosa

Electronic Health Records for Mobile Citizens:
A Secure and Collaborative Architecture

Uma arquitectura segura e colaborativa para
Registos de Saúde Electrónicos com suporte a
mobilidade

Universidade de Aveiro
Electrónica, Telecomunicações e Informática
Departamento de

2013

Tiago Miguel
Ferreira Guimarães
Pedrosa

Electronic Health Records for Mobile Citizens:
A Secure and Collaborative Architecture

Uma arquitectura segura e colaborativa para
Registos de Saúde Electrónicos com suporte a
mobilidade

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Informática, do Programa
Doutoral em Informática conjunto das Universidades do Minho, Aveiro e
Porto – MAPi, realizada sob a orientação cient́ıfica do Doutor José Lúıs
Oliveira, Professor Associado da Universidade de Aveiro e do Doutor Rui
Pedro Lopes, Professor Coordenador do Instituto Politécnico de Bragança.

o júri / the jury

presidente / president Doutor Fernando Joaquim Tavares da Rocha
Professor Catedrático da Universidade de Aveiro

Doutor Gabriel de Sousa Torcato David
Professor Associado da Faculdade de Engenharia da Universidade do Porto

Doutor Alexandre Júlio Teixeira Santos
Professor Associado da Escola de Engenharia da Universidade do Minho

Doutor Paulo José Osório Rupino da Cunha
Professor Auxiliar da Faculdade de Ciências da Universidade de Coimbra

Doutor António Manuel de Jesus Pereira
Professor Coordenador da Escola Superior de Tecnologia e Gestão de Leiria do

Instituto Politécnico de Leiria

Doutor José Luis Guimarães Oliveira
Professor Associado da Universidade de Aveiro (orientador)

Doutor Rui Pedro Sanches de Castro Lopes
Professor Coordenador da Escola Superior de Tecnologia e Gestão do Instituto

Politécnico de Bragança (co-orientador)

agradecimentos /
acknowledgements

Quero aproveitar esta oportunidade para agradecer aos meus orientadores
o apoio e orientação permanente.

Uma palavra de agradecimento aos membros do fabuloso grupo UA.PT

Bioinformatics pelo acolhimento, discussões, contributos cient́ıficos e ativi-
dades lúdicas que me ajudaram a manter um pouco de sanidade.

A todos os colegas do MAP-i com quem trabalhei, discuti e aprendi, o
meu obrigado. Aos docentes das Universidades envolvidas com quem tive
o prazer de trabalhar, um bem hajam por terem tornado esta experiência
ainda mais enriquecedora.

Gostaria de agradecer ao Instituto Politécnico de Bragança pelas condições
que me proporcionou, bem como a todos os colegas que de uma forma ou
outra me apoiaram durante esta caminhada.

À Fundação para a Ciência e a Tecnologia (Programa PROTEC, bolsa
SFRH/BD/49765/2009) pelos apoios de vária ordem que me foram atribúıdos.

Aos amigos e familiares agradeço o est́ımulo e a compreensão. Peço des-
culpa pelo pouco tempo que vos pude dispensar.

Finalmente, uma palavra especial para os meus pais, irmã, namorada, avós,
madrinha e dois padrinhos: Muito obrigado por tudo!

Palavras-chave Registos de Saúde Electrónicos, Registos de Saúde Pessoais, Mobilidade,
Colaboração, Arquitectura Orientada ao Serviço, Segurança

Resumo Durante as últimas décadas, os registos de saúde electrónicos (EHR) têm
evolúıdo para se adaptar a novos requisitos. O cidadão tem-se envolvido
cada vez mais na prestação dos cuidados médicos, sendo mais pró activo e
desejando potenciar a utilização do seu registo. A mobilidade do cidadão
trouxe mais desafios, a existência de dados dispersos, heterogeneidade de
sistemas e formatos e grande dificuldade de partilha e comunicação entre
os prestadores de serviços.

Para responder a estes requisitos, diversas soluções apareceram, maioritaria-
mente baseadas em acordos entre instituições, regiões e páıses. Estas abor-
dagens são usualmente assentes em cenários federativos muito complexos e
fora do controlo do paciente. Abordagens mais recentes, como os registos
pessoais de saúde (PHR), permitem o controlo do paciente, mas levan-
tam dúvidas da integridade clinica da informação aos profissionais cĺınicos.
Neste cenário os dados saem de redes e sistemas controlados, aumentando
o risco de segurança da informação. Assim sendo, são necessárias novas
soluções que permitam uma colaboração confiável entre os diversos actores
e sistemas.
Esta tese apresenta uma solução que permite a colaboração aberta e segura
entre todos os actores envolvidos nos cuidados de saúde. Baseia-se numa
arquitectura orientada ao serviço, que lida com a informação cĺınica usando
o conceito de envelope fechado. Foi modelada recorrendo aos prinćıpios
de funcionalidade e privilégios ḿınimos, com o propósito de fornecer pro-
tecção dos dados durante a transmissão, processamento e armazenamento.
O controlo de acesso é estabelecido por poĺıticas definidas pelo paciente.
Cartões de identificação electrónicos, ou certificados similares são utiliza-
dos para a autenticação, permitindo uma inscrição automática. Todos os
componentes requerem autenticação mútua e fazem uso de algoritmos de
cifragem para garantir a privacidade dos dados. Apresenta-se também um
modelo de ameaça para a arquitectura, por forma a analisar se as ameaças
posśıveis foram mitigadas ou se são necessários mais refinamentos.

A solução proposta resolve o problema da mobilidade do paciente e a dis-
persão de dados, capacitando o cidadão a gerir e a colaborar na criação
e manutenção da sua informação de saúde. A arquitectura permite uma
colaboração aberta e segura, possibilitando que o paciente tenha registos
mais ricos, actualizados e permitindo o surgimento de novas formas de criar
e usar informação cĺınica ou complementar.

Keywords Electronic Health Records, Personal Health Records, Mobility, Collabora-
tion, Service Oriented Architecture, Security

Abstract Since their early adoption Electronic Health Records (EHR) have been evolv-
ing to cope with increasing requirements from institutions, professionals
and, more recently, from patients. Citizens became more involved demand-
ing successively more control over their records and an active role on their
content. Mobility brought also new requirements, data become scattered
over heterogeneous systems and formats, with increasing difficulties on data
sharing between distinct providers.

To cope with these challenges several solutions appeared, mostly based on
service level agreements between entities, regions and countries. They usu-
ally required defining complex federated scenarios and left the patient out-
side the process. More recent approaches, such as personal health records
(PHR), enable patient control although raises clinical integrity doubts to
other actors, such as physicians. Also, information security risk increase as
data travels outside controlled networks and systems. To overcome this,
new solutions are needed to facilitate trustable collaboration between the
diverse actors and systems.

In this thesis we present a solution that enables a secure and open collabora-
tion between all healthcare actors. It is based on a service-oriented architec-
ture that deals with the clinical data using a closed envelope concept. The
architecture was modeled with minimal functionality and privileges bear-
ing in mind strong protection of data during transmission, processing and
storing. The access control is made through patient policies and authen-
tication uses electronic identification cards or similar certificates, enabling
auto-enrollment. All the components require mutual authentication and
uses cyphering mechanisms to assure privacy. We also present a threat
model to verify, through our solution, if possible threats were mitigated or
if further refinement is needed.
The proposed solution solves the problem of patient mobility and data dis-
persion, and empowers citizens to manage and collaborate in their personal
healthcare information. It also permits open and secure collaboration, en-
abling the patient to have richer and up to date records that can foster new
ways to generate and use clinical or complementary information.

Contents

Contents i

List of Figures iii

List of Tables v

List of Algorithms vii

Acronyms ix

1 Introduction 1

1.1 Motivation and Challenges . 2

1.2 Problem statement . 4

1.3 Contributions . 4

1.4 Thesis Outline . 6

2 State of the Art 7

2.1 Record Types . 8

2.1.1 Electronic Medical Record . 8

2.1.2 Electronic Health Record . 8

2.1.3 Integrated Care EHR . 12

2.1.4 Electronic Health Record Systems . 13

2.1.5 Personal Health Record . 14

2.1.6 Discussion . 15

2.2 Standards . 16

2.2.1 CEN TC 215 Health Informatics and CEN ENV/EN 13606 EHRcom . 19

2.2.2 HL7/CDA . 20

2.2.3 OpenEHR . 21

2.2.4 DICOM Structured Reporting . 26

2.2.5 Integrating the Healthcare Enterprise - IHE 26

2.2.6 Discussion . 28

2.3 Integration . 29

2.4 Security Requirements . 32

2.5 Regulating Access to Health Records . 35

2.5.1 Authentication . 35

2.5.2 Authorization . 37

2.5.3 Accounting . 41

i

2.5.4 Cryptography . 42
2.6 Summary . 45

3 Enabling Secure Collaboration 47
3.1 Hybrid Electronic Health Records . 48

3.1.1 Document Format . 49
3.1.2 Collaboration between Actors . 50
3.1.3 Managing Collaboration . 51

3.2 Architecture . 53
3.2.1 Virtual Health Card Service . 56
3.2.2 Broker . 65
3.2.3 Indexer . 69
3.2.4 Repository . 70
3.2.5 Accounter . 70
3.2.6 Summary . 73

3.3 Common Operations . 73
3.3.1 New Patient . 74
3.3.2 New Provider . 75
3.3.3 Managing Access Policies . 77
3.3.4 Storage . 78
3.3.5 Retrieval . 80
3.3.6 Revoking Credentials . 80
3.3.7 Digital Signature Validation . 86
3.3.8 New Services Integration . 86
3.3.9 Availability . 87

3.4 Summary . 88

4 Discussion 89
4.1 Coping with Requirements . 89
4.2 Security Analysis Methodologies . 92
4.3 Security Analysis . 97
4.4 Summary . 112

5 Conclusions and Future Work 121
5.1 Main Results . 122
5.2 Future Work . 123

Bibliography 127

ii

List of Figures

2.1 State of Art Structure . 7

2.2 EMR core components . 9

2.3 Types of EHRs . 11

2.4 Relationship of PHR, EMR and EHR [1] . 15

2.5 Medical communication and documentation standards [2] 16

2.6 HL7 Timeline [3] . 17

2.7 WADO GET [4] . 18

2.8 Part of CDA Level Three Document Body [5] 22

2.9 Two-level Software Engineering [6] . 23

2.10 Archetype Meta-architecutre [6] . 24

2.11 Minimal OpenEHR System [6] . 25

2.12 OpenEHR structure [6] . 25

2.13 DICOM Structure Reporting with References [7] 26

2.14 IHE XDS Actors and Transactions [8] . 27

2.15 epSOS Basic Architecture [9] . 32

2.16 Symmetric Cryptography . 42

2.17 Public-Key Cryptography - Privacy and message authentication 44

3.1 hEHR actors’ . 48

3.2 Actors Creating Information . 51

3.3 Actors Accessing Information . 51

3.4 New Provider . 52

3.5 New Patient . 52

3.6 Managing the Access Policy . 54

3.7 Architecture Overview . 55

3.8 Communication and Data Store Privacy . 55

3.9 VHCS Overview . 57

3.10 VHCS Data Model . 59

3.11 Broker Overview . 65

3.12 Broker Data Model . 66

3.13 Interaction between users and services components 74

3.14 Connecting with existent repositories . 75

3.15 Creating new Patient . 76

3.16 Creating new Provider . 77

3.17 Creating a new policy . 78

3.18 Storing a contribution . 79

iii

3.19 Retrieving data from repository . 81
3.20 Revoking Patient Certificates . 82
3.21 Revoking Patient Internal Keys . 83
3.22 Generating a new Broker Internal Key . 85

4.1 Creating accounts . 90
4.2 Managing Policy . 91
4.3 Actors’ collaboration . 92
4.4 Example of a high-level threat modelling process 96
4.5 Misuse case high level . 114
4.6 Misuse case for spoofing attacks . 115
4.7 Misuse case for tampering attacks . 116
4.8 Misuse case for repudiation attacks . 117
4.9 Misuse case for information disclosure attacks 117
4.10 Misuse case for denial of service attacks . 118
4.11 Misuse case for elevation of privileges attacks 118
4.12 Attack tree - Capturing Broker Traffic . 119

iv

List of Tables

2.1 Differentiation between EMR and EHR [1] . 10
2.2 EHR vs PHR . 14
2.3 EHRcom blocks [5] . 20
2.4 Hierarchy of CDA Level in Release One and Two [5] 21
2.5 Communication Standards Comparison – Adapted from [8] 28
2.6 Document Standards Comparison – Adapted from [8] 29
2.7 RSBAC Modules . 38
2.8 Values of Sensitivity for each Record Component [10] 39
2.9 List of Functional Roles [10] . 39
2.10 Mapping Functional Roles to Sensitivity of Record Components [10] 40

3.1 Roles - Adapted [10] . 61
3.2 Values of Sensitivity for each Record Component [10] 61
3.3 Patient Groups . 62
3.4 Patient Policy . 62
3.5 Indexer fields . 69
3.6 Accounter fields . 71

4.1 Threats and Security Properties [11] . 94
4.2 Overview of Models [12] . 95
4.3 Misuse case diagram: Spoofing . 100
4.4 Misuse case diagram: Tampering . 103
4.5 Misuse case diagram: Repudiation . 105
4.6 Misuse case diagram: Information Disclosure 106
4.7 Misuse case diagram: Denial of Service . 108
4.8 Misuse case diagram: Elevation of privileges 109

v

vi

List of Algorithms

1 Patient Authentication . 60
2 Check Signature . 63
3 Check Policy . 63
4 VHCS Query . 65
5 Registration . 66
6 Store Data . 67
7 Retrieve Data . 68
8 Indexer Retrieve . 70
9 Accounter Store . 72
10 Accounter Store Method usage by the Services 72

vii

viii

Acronyms

ADL Archetype Definition Language.
AES Advanced Encryption Standard.
AOM Archetype Object Model.
AQL Archetype Query Language.
ASCII American Standard Code for Information Interchange.

CA Certificate Authority.
CDA Clinical Document Architecture.
CDO Care Delivery Organization.
CDR Clinical Data Repository.
CDSS Clinical Decision Support System.
CEN European Committee for Standardization.
CMV Controlled Medical Vocabulary.
CPOE Computerized Provider Order Entry.

DAC Discretionary Access Control.
DES Data Encryption Standard.
DICOM Digital Imaging and Communication in Medicine.

ebXML Electronic Business using Extensible Markup Language.
EDIFACT Electronic Data Interchange for Administration, Commerce and Transport.
EHR Electronic Health Record.
eID electronic Identification.
eMAR electronic Medication Administration Record.
EMR Electronic Medical Record.
epSOS European Patient Smart Open Services.

hEHR hybrid Electronic Health Record.
HIPAA Health Insurance Portability and Accountability Act.
HL7 Health Level Seven.
HTML HyperText Markup Language.
HTTP Hypertext Transfer Protocol.
HTTPS HyperText Transfer Protocol over Secure Socket Layer.

ICD International Classification of Diseases.
ICEHR Integrated Care EHR.

ix

IETF Internet Engineering Task Force.
IHE Integrating the Healthcare Enterprise.
ISO International Organization for Standardization.

LOINC Logical Observation Identifiers Names and Codes.

MAC Message Authentication Codes.
MAC Mandatory Access Control.
MeSH Medical Subject Headings.
MIME Multipurpose Internet Mail Extensions.
MS-PDC Multi-Service Patient Data Card.

PDF Portable Document Format.
PHR Personal Health Record.
PKI Public-Key Infrastructure.
PRA Patient Record Architecture.

RBAC Role Based Access Control.
RID Retrieve Information for Display.
RSBAC Rule-Set Based Access Control.

SNOMED Systemized Nomenclature of Medicine.
SOA Service Oriented Architecture.
SR Structured Reporting.

UID Unique Identifier.
UMLS Unified Medical Language System.

VHCS Virtual Health Card Service.
VU-EPR Virtual Unique Electronic Patient Card.

WADO Web Access to DICOM Persistent Objects.
WSDL Web Service Definition Language.

XDS Cross-Enterprise Document Sharing.
XHTML Extensible Hypertext Markup Language.
XML Extensible Markup Language.

x

Chapter 1

Introduction

In the past decades, the increasing use of informatics technologies in the medical area
lead to a new sub-area – the medical informatics – that is still in continuous evolution and
trying to keep up with the huge demand of the medical area. Digital medical records have
also been a hot research topic for many years, mainly due to paper-based records having
reached their limits and due to new strategies to improve healthcare services. Additionally,
sharing of information between professionals and patients also poses a problem. The routing
overhead of paper based-records and their disadvantages demand the need of a digital form
record. Digital records could enable the creation of new services that can make the best
use of available information, such as supporting medical activities, decision support systems,
automatic warnings for anomalous reactions of medicines and procedures for a specific patient,
more involvement of the patient and care agents. Those are some of the reasons that sustain
that digital medical records are a starting point to enable better care, since they can maintain
and easily provide valuable data, enabling professionals to give proper treatments to citizens.

Fostering the goal for a usable and effective digital medical record, researchers and stan-
dardization bodies created three main types of records: i) Electronic Medical Record (EMR);
ii) Electronic Health Record (EHR); iii)Personal Health Record (PHR). The EMR is oriented
for use within a healthcare provider, the EHR is centered on the patient and tries to integrate
information from the different providers, finally the PHR is patient centered and managed by
the patient himself.

Different approaches were developed to solve specific requirements and to be used in well-
defined scenarios. Unfortunately, providers choose different solutions and records tend to be
incomplete and scattered among different providers during the life of the patient. To address
this problem, interoperability between them is required. Despite of the functional level, at a
semantic level the challenge is bigger because systems use different formats and codings. This
aspect is hindering the creation, maintenance and use of a true integrated care EHR. This
depends on the ability to integrate information from all healthcare providers.

As the number of providers and users increase, the complexity and challenges to maintain
a secure and efficient infrastructure for digital medical records also increases. Therefore, the
emergence of secure approaches which cope with active collaboration of all actors along with
the patient is crucial. The openness for this collaboration has to be feasible as well with
international providers, due to the increasing citizen mobility across countries. This was, as
such, the initial context that has set this research in motion.

Digital medical records, in their EMR, EHR and PHR form, were specified some years

1

ago, based on requirements and assumptions which are continuously evolving. Citizens’ way of
living has suffered several and drastic modifications in recent years. These changes have also
influenced the healthcare field, bringing new challenges to digital medical records. Therefore,
this work starts with an analysis of how these records cope with new challenges.

The creation of a real longitudinal lifelong healthcare record demands the open collabo-
ration between all healthcare providers and the patient himself. However, several issues must
be solved first in order to to cope with this philosophy.

Using a high level systematic approach, some procedures must be followed bearing in mind
a successful achievement:

• Definition of requirements for a collaborative record;

• Analysis of record types and formats to evaluate their adequacy in answering the iden-
tified requirements;

• Study and proposal of an infrastructure comprising core services for collaborative records,
prepared to nurture future records utilization and new services development.

These procedures bring several challenges. A solution that needs to deal with collaboration
of heterogeneous international healthcare providers, relies on the trust of those providers.
Trust on the providers has to be enforced by the solution, without restricting the freedom of
choice regarding the health provider by the patient. For expediting the bureaucracy involved
in sharing access to patient medical records, the latter should be the responsible for managing
his access control policy. Hence, the infrastructure should provide services for simplified
management of access policy by the patient.

Medical information is one of the most sensitive data that systems can manipulate, i.e.
security must be taken very seriously. The information resides in repositories which should
be secure and protected. The interoperability requirements and the freedom of choosing any
repository provider imply the use of standardized storage solutions. Data security cannot rely
only on the storage service, so the infrastructure should provide services that could cope with
requirements regardless of the chosen repository.

Using query functionalities surely improves the use of storage services, although they can
also cause information leakage. This is due to the fact that being able to query and checking
the number of matches at the same time can reveal information on the storage records.
Therefore, the infrastructure should provide more secure query mechanisms that minimize
the risk of direct or indirect information leaking.

This thesis tries to establish a solution that enables the creation and usage of a secure
EHR, addressing issues such as citizen’s mobility, actors collaboration and flexibility to evolve
according to future requirements.

1.1 Motivation and Challenges

Electronic Health Records (EHR) can be defined as the whole data acquired during a
patient’s passage through the health care system that is maintained in a digital media. These
records soon draw the attention of practitioners, policy makers and patients, since they can
provide better integration between clinical services and enable health information sharing.
However, EHRs have mainly been deployed in roughly enclosed health care scenarios. Strict
regulatory, ethic and legal issues have hindered the wide adoption of EHRs, delaying the

2

establishment of a competitive market, where different providers could take full advantage of
information exchange and regular practitioners’ collaboration. Citizens are also demanding
more control and access to their own personal medical data, as they become more informed.

PHR emanated to cope with these new user requirements to allow users to keep record of
their own medical data. Several solutions have been developed, such as Google Health [13],
Microsoft HealthVault [13] and Dossia [13]. These web-based PHRs are normally based on a
central repository and set of core features. Some implementations are capable of extending
features using external third-party services.

One of the big differences between EHR and PHR is related to the responsibility of
maintaining the information and specifying the access control policy. In the former model
healthcare institutions and their professionals are responsible for those operations. In the
latter, the patient owns the rules. Despite this typical operational model, some PHR can also
be automatically populated. The information can be fed through hospital information systems
where the data is originally generated. However, to enable this scenario, it will be necessary
for EHR systems to generate the adequate reports of clinical events and to interact directly
with those external PHR systems. This will allow the patient to choose his PHR provider, to
keep track of all personal health events without having to replicate the information manually
and with the ability of controlling the access to the information. Digital medical records face
challenges which are directly related to the changes both in the way of living and healthcare
providing. New healthcare related services have emanated and will thus continue to appear.
Some, already comprise a network of service providers and make use of already deployed
systems for manipulating patient records data. Others lack these services and usually the
access to patient medical record is not allowed. A solution that enables them to collaborate
at the patient record level, would enable the patient to have an updated record which could
be complemented with information related to health and not restricted to medical data.

Patients’ mobility is also a challenging issue for digital medical records. Some level of
sharing is already in place, but usually the health providers belong to the same organization
or network of providers. Therefore, they can use the shared records in a simpler way than
if the providers where from different healthcare networks, private or publics and even from
different countries. This is the new reality, different providers provide simultaneous care to
patients. Hence, all actors need to use patient records. The access to the record should be
seamless to providers, enabling providers’ easy access, which should not be a limiting factor
when patient choose his/her health provider.

Considering these changes, how can already deployed systems cope with them? Briefly,
EMR was created to enable a digital medical record inside a care delivery organization. It was
not designed for sharing between different organizations or healthcare related professionals
providers [1]. It was conceived to be used within organizations as a support for systems
which facilitate healthcare delivering. On the other hand, EHR can support the sharing of
patient information between different care providers. These records are patient centred, they
can receive information directly from the clinical data repository. However, sharing is based
on agreements between care providers which may thus limit the patient’s free choice for a
provider. If the patient wants an updated record and to grant access to his record, he can
only choose providers that have agreements with the record holder organization.

A simplified approach is therefore PHR. This record approach gives patient full adminis-
tration and data manipulation rights. Usually, data is created and maintained by the patient
but it is hard to maintain an updated record. Another problem is the lack of standardization
between records, since different solutions use different formats.

3

An updated record is possible to achieve if all the providers and patients can create and
manipulate the data in a secure way, using information technologies standards to not exclude
providers based on technological options. Besides, agreements with providers need to exist to
export information from providers to the patient centralized record. This open collaboration
brings challenges to the health record. It has to cope with data security, medical data integrity
and semantic issues. Most of the already deployed solutions do not enable a real collaboration
between actors. A certain type of collaboration can occur in well-defined groups, but a wider
collaboration is rather limited. Therefore, an architecture to support this open collaboration
is needed.

Data manipulated in these systems is very critical and personal and this is one of the main
reasons why medical informatics is a good area to research about and to apply information
security. The security requirements are pushed forward by the need of confidentiality, integrity
and availability of the information combined with accountability of access and traceability of
the information created.

Both the exchange and storage of health information are a major security challenge be-
cause its disruption may compromise personal privacy seriously. Albeit the legal constraints
associated with this type of data are largely regulated [14, 15], they impose strict rules on
the development of technical solutions. Moreover, having an enterprise with access to all
health information of a citizen is unlikely to occur because the risk of information disclo-
sure is likely to be higher and more disastrous than in a scattered scenario. In fact, the Big
Brother scenario also emanates whenever the guardian of the information is an enterprise or
the government. This vision does slow down the adoption of different solutions.

The open collaboration of all the actors, even from different countries, raises critical chal-
lenges. The desirable scenario is that every provider may collaborate to the patient record.
These challenges are related to user authentication, authorization, accounting, secured com-
munication between the different components of the architecture, secure storing and querying.

1.2 Problem statement

The fundamental problem statement in this issue is to propose an open and secure ar-
chitecture that supports integrating health related information from several procedures and
activities. This architecture is the foundation for collaboration from different healthcare and
alternative medicine providers, well-being activities and others, under patient empowerment.
This further enhances patient mobility, an obvious requirement in the modern way of life.

1.3 Contributions

The main contribution of this work is related to the way of coping with the challenges of
creating digital medical records, namely facing issues such as mobility, openness and collab-
oration. Firstly, this research aims at understanding why the use of EHR and PHR are not
widespread; secondly, it proposes a solution for current and future use; and finally it wishes
to improve the security of such solution. To achieve it, preliminary objectives where outlined:

• To identify the types of digital medical records and new challenges they are facing;

• To propose a solution for coping with different challenges, based on standards and
openness;

4

• To identify security requirements for the solution and propose an architecture supporting
them;

• To discuss and analyse the proposed solution, including a threat model for a security
analysis.

The solution should enable open and secure collaboration, based on open standards, among
all actors involved in healthcare providing, where the access policy is defined by the citizen,
without depending of previous agreements between the healthcare providers.

The work in this thesis has partly or fully contributed to the following publications:

• Tiago Pedrosa, Carlos Costa, José Lúıs Oliveira, Rui Pedro Lopes, ”Virtual Health
Card System”, 1 Inforum 2009, University of Lisbon, Lisbon, Portugal, 10 and 11 of
September of 2009

• João Santos, Tiago Pedrosa, Carlos Costa, José Lúıs Oliveira, ”Modelling a Portable
Personal Health Record”, HealthInf 2010, Valencia, Spain, 20-23 January of 2010

• Tiago Pedrosa, Rui Pedro Lopes, João Santos, Carlos Costa, José Lúıs Oliveira, ”To-
wards an EHR Architecture for Mobile Citizens”, HealthInf 2010, Valencia, Spain, 20-23
January of 2010

• João Santos, Tiago Pedrosa, Carlos Costa, José Lúıs Oliveira, ”Gathering and Managing
Complementary y Diagnostic Tests”, 5 Conferência Ibérica de Sistemas e Tecnologias
de Informação, Santiago Compostela, Spain, June 2010

• João Santos, Tiago Pedrosa, Carlos Costa, José Lúıs Oliveira, ”Portable Personal Health
Records: Breaking The Glass Of Emergency Access To Data”, 6 Conferência Ibérica de
Sistemas e Tecnologias de Informação, Chaves, Portugal, June 2011

• João Santos, Tiago Pedrosa, Carlos Costa, José Lúıs Oliveira, ”On The Use of OpenEHR
in a Portable PHR”, HealthInf 2011, Rome, Italy, 26-29 January 2011

• Tiago Pedrosa, Rui Pedro Lopes, João Santos, Carlos Costa, José Lúıs Oliveira, ”Hybrid
Electronic Health Records”, HealthInf 2011, Rome, Italy, 26-29 January 2011

• José Lúıs Oliveira, Tiago Pedrosa, Carlos Costa, Linda Velte, ”An OpenEHR Repository
Based on a Native XML Database”, HealthInf 2012, Vilamoura, Portugal, 1-4 February
2012

• Tiago Pedrosa, Rui Pedro Lopes, João Santos, Carlos Costa, José Lúıs Oliveira, ”A
Secure Personal Health Record Repository”, HealthInf 2012, Vilamoura, Portugal, 1-4
February 2012

• Cândido Santos, Tiago Pedrosa, Carlos Costa, José Lúıs Oliveira, ”Concepts for a Per-
sonal Health Record”, MIE 2012, Pisa, Italy, 26-29 August

5

1.4 Thesis Outline

Chapter 2 provides a background analysis concerning the type of records, EHR systems,
standards, and regulatory framework. Some solutions for integrating medical records from
different providers are studied. Security requirements and methods for regulating access to
the records are also studied and discussed. During this chapter, a critical analysis is made
contemplating how the several approaches cope with the new challenges.

In chapter 3 we define the requirements for such a type of solution and propose an archi-
tecture which can cope with them.

Chapter 4 provides a validation of the proposed model, verifying the addressing of the
requirements, namely a security analysis.

Chapter 5 gives a discussion about the proposed model and discusses some implementation
decisions. It provides a review of the general results and contributions of this thesis as well
as ideas for future work.

6

Chapter 2

State of the Art

Information technologies play an important role in supporting solutions which can increase
productivity, quality of service, and at the same time keep low operation costs. The health-
care area is certainly not an exception, thus raising the emergence of a new area – medical
informatics. Research into this topic focuses mainly on how to solve medical problems and
challenges by using information technologies. One such challenge is digital medical records.
This subject has been a hot research topic focusing on several issues and as a consequence
new types of records have been developed as well as new standards and solutions for record
integration and sharing.

Previous research on digital medical records targeted requirements that have been evolving
because of the dynamic scenario of healthcare provisioning combined with changes in how
people live and work. In this context, state of the art analysis is guided by a methodology,
illustrated in figure 2.1. The first step goes through understanding what digital medical
records are, their types, and standards for improving awareness on this area. Afterwards,
identifying unresolved challenges, related to patient mobility and the change in healthcare.

Those challenges precipitate the need of understanding how records can be integrated.
Then, briefly analyzing the regulatory framework to understand the requirements trains of
medical data manipulation to perceive how the access can be secured.

Record Types EHR systems Standards

Regulatory
framework

Mobility
ProblemIntegration

Security
Requirements

Securing
 access to

EHR

Figure 2.1: State of Art Structure

7

2.1 Record Types

Normal medical procedures aim at recognizing a disease or a health dilemma, based on
a set of symptoms and signs. To facilitate the process, the physician will try to build the
diagnostic based on physical signs, medical tests, and the patient’s historical data.

Test results, such as blood pressure, medical imaging, electrocardiogram, among others,
is critical information that contributes to the patient’s medical history – or health record,
forming a valuable insight for future diagnosis.

The health record is typically stored at a specific healthcare provider, usually the caregiver,
or the laboratory which is responsible for the exams. Due to this, there is a tendency to scatter
information, thus creating difficulties in building and accessing a full, integrated, record. The
dispersion becomes even more critical as the information gets more fragmented as a result
from citizens’ mobility, the increase of the number of actors and of the type of procedures.

Many of these records are still paper based [16], with the associated problems of illegibil-
ity, unavailability, sheer physical volume (over time), difficult transferability, and integration
between providers and institutions, besides the necessity to record the same data often (dupli-
cation) on different documents [17, 18, 19]. Paper-based records also require staff for routing,
archiving and maintenance. Different authors state that the paper-based patient record is
therefore reaching its limits [20]. Digital versions of those records can bring many benefits,
as they can solve some of the above mentioned problems and can enable new ways of dealing
with medical information [16].

The forthcoming sections focus on some digital health records, namely EMR, EHR and
PHR.

2.1.1 Electronic Medical Record

The EMR is a detailed record that contains all the information generated during the
patient stay at a Care Delivery Organization (CDO). Professionals within the CDO create,
maintain and use the EMR. The core components of the EMR are the Clinical Data Repository
(CDR), Clinical Decision Support System (CDSS), controlled medical vocabulary (CMV),
Computerized Provider Order Entry (CPOE), pharmacy management system and electronic
Medication Administration Record (eMAR) [1] (Figure 2.2).

The record is owned by the CDO. The creation and use of information is done through
systems that are deployed in hospitals, health systems and clinics. In these records the
patient may access to some information if the CDO authorizes it. The interoperability is not
addressed since each EMR only contains information from a single CDO.

2.1.2 Electronic Health Record

The EHR can be described as a longitudinal storage of patient health information gen-
erated by any encounters at any care delivery setting [21]. This information may include
several types of information such as patient demographics, progress notes, problems, medi-
cations, vital signs, medical history, immunizations, laboratory data, and radiology reports.
The EHR can generate a complete record of a clinical patient encounter, as well as support
other care-related activities directly or indirectly via external interfaces.

EHR have two main scopes: the core EHR and the extended EHR. The core EHR is
defined by ISO/TS 18308 and aims at providing a record that supports present and future

8

CDR

CDSS

CMV

CPOE

eMAR

EMR

Figure 2.2: EMR core components

healthcare provided by clinicians, where the primary beneficiaries are the clinicians and the
subject of care. Basically, it is a container that stores patient-centred clinical information.

The extend EHR makes use of information defined by secondary users for the purposes of
billing, policy, and planning, statistical analysis, among others. It supports functions such as
patient administration, scheduling, billing, decision support, access control and policy man-
agement, order management, guidelines, terminology, population health recording, querying
and analysis, health professional service recording, querying and analysis, business operations
recording, and resource allocation. The extended EHR can be used to associate knowledge
extracted from the patient clinical information with other information from external sources,
thus, enabling the creation of decision support or/and inference systems.

As already stated, other types of records exist. One that can generate some confusion
with the EMR is the EHR. The latter can be described as a longitudinal storage of patient
health information generated by encounters in any care delivery setting [21]. Despite of some
controversy and confusion, both the EMR and EHR have discrepancies [22]. The second
contain information usually comprised in the CDR of diverse EMRs, since EHR cover diverse
health-care occurrences in multiple CDO [22]. The differentiation between EMR and EHR is
shown in Table 2.1.

The differentiation between EMR and EHR can be analyzed in terms of definition, owner
of the information, usage scope, rights of the patient and interoperability with others. The
EMR has CDO scope, while the EHR can combine a subset of information from different
CDOs. The owner of the information of the EMR is the CDO, contrasting with the patient or
stakeholder of EHR. The range of use is the CDO for the EMR and on the other hand the EHR
can have a community, region, or country scope. This has a direct effect in interoperability,
since the EMR does not have functionalities for sharing because EMR was designed to be
used by only one CDO. By contrast, EHR enables information sharing between multiple

9

Table 2.1: Differentiation between EMR and EHR [1]

Record Type EMR EHR

Definition The legal record of clinical services
for a patient within a CDO.

A subset from one or more CDOs
where the patient received clinical
services.

Owner Owned by the CDO Owned by the patient or stake-
holder

Consumer and
Usage Scope

EMR systems are supplied by en-
terprise and installed by hospitals,
health systems, clinics, etc.

EHR systems are run by commu-
nity, state, or regional emergence,
or national wide emergence organi-
zations.

Right of patient Patient can gain access to some
EMR information once authorized
by the EMR owner.

Patients are provided with interac-
tive access as well as the ability to
append information.

Interoperability
with other
CDOs

Each EMR contains patient’s en-
counter in a single CDO. It does
not contain other CDO encounter
data.

Sharing information among multi-
ple CDOs, connected by National
Health Information Network.

CDOs connected by a national health network. Also, patient rights are more restrictive in
EMR than in EHR.

The CDR is organized in a service-centric view, in opposition to the EHR, which is patient-
centric. The CDR normally does not support version control, privacy, and other medical and
legal characteristics. As such it can be used as a source system for the EHR, since information
from a specific patient can be queried from a CDR of an EMR for populating the patient-
centric EHR.

The standard ISO/TC 215 [23] defines and makes the contextualization of the different
types of EHR records and systems. A basic definition was created to explain the concepts more
easily. Then, the definition was gradually specialized to aggregate common characteristics
that enables defining other types of records (Figure 2.3).

The Basic-Generic EHR “is a repository of information regarding the health status of a
subject of care, in computer processable form” [23]. It is a record that stores health information
corresponding to a subject in a form which can be processed informatically. The subject of
care represents a patient, client, or consumer, depending on the context. It usually identifies
a single individual but can also identify a group.

One of the most important characteristics of the EHR is the ability to share information
between authorized users. Information sharing is useful if the meaning is not lost. In other
words, records and systems have to be interoperable, fostering an EHR model independent
of the persistence technology. Moreover, physical database structure should be independent
of the applications which manipulate the data. These are fundamental factors to enable a
future proof EHR, supporting the dynamic environment of healthcare records.

Interoperability can be contemplated at two levels: functional and semantic. The first
includes the ability of two or more systems to exchange information in a human readable
form, and depends on a standardized EHR reference model,as well as standardized service

10

Basic-Generic EHR

Shareable EHR

Integrated Care EHR

Non-shareable EHR

Figure 2.3: Types of EHRs
[23]

interfaces models. The latter includes the ability of the destination system to autonomously
process information. Usually this depends on several layers: terminologies, on the content of
archetypes1 and on templates2 used between the receiver and the sender. Standards are also
needed for group domain-specific concept models and terminology use in EHR.

Shareable EHR enables sharing information between different systems and can occur at
three levels:

• among different clinical disciplines or other users, all of whom may be using the same
application, requiring different or ad hoc organization of EHRs – level one;

• among different applications at a single EHR node (i.e. at a particular location where
the EHR is stored and maintained) – level two;

• across different EHR nodes (i.e. across different EHR locations and/or different EHR
systems) – level three.

Shareable EHRs on level one and two usually contain detailed information required for
patient care at a single location – the information is created and maintained in a local EHRs
system. The information normally includes a summary such as a problems list, allergies, past
medical history, family history, current medication, among others. At level three, sharing
is characterized by supporting integrated care of patients between different care delivery
organizations and is typically called an ICEHR. This will be discussed in section 2.1.3.

The definition of non-shareable EHR is done by exclusion. In short, it is an EHR that
does not support information sharing between EHRs. Mostly, because of EHRs that are based
on proprietary information models within EHR systems that are not interoperable between
different EHR systems. This type of EHR is usually bound to a specific system and database.
Those are the most implemented systems in all health areas, thus making integration more
difficult.

1Archetype – a computable expression of a domain-level concept as structured constraint statements,
based on some reference information model.

2Template – a directly, locally usable data creation/validation artefact which is semantically a con-
straint/choice of archetypes and which will often correspond to a whole form or screen.

11

Information contained in the EHR is produced by healthcare professionals and maintained
by health-care providers, following four types of models: the fully federated, the federated, the
service orientated, and the integrated [24]. Moreover, the deployment in each country/region
or federation uses different approaches under different regulatory frameworks. With the lack
of well defined standards, interoperability becomes difficult [25].

The EHR is mainly devoted to facilitate the work and information flow between differ-
ent departments of an institution or federation. They also try to manage administrative
information associated with admission, discharge and payments [25]. Typically this approach
excludes any patient intervention, even on the requirement analysis. It is a solution to cope
with healthcare professionals needs, inside well-defined groups of actors. The sharing of pa-
tients’ clinical information is supported by agreements between them. Patients start to gain
access to their EHR, but only to very limited views in specific areas for reading, without the
possibility for collaboration, and without access control privileges.

2.1.3 Integrated Care EHR

The ICEHR is defined as a “repository of information regarding the health status of a
subject of care in computer processable form, stored and transmitted securely, and accessible
by multiple authorized users. It has a standardized or commonly agreed logical information
model which is independent of EHR systems. Its primary purpose is the support of continuing,
efficient and quality integrated health care and it contains information which is retrospective,
concurrent, and prospective” [23].

This type of EHR urges a standardized logical information model, persistence of informa-
tion, and solutions to provide security and privacy of the records.

A minimum level of functional interoperability is needed to share information, but se-
mantic interoperability would also increase the value of the sharing. The standardization of
clinical terminology as well as the one from other domains, archetypes and templates can be a
solution for achieving semantic interoperability. Various logical information models are being
developed by organizations such as International Organization for Standardization (ISO), Eu-
ropean Committee for Standardization (CEN), Health Level Seven (HL7) and the OpenEHR
project.

The information contained in this type of records is lifetime information and as such
demands long-time persistence solutions, which include semantics for information storage,
version control, and rules regarding the modification and deletion of information. This char-
acteristic distinguishes the EHR from the messaging paradigm (e.g. HL7), which has no
persistence, although solutions can be used to extract the information from the message and
save it in some persistent artifact or in the EHR. Another important consideration to be made
concerns how the information can be manipulated, especially in case of deletion and update.
From the medical and legal point of view, the information saved should not be deletable.
Instead, if the information is flawed, a new version should be created and used in future
accesses to the EHR. The old version will only remain available for legal purposes. However,
it should be possible to completely delete information, as, in some jurisdictions, the patient
can request the deletion of erroneous information. There may also exist a specific time lapse
after which the entire health record may be permanently deleted. Each ICEHR should be as
complete as the local circumstance allows to and it should have the capability for contributing
its information to other larger-scale ICEHR systems.

Last, but not the least, the ICEHR has security and privacy concerns. Most jurisdictions

12

consider privacy and security essential to medicolegal integrity, community trust and accep-
tance of EHRs. The concerns are naturally related to information security when stored and
transmitted. Part of the concerns is also the regulation of access by multiple authorized users.
This is considered critical. EHR requires access control mechanisms, allowing access by the
subject of care (where suitable and allowed by local laws and policies) and other authorized
users (e.g. the subject’s agent such as a parent of a child subject) as well as healthcare
delivery professionals.

2.1.4 Electronic Health Record Systems

EHR Systems are responsible for manipulating health records. Some authors only include
information technology components while other extend them to people, procedures, and rules.

Systems are characterized according to record manipulation, creation, store and usage
rules. They can be Local-EHR Systems and Shared-EHR Systems, regardless of the EHR
type. In other words, it is possible to have a Local-EHR System using a Shareable EHR.

A Local-EHR system is mainly oriented for supporting the patient healthcare provisioning
inside a single organization. It can deal with information from external sources, such as
diagnostic results and referrals. The access to this system is usually restricted to authorized
users from within the same organization and, in some systems, to the subject of care. This
system has to deal with different type of actors, such as primary care clinicians, specialists,
complementary practitioners, and other healthcare professionals.

A Shared-EHR System enables sharing information among different organizations. The
ultimate goal is to enable integrated healthcare within a community of providers. It also
supports the sharing of extracts and integrated workflow between organizations [23].

As discussed previously, the Integrated Care EHR is one of the most prominent and
desirable to achieve. Systems that cope with most of the requirements to deal with this type
of record are the Federated ICEHR and the Consolidated ICEHR. Both models are based on
a Shared-EHR System.

The Federated ICEHR model creates the view in real time. It can be considered a virtual
EHR, since it creates a view of the information, at request time, assembling on-the-fly the
information from distributed EHR nodes. The system usually depends on a service that gath-
ers the links correspondent to patients’ information, following an EHR directory service. The
system is a meta-EHR witch contains no personal health information but rather a set of links
to distributed EHR nodes for particular subjects [23]. It possesses several implementation
challenges as well as performance issues, related to difficulties for achieving efficient query
and retrieve methods. Additionally, security requirements may also demand complex security
models.

The Consolidated ICEHR model assembles the information generated in the creation or
actualization steps. Data is consolidated through insertion or update, instead of creating a
view in real time when info is requested. When the information is created, it can be pushed
from a Local-EHR System to the ICEHR system or it can be created directly in the ICEHR.
This model minimizes performance issues, reduces the attack surface and because it is a less
intrusive solution, it facilitates the creation of access control and other security mechanisms,
when compared to a federated scenario. The consolidated model is currently being adopted
with regional and national Shareable EHR. Some projects are running in Australia, Brazil,
Canada, and in the United Kingdom [23].

13

2.1.5 Personal Health Record

During the last decade citizens became more informed on healthcare subjects. They
demand to have a more active role in their own healthcare, willing to contribute in the
creation and update of information in their record. A response to those requirements was a
new type of record – the PHR – thus enabling the subject of care to have the control of its
own record. In this solution the subject of care creates most of the information, if not all, on
the record.

The PHR can be described as a lifelong tool for managing relevant health information
of an individual [26]. It promotes personal information maintenance and may be used in a
broad scope or in more specific scenarios, such as chronic disease management. The PHR is
owned, managed and shared by the individual or a legal proxy. Usually it is a self-contained
EHR, maintained and controlled by the subject of care, although it can also be maintained
by a service provider. Alternatively, it can be a component of an ICEHR, maintained by a
healthcare provider and controlled, partially at least, by the subject of care.

Some authors advocate that the PHR can have the same record architecture and standard
information model of a EHR and still cope with patient empowerment [23]. Using a standard
information model for all types of EHRs and ICEHR promotes information sharing between
all systems when necessary and controlled by the patient.

The most relevant types of PHR are the standalone and the web-based. The standalone
normally makes use of some external storage device [27], and information is typically created
by the patient. Ownership works as access control, usually combined with different privileges
that the patient chooses to associate with each record. Web-based PHRs are generally stored
in a central repository and define a set of core features that may be extended by third-party
services. However, the use of external services requires previous approval by the providers
of the web-based PHRs. The most prominent web-based PHR, to this date, are Google
Health, Microsoft HealthVault and Dossia. However, Google Health was, in the meantime,
discontinued.

Most PHRs use proprietary data formats which hinder the collaboration between different
actors. Google Health and Microsoft HealthVault make use of standard formats or a subset
of a standard as their record format. The standard formats most used in this area will be
discussed in section 2.2.

Table 2.2 presents the main differences between EHR and PHR. The analysis is made
contemplating the following properties: the guardian of the information, data creator, who
defines the access control and who provides the system.

Table 2.2: EHR vs PHR

Record Type EHR PHR

Guardian Providers Patient or a service on his behalf
Creation of data Medical Staff Patient or exported by services
Sharing Institutional agreements Patient choice
Access Control Provider Controlled by the patient
System Provider Providers External Service Provider

In brief it can be seen that the healthcare provider controls and owns the patient EHR, in

14

contrast with the patient empowerment supported by the PHR. It is important to highlight
that the system provider of the PHR can be external to institutions or federations.

2.1.6 Discussion

The relation between EMRs, EHRs, and PHRs is described in Figure 2.4. There is an
overlap, because some information exists also in other records.

PHR

EHR

EMR

Patient

Figure 2.4: Relationship of PHR, EMR and EHR [1]

As discussed previously, EMR can feed information from its clinical repository to an EHR.
Moreover, different clinical repositories can be aggregated in an EHR. The owner of the infor-
mation changes from the institution that has the EMR to the patient or a stakeholder. The
PHR can have information that is complementary to the EHR/EMR and similar information
that resides in those records.

In the context of mobility, the EMR is not eligible, since it is orientated for a single CDO.
The EHR and PHR subsist as alternatives for mobility support. The differences leave an
open challenge since the EHR has the trust of the medical staff, but record sharing is difficult
(Table 2.2). It also restricts patient’s freedom of choice, since he is dependent on agreements
between providers for gaining or giving access to his medical information. In this scenario, the
patient appears as a passive actor, as he cannot contribute to his record and cannot control
the access to his medical information.

The PHR, on the other hand, seams to cope better with most of the mobility requirements.
It enables sharing between different actors, regardless of their location and agreements. It
further depends on patient approval. It also solves the dilemma of the infrastructure cost, as
the patient can choose a PHR provider. One drawback is the trust on the integrity of the
clinical information by the clinical staff.

Based on this analysis, a new type of record is proposed – the Hybrid Electronic Health
Record which can take advantage of the best characteristics of the EHR and PHR for mobility
and open collaboration scenarios (section 3.1).

15

2.2 Standards

Standardization is essential to enable communication between different systems. Several
organizations, such as the European and American committees, country and the World Health
Organization, are making efforts to achieve this goal. These initiatives are pushing forward
research, and gathering evidence about interoperability barriers between standards.

Some efforts were made in EHR requirement analysis and specification according to the SO
TC 215 Health Informatics and the CEN ENV/EN 13606 EHRcom standards. Complemen-
tary efforts were divided in two main areas: the communication standard and the document
standard [2, 28] (Figure 2.5). The former focus on how systems can communicate with each
other and the latter delineates how information is stored to ensure a correct interpretation
by other systems.

terminology system for medical terminology sytems

terminology system for documentation standardsterminology system for communication standards

medical terminology system

communication standards documentation standards

xDT EDIFCAT DICOM HL7

SNOMED LOINC CDA MeSH UMLS ICD

Contains
Metadata

for

Contains
Metadata

for

Contains
Metadata

for

Are
Communication

Standards

Are
Document
Standards

< Is formulated via

< Is formulated via

1

1 1

1
1 1

1

1

1..*

1..* 1..*

0..*

Figure 2.5: Medical communication and documentation standards [2]

Interoperability is one of the big challenges in the EHR area, thus considered fundamental
to enable sharing between healthcare providers [29]. The functional interoperability, addressed
by communication standards, is the ability of different systems to communicate among them.
Semantic interoperability aims at ensuring that medical significance is not lost or disrupted
when sharing the record with other system. Both make use of terminology systems oriented
for each area, to enable a common domain terminology for the standards.

In the medical area, some efforts have been done regarding communication standards.
HL7, Digital Imaging and Communication in Medicine (DICOM), Electronic Data Inter-
change for Administration, Commerce and Transport (EDIFACT) and the xDT-standards
are some examples of that.

HL7 is an international, vendor-independent, communications standard in healthcare for
information exchange between systems and institutions [30]. HL7 was created in 1987 as a
consortium founded by a group of healthcare providers (Figure 2.6). They created the first
specification after one year, and two year later version two, following a pragmatic path to
enable communication between systems and institutions based on message exchange [31].

The core concept of HL7 version two is based on an external event, a so-called trigger

16

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

First Meeting

Version 1.0
Published

Version 2.0
Published

Version 2.1
Published

Messages

Implementation
Support Guide

Published

Organization

Charter Member of
ANSI HISPP

Version 2.2
Published

Version 2.2
ANSI

ANSI

Version 2.3
Published and

ANSI

Version 2.3.1
Published and

ANSI

More Than Messages

CCOW

Arden
Syntax

2.0

2.4 2.5

Version 3.0
Published

PRA
(CDA 1.0)

Figure 2.6: HL7 Timeline [3]

event. When it occurs it is recognized by a healthcare computer application [31] and a specific
message is generated. HL7 does not specify the communication protocol, dealing only with
triggers and messaging. Messages in version two are delimited American Standard Code for
Information Interchange (ASCII) strings, divided into segments and into fields within the
segments. Normally, the information in each segment is related to a particular concept or
entity in healthcare domain.

Version three uses Extensible Markup Language (XML), thus supporting structured data.
This facilitates the integration of data, since libraries for XML manipulation are available.
HL7 operates at application level of the ISO/OSI reference model. The Clinical Document
Architecture (CDA) expands the HL7 standard with the description of the structure and the
contents of clinical documents, based on XML format [2].

DICOM is an open standard for the exchange of images and additional meta-information
(patient’s name, admission date, device parameters, attending physician,. . .) in healthcare.
The standard describes data fields, functions for network services as well as syntax and se-
mantics for the commands and messages. DICOM can store images in TIFF or JPEG format,
enabling electronic archiving of images in all medical information systems [2].

One important joint effort between the DICOM and ISO is the Web Access to DICOM
Persistent Objects (WADO) standard. The latter defines a web-based service that can be
used to retrieve DICOM objects, such as images, waveforms and reports. The access is
made through Hypertext Transfer Protocol (HTTP) or HyperText Transfer Protocol over
SSL (HTTPS) [28]. It does not support a query mechanism, so the client has to directly
specify the DICOM object to be retrieved: the unique identifier to the study, the series, and
the instance. The server answer can encapsulate the DICOM object in the HTTP/HTTPS
protocol, enabling the integration with HyperText Markup Language (HTML) pages or XML
documents [32].

The query is made by a HTTP request using the GET command. An example of retrieving
a region of DICOM image converted in JPEG2000, with annotation burned into the image
containing patient name and technical information is depicted on Figure 2.7. It also enables
other options, e.g., simple retrieve of DICOM objects in JPEG, DICOM structure report in
HTML, retrieved as a DICOM mime type, without identification, . . . [4].

WADO is normally used by web-based EHR to reference DICOM images, send them by

17

!"#$%&'()**+#
!,-.#)*#

(#"/,01,21#(#

!""#$%&%'%($)*+,#-%./"012*)345#6%

&78% 9(:9/(;/<=%!%>/?@A(%B/CD?%/?!=(%/<%E@(=%

http://www.hospital-stmarco/radiology/wado.php?requestType=WADO
&studyUID=1.2.250.1.59.40211.12345678.678910
&seriesUID=1.2.250.1.59.40211.789001276.14556172.67789
&objectUID=1.2.250.1.59.40211.2678810.87991027.899772.2

&7F% 9(:9/(;/<=%!%B/CD?%>9%/<%G:?A%

http://server234/script678.asp?requestType=WADO
&studyUID=1.2.250.1.59.40211.12345678.678910
&seriesUID=1.2.250.1.59.40211.789001276.14556172.67789
&objectUID=1.2.250.1.59.40211.2678810.87991027.899772.2
&charset=UTF-8

&7H% 9(:9/(;/<=%!%9(=/D<%DI%!%B/CD?%/?!=(%

3./24.540-#,#2.-460#67#,#89:;<#4=,-.>#?605.2/.1#47#@6AA4BC.#40#D!EF)***>#G4/H#,006/,/460A#BI20.1#40/6#
/H.#4=,-.#?60/,4040-#/H.#@,/4.0/#0,=.#,01#/.?H04?,C#40762=,/460>#,01#=,@@.1#40/6#,#1.740.1#4=,-.#A4J.K#

https://aspradio/imageaccess.js?requestType=WADO
&studyUID=1.2.250.1.59.40211.12345678.678910
&seriesUID=1.2.250.1.59.40211.789001276.14556172.67789
&objectUID=1.2.250.1.59.40211.2678810.87991027.899772.2
&contentType=image%2Fjp2;level=1,image%2Fjpeg;q=0.5
&annotation=patient,technique
&columns=400
&rows=300
®ion=0.3,0.4,0.5,0.5
&windowCenter=-1000
&windowWidth=2500

&7J% 9(:9/(;/<=%!>%!%B/CD?%?/?(%:K@(%

3./24.540-#,#89:;<#4=,-.#6BL.?/#IA40-#/H.#B,A.C40.#'(B4/#C6AAM#D!EF#/2,0A7.2#AM0/,N>#,01#1.(41.0/474.1K#

http://www.medical-webservice.st/RetrieveDocument?requestType=WADO
&studyUID=1.2.250.1.59.40211.12345678.678910
&seriesUID=1.2.250.1.59.40211.789001276.14556172.67789
&objectUID=1.2.250.1.59.40211.2678810.87991027.899772.2
&contentType=application%2Fdicom
&anonymize=yes
&transferSyntax=1.2.840.10008.1.2.4.50

Figure 2.7: WADO GET [4]

email or for image distribution and sharing between different EHR systems, since it can enable
access to DICOM images through a simple web browser.

EDIFACT standardizes formats for electronic exchange of administrative data, typically
including orders, calculations and payment orders. EDIFACT was not specifically produced
for the healthcare area, although it is being used globally by business partners of different
areas to exchange accounting-relevant data [2].

The xDT-standard is used in Germany in the general practitioners sector. It specifies
different data formats to simplify the communication, and data exchange between healthcare
providers and health insurance companies. Some efforts are being made to harmonize the
communication standards through XML, taking advantage of the wide availability of pro-
gramming libraries and of the openness of the XML, which can also be read and understood
by users [2].

The Logical Observation Identifiers Names and Codes (LOINC) is used to correctly iden-
tify diagnosis, using multidimensional terminology system for clinical laboratories. It allows
detailed descriptions of medical circumstances for almost any clinical problem to be solved
automatically [2].

The International Classification of Diseases (ICD) is used for illnesses classification and
related health issues [2].

The Systemized Nomenclature of Medicine (SNOMED) is a nomenclature that combines
terms that are based on determinate concept orders. It covers the arrangement of unified
terminology expressions in the medical field, supporting diverse languages [2].

The thesaurus Medical Subject Headings (MeSH) is an extension of a nomenclature. It
enables indexing international publications, making use of a metathesaurus with semantic and
linguistic information. The Unified Medical Language System (UMLS)) is a metathesaurus
which tries to integrate all important medical terms in only one term, and to represent all
possible term relations accordingly [2].

Although trying to solve interoperability problems, all these standards can pose compati-
bility issues in documents if using different terminologies. To achieve harmonization between
the standards and thus enabling interoperability, two main groups exist: the industry that
makes use of proprietary standards like HL7 and DICOM and university research, such as
the CEN/TC 251 – European Standardization of Health Informatics.

In order to illustrate how harmonization can be achieved, CEN/TC 215 Health Informatics
and CEN ENV/EN 13606 EHRcom, HL7/CDA documentation format, and OpenEHR can
be discussed. The initiative Integrating the Healthcare Enterprise (IHE) will also be studied.

18

2.2.1 CEN TC 215 Health Informatics and CEN ENV/EN 13606 EHRcom

The pre-standard CEN/TC 13606 EHRcom “Electronic Healthcare Record Communica-
tion” is a message based standard for the exchange of Electronic Health Records (EHR). It
defines an EHR information model, extended from CEN ENV 12265, with a list of machine
readable domain terms which can be used for structuring the EHR. It also describes meth-
ods for specifying the rules for EHR sharing, allowing the creation of request and response
methods to support communication between EHR systems. The CEN ENV/EN 13606 does
not attempt to specify a full EHR. It only describes interfaces relevant for communication
between the different EHR systems [28].

Different countries tried to implement systems using this standard, but none of them
implemented the full standard. Even semi-implementations demonstrated some weaknesses.
As the single-level modelling approached, it augmented the complexity of the information
model. It has many options and a high level of abstraction in the model, which makes it very
difficult both to understand and to implement [28].

In 2001, CEN TC 215 revised the CEN ENV/EN 13606 targeting a full European Stan-
dard, using the previous experience and adoption of the OpenEHR (on subsection 2.2.3)
archetype methodology. The standards has five parts [29]:

• Reference Model;

• Archetype Interchange Specifications;

• Reference Archetypes and Term Lists;

• Security Features;

• Exchange Models.

Of the previous five parts, only the Reference Model is stable, while others are still under
development. The Reference Model is a generic model for manipulating a patient EHR
that enables interoperable communication between different systems, composed by different
packages [33]:

• Extract package;

• Demographics package;

• Terminology package;

• Data Type package;

• Access Control package;

• Message package.

The Extract Package is the root level of the Reference Model and defines the data struc-
tures for the EHR content (Table 2.3). The Demographics package deals with minimal data to
define persons, software agents, devices and organizations which are referenced in the EHR.
The Terminology package defines the terms used within the EHR and the primitive data
types and values are defined in the Data Type package. The Access Control package defines

19

Table 2.3: EHRcom blocks [5]

Block Description

EHR The electronic healthcare record for one person
Folders High-level organization of the EHR, e.g. per episode, per clinical spe-

ciality
Compositions A clinical care session, encounter or document, e.g. test result, letter
Sections Clinical headings reflecting the workflow and consultation process
Entries Clinical “statement” about Observations, Evaluations and Instructions
Clusters Nested multi-part data structures (tables and interval time series) e.g.

audiogram
Elements Leaf nodes with single data values, e.g. reason for encounter, body

weight
Data Values Data types for instance values, e.g. coded terms, measurements with

units

a representation of access policies for the EHR, and, finally, the Message package will deal
with attributes that will be sent via message in a serialized form after a request process.

The top level is a directory which corresponds to one patient. It may have nested folders
that correspond to an episode or a clinic speciality. Those folders can have zero or more
compositions. Each composition can roughly correspond to one clinical document. Each doc-
ument has section headers and entries which can be simple elements or a cluster of elements.
Each element has a single value, or a single data type. The content of the EHR is always
appended or replaced as a composition [29].

The second important building block is the archetype concept which uses a two-level
methodology to model the EHR structure. The first level uses a generic reference model
for the healthcare domain, which contains few classes that will be stable over time. On the
second level, the healthcare and application specific concepts, e.g., blood pressure, and lab
results, among others, are modelled using archetypes. The archetypes are used to describe
clinical concepts, separating the domain expert knowledge from the implementation [5]. This
approach was put forward by the OpenEHR, which will be studied in subsection 2.2.3.

2.2.2 HL7/CDA

The HL7 Clinical Document Architecture is a document markup standard. It was de-
veloped by the HL7 to deal with persistence. It was first designated as Patient Record
Architecture (PRA)) and comprises three levels (Table 2.4).

CDA documents are encoded in XML, deriving their meaning from the HL7 Reference
Information Model, making use of HL7 Version three Data Types. It has three different levels
of granularity. Each level appends more markup to clinical documents, while the content
remains constant at all levels. Level One focuses on the content of narrative documents, such
as parties, roles, dates and times, places and structural organization headings. The document
is divided in two parts both based on the HL7 data types: the CDA Header and the CDA
Body. The header is derived from the Reference Information Model. It defines, without
ambiguity, the semantics of each entry in the document. The body contains the clinical

20

Table 2.4: Hierarchy of CDA Level in Release One and Two [5]

CDA Release One CDA Release Two

CDA Level One The unconstrained CDA specification
CDA Level Two The CDA specification with section-level templates applied
CDA Level Three The CDA specification with entry-level templates applied

document content. It can be unstructured text or nested in sections, paragraphs, lists and
tables using the structured markup language. Level One does not provide semantics, enabling
only interoperability for human readable content. It describes only a document analogous to
HTML, with a standardized header that contains additional information about the document
itself.

On Level Two, the specification brings a fine-grained observation and instructions within
each heading using a set of Reference Information Model classes. It enables constraining
the structure and the content of the document through templates, hence, boosting inter-
operability, since systems are able to understand the receiving data. The CDA has its base
architecture defined and provides different granularity of constrains. This approach facilitates
the migration from free text to more structured CDA documents [5].

A complete structured document is only available at Level Three. Each information entity
is specified using a unique code, enabling machine document processing (Figure 2.8. In order
to enable automated document process, the blocks are encoded in XML, containing coded
elements.

The information on the section enables to apprehend that it was coded using the LOINC
and the observation element was coded using the SNOMED to describe a Skin finding. As the
codes are unique, they can be used for machine process. Using document-level, section-level,
and entry-level templates enables to constrain the generic CDA specification [28].

The CDA standard does not specify services or protocols that are used for document
exchange. In a HL7 message the CDA document is just a multimedia object, which can be
exchanged as a Multipurpose Internet Mail Extensions (MIME) package [28].

Some projects are using CDA as a format for clinical documents, mostly used in clinical
information systems that already use the HL7 standard. The CDA is not an EHR standard
since it define only parts of an EHR architecture. It is an important part of an EHR and is
therefore being harmonized with equivalent structures in EN 13606 and OpenEHR. CDA is
a subset of the EN 13606 Reference Model and the EN 13606 will be compliant with CDA
Release Two [28].

2.2.3 OpenEHR

The OpenEHR finds its genesis in the Good European Health Record (GEHR) dating back
to 1992. It started as an European research project with strong participation of Australia.
Nowadays the project is maintained by a nonprofit organization – the OpenEHR Foundation.
It aims at the creation of a non-proprietary universal independent application and health
record, supporting accurate and safe health information exchange. According to the types of
EHR, it corresponds to the Integrated Care EHR. In practical terms it is:

21

<section>
<code code="8709-8" codeSystem="2.16.840.1.113883.6.1" codeSystemName="LOINC"/>
<title>Skin Exam</title>

<text>Erythematous rash, palmar surface, left index finger.
<renderMultiMedia referencedObject="MM2"/>

</text>
<entry>

<Observation>
<code code="106076001" codeSystem="2.16.840.1.113883.6.96"

codeSystemName="SNOMED CT" displayName="Skin finding"/>
<value xsi:type="CD" code="271807003"

codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED CT" displayName="Rash"/>

<targetSiteCode code="48856004"
codeSystem="2.16.840.1.113883.6.96" codeSystemName="SNOMED CT"
displayName="Skin of palmer surface of index finger">
<qualifier>

<name code="78615007" codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED CT" displayName="with laterality"/>

<value code="7771000" codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED CT" displayName="left"/>

</qualifier>
</targetSiteCode>
<entryRelationship typeCode="SPRT">

<RegionOfInterest MMID="MM2">
<id root="10.23.4567.4489"/>
<code code="ELLIPSE"/> <value> 3 1 3 7 2 4 4 4</value>
<entryRelationship typeCode="SUBJ">

<ObservationMedia> <id root="10.23.4567.345"/>
<value xsi:type="ED" mediaType="image/jpeg">
<reference value="lefthand.jpeg"/> </value>

</ObservationMedia>
</entryRelationship>

</RegionOfInterest>
</entryRelationship>

</Observation>
</entry>

</section>

Figure 2.8: Part of CDA Level Three Document Body [5]

• patient-centric: each EHR is related to one subject of care (not an episode of care at
one institution);

• longitudinal: it is a long-term record of care, possibly from birth to death;

• comprehensive: includes all records of care events from all types of careers;

• prospective: not only historical events are records, also decisional and prospective in-
formation as plans, goals, orders and evaluations.

OpenEHR is modeled according to a two-level paradigm (Figure 2.9). The first level (Ref-
erence Model) defines a reference information model, and the second level define archetypes

22

and templates, formal definitions of clinical content [6].

Domain knowledge
environment

Technical development
environment

Runtime
system

Domain
specialists

Archetype
library

Terminology
/

Ontology

Terminology
development

User
Template
Library

APP

System

Drives
GUI

Used for:
 - Data capture
- Validation
- Querying

Data
Store

Communication

Information

Develop once

Small
Reference

Model

Archetype
Model /

Language

implemented in

Small
Schema

defines

Figure 2.9: Two-level Software Engineering [6]

Only the first level is implemented in software, enabling a small and easy to maintain the
system, in contrast with a single-level system. This approach also allows the systems to be
future proof as it can more easily adapt to changes. This is possible because the systems are
built to consume archetypes and templates, created upon the Reference Model, separating
the clinical modelling, where the domain experts work, from the software developer.

Moreover, using this approach, archetypes can be used as semantic gateways to termi-
nologies, classifications and even computerized clinical guideline services, thus, enabling to
separate from the system in the form of archetypes and templates (Figure 2.10).

All interaction with data is achieved through archetypes and templates. An archetype is a
conceptual component that allows the standardization of data by mapping each medical event
into pre-agreed individual fields of information (entries) forming a composition. A template
serves as a messaging standardization structure and is closely related to screen forms. It
aggregates one or usually more archetypes.

Archetypes in OpenEHR are formalized using Archetype Object Model (AOM), that,
when in memory, define the semantics of the archetype. The OpenEHR makes use of the
Archetype Definition Language (ADL) to define the archetypes, allowing serialization through
XML [34]. For human view and screen rendering different formats like HTML and RTF are
used [6].

The description of an archetype has three parts: descriptive data, constraint rules and
ontological definitions. Descriptive data has the archetype ID, a description of the modelled
clinical concept, the version and purpose. The constraint rules specify the structure, cardi-
nality and content to be valid in the OpenEHR Reference Model. The ontological definitions
describe the vocabulary in machine readable codes, sometimes using terminology that can be
applied in some entries on archetypes instances [8].

23

User

Reference
Model

Domain
expert

Normal instance/
class conformance

Creates

information

ADL Archetype
Model / Language

semantics of
constraint

Archetypes
&

templates
creates

expressed in

semantic conformance

Terminology

used in use
controlled

by

Figure 2.10: Archetype Meta-architecutre [6]

A repository of heavily reviewed archetypes is available to the community fostering the
collaboration and future use of the OpenEHR. Archetypes with different scopes exist, some
are developed for specific countries or special use and others are even globally suitable. They
are available in the OpenEHR website at http://www.openehr.org/knowledge/. It enables
searching and downloading archetypes in ADL or XML format, as well as the creation and
revision of archetypes by all community members.

A query language is also available – Archetype Query Language (AQL), for enabling
querying instantiated archetypes. It enables access to the nodes using an analogous approach
of an XPath query on a XML document [35].

A minimal OpenEHR System consists in an EHR repository, an archetype repository, a
demographic repository, and other times a terminology service (Figure 2.11).

OpenEHR completely separates the EHR from demographic information. Without the
information of the demographic repository, the access to the EHR repository does not leak
identification of the patient. The demographic repository acts as a frontend to, or implements,
the patient master index. The archetypes are in a repository enabling the use of different
versions of an archetype and can make use of terminology services

An OpenEHR consists of a logically organized structure of folders, each containing several
versions of healthcare events. Versioning is accomplished through recording every data change
in special data structures (contributions). The structure is described in Figure 2.12, followed
by the explanation of the different parts [6]:

• EHR – root object, identified by a unique EHR identifier;

• EHR access (versioned) – contains access control settings;

• EHR status (versioned) – contains various status and control information about the
record;

24

http://www.openehr.org/knowledge/

EHR
333

EHR
222

EHR
111EHR

Repository
(versioned)

Person Agent

Role Organization

direct refs

Demographic
Repository
(versioned)

Existing PMI

indirect refs

Archetypes Terminology

Figure 2.11: Minimal OpenEHR System [6]

• Directory (versioned) – optional structure of folders to logically organized compositions;

• Compositions (versioned) – containers of all clinical and administrative content of the
record;

• Contribution (versioned) – contains every change made to the health record, each con-
tribution can refer to one or more versions of any versioned item in the record that was
committed or attested in the system.

Contributions

EHR
Ehr_id

EHR Access

EHR Status

Directory

Compositions

Figure 2.12: OpenEHR structure [6]

The internal composition structure and the directory objects correspond to internationally
agreed models of health information, such as CEN EN13606 and HL7 CDA standards [6].

25

2.2.4 DICOM Structured Reporting

DICOM Structured Reporting (SR) is an extension to the DICOM standard to enable
manipulation of clinical reports, adding the ability to generate, distribute and manage reports.
It is mainly used for encoding medical reports on a tag based format. A structured report
has a header, used also for the DICOM images and the content is represented in a document
tree [8]. Parent and child nodes are related through a set of relationships [5] (Figure 2.13).

Finding = Malignant mass

Has Properties

Has Properties

Finding = Mass

Shape =
Round

Location =
Central

Margin =
Irregular

Size =
1.5 cm

Finding = Malignancy

Has Properties

Inferred from

Figure 2.13: DICOM Structure Reporting with References [7]

SR documents can be used to represent structured information, such as lists, hierarchically
structured content, numeric values or references to images. In DICOM SR only the meaning
of the information is encoded, focusing the main concern on semantics and not presentation.
It is limited by not supporting references to other SR documents, since the content must
be fully enclosed in a single document. If references to other documents are needed, the
information should be copied to the document that needs to refer to it [8].

2.2.5 Integrating the Healthcare Enterprise - IHE

Integrating the Healthcare Enterprise (IHE) aims at facilitating information sharing among
healthcare systems, using established standards such as HL7 and DICOM. It tries to overcome
interoperability difficulties between standards implemented in different systems. Providers
should therefore first decide the need of integration, then use IHE solutions accordingly to
enable integration [36]. Two main communication standards are defined: Retrieve Informa-
tion for Display (RID) and Cross-Enterprise Document Sharing (XDS).

The RID enables the access to persistent objects in standard format as HL7 CDA, Portable
Document Format (PDF) or JPEG and other patient information such as allergies, medication
or reports across different healthcare institutions [37]. RID defines a web service using a Web
Service Definition Language (WSDL), enabling retrieval through a HTTP GET method.

This approach is based on two actors: the Information Source Actor and the Display Actor.
The first has the information and the second requires access to the information for displaying
it to the human observer. The communication is initiated by the Display Actor by making the

26

request to the web service. The Display Actor can request to Retrieve Document for Display
or Retrieve Specific Information for Display. The first retrieves a persistent document, the
second may access information that is updated frequently, such as allergies and medication
among others. The phases during the retrieval of a persistent document are:

1. The Display Actor provides an Unique Identifier (UID) to identify the document re-
quested and information related to the formats supported;

2. The Information Source sends the requested document as a payload of the HTTP re-
sponse. When requesting specific information, the patient ID and the sought type of
information is provided by the Display Actor.

The HTTP response is an Extensible Hypertext Markup Language (XHTML) document
on the HTTP response payload. The document may contain hyperlinks to other persistent
documents which can be retrieved using the Retrieve Document for Display process [8].

The IHE propose the XDS for supporting healthcare documents sharing. XDS is a solution
for integrating documents from different producers. The main idea is to store documents in
an Electronic Business using Extensible Markup Language (ebXML) format in a Document
Repository and registering them in a Document Registry to promote their use [38]. The
Document Repository stores the documents and the Document Registry manages metadata
to facilitate the discovery process by the consumers. Sharing is possible within a well-defined
group of healthcare enterprises which agreed to collaborate, which is designated as an XDS
affinity domain.

The actors and transactions are defined on Figure 2.14.

Patient Identity Source

Document Registry Document Consumer

Document RepositoryDocument Source

Patient Identity Feed

Registry Query

Register Document Set

Retrieve Document SetProvide and Register
Document Set

Figure 2.14: IHE XDS Actors and Transactions [8]

The actors are the Document Source, Patient Identity Source, Document Registry, Doc-
ument Repository and Document Consumer. The Document Source produces the document
and sends it to the Document Repository using the method Provide and Register Document
Set. Then the Document Repository stores the document and sends the document metadata
using the method Register Document Set to the Document Registry.

The Document Registry can answer to queries of the Document Consumer by the method
Registry Query for all registered documents. Matched documents can be retrieved by the
Document Consumer from the Document Registry using the Retrieve Document Set method.

27

The Patient Identity Source is used to identify patients to the Document Registry using the
Patient Identity Feed.

The document content is not contemplated on the XDS. Documents can exist in any type
of format. Therefore, to enable a correct communication, a document format and structure
should be agreed inside the XDS affinity domain [39].

2.2.6 Discussion

In this section different standards for communication and document were discussed. Ta-
ble 2.5 summarizes the differences between communication standards. Almost all of them
support querying, retrieving and submitting operations. The exception is WADO which does
not support query of document contents and submission of new documents. The IHE RID
does not support submission since it is oriented to retrieve the information for display only.
The RID and the XDS do not make any consideration of the format of the documents and
they are manipulated as black boxes.

Table 2.5: Communication Standards Comparison – Adapted from [8]

Functionalities WADO EHRcom DICOM SR RID XDS

Query Service N Y Y Y Y
Submission Service N Y Y N Y
Retrieve Service Y Y Y Y Y
Document Centric Y N Y Y Y
Content Format Agnostic Y N N Y Y

Document standards consider EHRcom, HL7 CDA, OpenEHR and the DICOM SR (Ta-
ble 2.6). All of them allow to store structured documents and they also consider the document
as the basic unit. EHRcom and OpenEHR, further enable the aggregation of diverse docu-
ments in a single composition. Multimedia and reference to multimedia are also supported
by all the discussed standards.

All use two level modelling, although with some discrepancies. The EHRcom and OpenEHR
use archetypes, while others use templates. Only the DICOM SR has a predefined library of
possible objects [8]. The control of distribution rules can only be made in the EHRcom and
OpenEHR.

Some standards are analogous, but they also have some ambiguities which further com-
plicate interoperability. The use of some proprietary formats in systems that are already in
place makes it even more difficult to achieve interoperability between systems. The DICOM
standard is the most stable and consensual in the medical image area. In records area, there
is still a solution missing that would enable interoperability between all actors in healthcare.
The OpenEHR project has the goal to enable collaboration on the creation and validation
of archetypes. This collaboration can foster OpenEHR archetypes to be common to different
systems and work as a common format for information sharing.

28

Table 2.6: Document Standards Comparison – Adapted from [8]

Functionalities EHRcom OpenEHR DICOM SR HL7 CDA

Store Structured Docs Y Y Y Y
Document basic unit Y Y Y Y
Supports Compositions Y Y N N
Multimedia Y Y Y Y
Reference to multimedia Y Y Y Y
Archetypes/Templates Y Y Y Y
Defined Library N N Y N
Specify Distribution Rules Y Y N N

2.3 Integration

Even with the standardization efforts described above, successfully achieving an ICEHR
is still a challenge, because information does not reside in one single system. The free market
in healthcare where providers compete to provide services bring the possibility of choice to
the patient. This aspect combined with the increased mobility lead to the information to
be duly disseminated among providers. Citizens change their residence during their lifetime,
they travel more regularly, for work, for leisure or even for medical care, hence scattering
medical information [40]. However, the provision of quality healthcare services demands a
unique view of the disperse EHR.

Solutions are needed to cope with the challenges of scattered data in different institutions,
possibly implementing integration mechanisms. One approach is to have an integrator that
knows the location of the information and how to retrieve it in a secure way. Some projects
decided to extend electronic health card to support that service. Hence, the Virtual Unique
Electronic Patient Card (VU-EPR) appeared as a possible solution. Costa et al developed a
VU-EPR solution designated Multi-Service Patient Data Card (MS-PDC) [41, 42].

MS-PDCis a smart card that stores, in a secure way, card-owner resident clinical and
administrative information. It can also store references in a structured data set to scattered
electronic records. The association of Public Key Cryptography and Crypto Smart Cards
provides secure methods to store, transport and access the card-owner’s information. More-
over, it also grants the owner full control over the access to its data, through a PIN and/or
biometric registration.

This MS-PDC model empowers patients and allows discretionary access to remote data.
Crossing MS-PDC with health professional card enables professionals to gain access to the
medical emergency data stored in the card. The card owner can define information access
levels to other users, such as the clinical staff. MS-PDC uses URLs to fetch the information
on the disperse systems and present them to the user as a unique view. This model copes
well with mobility issues, such as aggregating disperse data and controlling its access.

In a wider concept of mobility, it is not feasible that all worldwide patients will have the
same type of card. Another open challenge is to allow services and users to access patients’
information when the card is not available. For example, updating URLs cannot be performed
if the card is not present. Moreover, losing the card represents loss of all the information it
contains.

29

Some authors suggest that the adoption of web services technology is inevitable [43, 44].
The key factors include the network awareness, integration of legacy components and the
path to enforce security policies.

A solution to overcome these disadvantages is to use an analogous but deployed architec-
ture in a Service Oriented Architecture (SOA), making use of a Virtual Health Card Service
(VHCS) that mimics the behavior of the MS-PDC [45]. The proposal is supported by a cen-
tralized access control mechanism which implements the patients’ informed consent through
a policy. A proxy makes use of the information in a Virtual Health Card, namely, the cre-
dentials of the patient to the repository, the access policy to apply to the requester user, and
the URLs to the scattered repositories to retrieve the information and create a unique EHR
read-only view [46].

Each repository has to provide query and retrieve operations, in order to gain access to
the patients’ information. The tight regulatory framework that healthcare providers have
to comply with when manipulating clinical data almost makes this requirement impossible.
This will also require that all the providers have technical and human resources to support
the gateway.

Another approach is to make a central repository available to healthcare providers to
deposit the information after patients attend their services, thus paving the way to the ICEHR.
The patient may even decide the access control policy to that repository.

The repository can be a PHR, as already discussed. Dossia, Google Health and Microsoft
HealthVault enable similar behavior [13] and they provide methods that enable services to
upload content to the patient’s PHR. As those services are oriented to record management
by the patient, they can represent a barrier for the use by medical staff. The integrity of the
data is dubious, since the patient can also create, delete and modify data.

Even considering that specific store services will appear, there is the problem of ensuring
data privacy, when a patient stores his record in an external provider. This is one of the
concerns about PHR privacy, especially when information exists in a controlled environment
inside the healthcare provider’s networks and systems. Usually providers give access to ev-
ery EHR, which can cause large-scale disclosures. Even with audit trails, privacy breeches
are difficult to be detected automatically, because there is no link between provider and con-
sumer [47]. This dilemma is even more critical for PHR providers which aggregate information
for many patients.

An approach to minimize these problems is to cipher data before storing it. One solution
oriented for encrypted storage of medical data in a grid using a key to encrypt the data [48].
The key is split and distributed through different key-servers, keeping references to them in the
storage service. To get the information, a user retrieves data from storage and the addresses of
the key-servers. He queries the key-servers for the sub-keys, if he has the necessary privileges,
and computes the key to decipher the information. This approach has the drawback of not
allowing to associate different access views to different users. The access control is based on
grant access or not. In fact, it is not possible to use a finer grain policy. Another problem is
that this approach does enable to maintain a link to the requesters, since it always uses the
same key to decipher. This makes it difficult to distinguish between requesters. Besides, as
the same key is shared by different users, the possibility of compromising the key increases.
Another important aspect deriving from the key sharing, is that an user can retrieve the
information from the storage even after the policy has expired, because the key is the same.
A possible solution for this is to retrieve the data, delete it on the storage, decipher and
undergo a new store procedure from the very beginning.

30

Another challenge of having a ciphered repository is to provide some indexing capabilities
and to allow selective retrieval of data. Some work has been done in searching over ciphered
databases, usually through having a separate metadata store [49].

Some countries are making efforts to implement integration at national level. In Portugal,
a project named Registo de Saúde Electrónico, has the purpose of creating an Electronic
Health Record for every Portuguese citizen. It will enable the access to relevant patient
information, integrating all the scattered information and enabling the sharing of information,
and supporting patient mobility [50].

It proposes using a three level federative model. Each level has different authority levels
and also diverse information. Level one is centralized, managed by a central authority. Level
two implements a distributed model, which can result of a regional federation or can be
managed by the providers. Level three is composed by systems which belong to the providers
who support directly operational tasks for the providers.

Information flows from level three to level two, level three to level one and level two to
level one. The method is based on the principle that information is produced on level three,
and then propagated to lower levels. Access and visualization of information on level one
and two should be made, when possible, using interfaces to the systems on level three. If not
possible, access portals should be used. When information is pushed to the shared level (level
2) or to the centralized level (level 1), an index in level one is updated to enable future access
for retrieving or update.

HL7 and DICOM are currently being considered to be used at least for communication
between systems [51]. Level 1 information is also proposed, such as general citizen information,
clinical alerts, problems list/diagnoses, among others.

The possibility of patient active collaboration in creating information is being considered
in Portugal, through the portal3. It gives patients’ access to some services and to the creation
of information, dessociated from the EHR approach discussed in the previous paragraph. It
is still at an early stage, enabling to schedule appointments, request prescriptions. On the
contrary, an area patient information creation is not yet available.

Mobility can also cross country borders. In European environment for healthcare the
European Patient Smart Open Services (epSOS) appeared. Currently, the services provided
are the Patient Summary with general information and medical information, and the ePre-
scription. Medical information is a summary composed of information related to allergies,
implants and major surgeries during the past 6 months. The ePrescription enables a pa-
tient to buy his medication in other countries. This service deals with information such as
name, code of medication and dosage [52]. The basic architecture requires that each country
provides services in their infrastructures – a National Contact Point. Each has a national
interface connector (1, 2), specific for connecting to the national infrastructure, as illustrated
in figure 2.15.

Health professionals during care delivery can access to the network through the portal or
the portal adapter (3). If a country develops its own portal it also needs to implement the
portal adapter as a web service. The core component (4) is an IHE X protocol terminator
service. The epSOS interface (5) enables the communication between the different member
states with other national interface connecters and both have roles for outbound and inbound
communication. The architecture is is based on IHE profiles and is implemented as web
services [9, 53]. They make use of CEN EN13606 reference models for patient demographic

3Available at https://servicos.min-saude.pt/acesso/

31

https://servicos.min-saude.pt/acesso/

Member State AMember State B

Na
tio

na
l

Co
nn

ec
to

r
Po

rta
l

Ad
ap

te
r

NI Core

ep
SO

S
In

te
rfa

ce

Portal

Na
tio

na
l

Co
nn

ec
to

r

NICore

ep
SO

S
In

te
rfa

ce

NCP-ANCP-B

1

2

3

4
5 5

4 1
2

National
Infrastructure

National
Infrastructure

epSOS

Legal/Technical/Services

Figure 2.15: epSOS Basic Architecture [9]

and summaries, using archetypes defined in ADL [54].

This approach works when dealing with healthcare professionals who are members of a
national network, which belongs to the epSOS network. The collaboration is limited to pre-
vious agreements among providers, member states, and states. The patient does not have
full control of access to his medical information, he does not have the freedom to give access
to everyone he desires and cannot collaborate or validate the information in the repository.
Moreover, through this approach, all the states are required to implement a national infras-
tructure that gives access to the information spreading among all the healthcare providers.
Information or actors that are not referred to by the state cannot access the information.
The creation of information by all involved actors with the aim of achieving a full integrated
record seems unlikely to happen.

2.4 Security Requirements

Information security is of the utmost importance, particularly in healthcare area. Regu-
lation and legislation are needed to ensure data protection, as well as to define the responsi-
bilities and rights of all the actors involved in healthcare data manipulation.

Many laws and codes of ethics are in force to protect the patient personal data, and
health professionals. Two competing requirements exist: healthcare professionals need access
to patients’ information to provide proper care; on the other hand, information should be
protected from unauthorized actors.

In Portugal the general law of data protection applies when dealing with electronic infor-
mation [55]. Access to health related information is allowed when needed for diagnosis and
treatment. Access is only allowed if the information is manipulated by a professional bounded
to professional secrecy. Other regulations include the Basic Health Law [56], the Doctors Eth-
ical Code [57] and the Nursing Ethical Code. They are mainly good practices manuals to
deal with healthcare information by healthcare professionals. They do not describe special
concerns for electronic information.

A specific law to regulate the access and manipulation of medical information was approved
in January 2005 [58]. This law clarified who is the owner of the information and who has
access to it. The law states that the medical information, including medical data, medical
tests, interventions and diagnostics are property of the patient. Healthcare service providers

32

are considered faithful custodians of clinical information and it cannot be used for any other
purpose than providing healthcare services and other cases established by law.

Medical information is generated by the doctor who assists the patient or by any other
professional under the doctor’s supervision, also subject to confidentiality. It is also assumed
that the responsible for processing the data should take measures for both data protection
and confidentiality. The owner has the right to access all the clinic process related to him,
except in special situations – when proved that the information can be prejudicial to him.

Clinical information can only be used by the health system under the conditions expressed,
and with written authorization from its owner or representative. When anonymized, health
information may become available for research purposes.

The European Commission also made suggestions regarding this subject in 1997, to be
found in the Recommendation for Protection of Medical Data to ensure proper safeguard and
management to achieve confidentiality, integrity and availability of personal medical data [59].
In 2004, a new recommendation was issued focusing on the use of the information technologies
in healthcare, for instance the Internet, and their effects on data manipulation [60]. This also
fostered the patient empowerment, enabling him to participate in the collection and access
to his own information [61].

Other important regulation effort which is well known and in use at the United States
of America is the Health Insurance Portability and Accountability Act (HIPAA), created in
1996 and enforced in 2003. It establishes standards for the privacy and security of healthcare
information, as well as standards for electronic data interchange [62].

Architectures which deal with healthcare information should be able to enforce regulations,
as well as to enable collaboration between healthcare actors, hence, enabling the creation of
a lifelong healthcare record.

The security of a system depends on all of its components and dependencies and having
the most secure authentication and authorization schemes is not enough. Communication
should be secure and resistant to replay, eavesdropping, traffic analysis, and other network
based attacks. Moreover, the systems that support the services (operative systems, network
applications, . . .) should be tightly configured and all components should be designed, im-
plemented, configured, and used taking security into consideration.

The healthcare area is a rich scenario with various security challenges. From authenti-
cation and access control to communication security and cryptosystems [63], security mech-
anisms should be used to enforce data security. It is a challenge to secure this information
especially because of its size, mobility of staff and patients, data sensitivity, and the complex
rules which govern the manipulation of clinical data.

The main security principles for a lifelong EHR system is discussed in [64]. Requirements
for confidentiality, control, integrity and legal value are briefly stated, considering that patient
records are private and confidential. Integrity of the information is crucial, since the life of the
patient depends on it: only authorized users can create and update data. For legal purposes
the patient records should be tamper proof and should store all actions taken by healthcare
professionals

The integrity and availability of the information is very important, therefore, solutions to
build more robust and redundant systems should be considered. Records need to be updated
as soon as possible. The delay between the creation of new information and its availability
should not be significant. Moreover the usability of the record is also important: it should
be easy to use, all relevant current conditions, allergies should be easily accessible and search
functionalities can improve its use.

33

Confidentiality and privacy of clinical data have a strong professional tradition. Healthcare
professional are regulated by an ethic code that it protects professionals and requires them
not to leak patient clinical and related information. Modern healthcare systems brought
more actors that need to share and use information. That challenged the confidentiality and
privacy of the patient clinical data [65].

The confidentiality of EHRs can be enforced through access control mechanisms and audit
trails. The latter are used for inspection of suspicious activities. System users must also be
educated about security issues and their responsibilities. Human factors, such as errors,
negligence and unethical activities can lead to breaches, despite the implemented security
mechanism [66].

Access control mechanisms in healthcare area have to deal with emergency access. Prac-
titioners may have to access the patient EHR when he does not have conditions to grant
access. In such situations, systems should enable practitioners to bypass the access control
mechanism. This procedure is well known as break-the-glass [67].

Most of the authorization schemes used for regulating access to medical records requires
that the patient implicitly accepts the healthcare organization structure. Once the patient
authorizes access to a healthcare professional of one organization, the patient accepts further
delegation by that professional within the organization. This implies that the patient loses
control from the moment a professional inside an organization gains privileges. Another
controversial principle is the read access for public health, legal and professional entities.
This principle considers that those entities can have a limited, read only access to patient’s
anonymized data without the approval [64]. In an EHR, those requirements can be less
controversial because the guardian of the information is not the patient. But in a PHR
perspective all access should be granted by the patient.

As already stated, the legal value of records brings special security concerns [64]. Along
with privacy, identification and authorization concerns, it also requires nonrepudiation, so
that no one can deny making entries or updates in the patients’ records. It should also use
an incrementally approach to protect the record from harmful deletion or alteration. This
can be achieved through versioning techniques: only the newer version is showed to users,
but, if needed, other versions can be recovered for inspection or correction. The storage
should last through all of the patient life and even longer, so digital signatures validity is a
special concern for future verification of data integrity. Another challenge posed is related
to credential’s management. Eventually patients will forget passwords and keys, lose smart
cards, or other tokens.

Most of the previous requirements are not achieved by most implementations. For example
recent developments in PHR do not satisfy integrity and as such legal value [64]. Another
problem is the lack of privacy of the information from the store service provider.

To achieve the previous requirements, authentication, authorization, accounting and cryp-
tography mechanisms will play an important role for the proposal of a possible solution. The
analysis of security standards for healthcare applications is particularly useful when concern-
ing the uniformization of security approaches [68]. The challenge grows in the context of
mobility, as actors from different providers and even from different countries compose the
scenario.

34

2.5 Regulating Access to Health Records

The authentication and authorization processes are fundamental steps to ensure clinical
records security. Considering the environment of multiple healthcare providers, possibly from
different countries, trust between all actors is also an issue. Joining a new actor to the system
should be easy and seamless in order to, also trustfully, enable open collaboration among all
the authorized actors.

Authorization is important and implies that the defined policies are correctly enforced by
the system. Different approaches are discussed in subsection 2.5.2..

Another important area is accounting to verify access to the records. It will be a core
aspect for verifying and maintaining the legal validity of the record. Subsection 2.5.3 is
dedicated to this issue.

Cryptography has a great role in enforcing some of the requirements, especially related to
privacy and data integrity. Some of the solutions normally used in this area will be discussed
in section 2.5.4..

As already clarified and highlighted in section 2.4, health informatics are rich regarding
security challenges. The community created special guidelines, such as ISO standards, to
address the EHR security challenges. Health Informatics - Privileges management and policy
management [69], formal models [70] and the CEN EN 13606-4 Health informatics - Electronic
health record communication - Part 4: Security [10]. These standards will be discussed in
this section with technical solutions for targeting the security requirements.

2.5.1 Authentication

Authentication is the process of confirming someone’s identity. Usually, this is achieved
through something he has (card, token, . . .), something he knows (PIN, password, . . .) or
something he is or does (fingerprint, handwritten signature, . . .) [71]. Stronger authentication
can be achieved by combining different methods, for example, a fingerprint and a password.

Different methods are available for authentication. O’Gorman provides an interesting
comparison between them. He considers password, token and biometric based ones [72] and
states that passwords are the most widely used methods for user authentication, as it is
familiar and simple to use. However, users tend to choose weak passwords, easier to remember
and therefore easy to discover through a dictionary attack. Sometimes, users even write the
passwords on paper, thus resulting in bigger risks of disclosure. Another problem is the cost of
resetting forgotten passwords and the difficulty to realize that a password was compromised.
There is no mechanism that triggers an alarm if someone discovers the password of a user.
Finally, it has very low defense against non-repudiation.

Tokens can store or generate multiple passwords which can be used in password authen-
tication mechanisms. The main advantage is that the user does not have to memorize them.
He may only have to memorize one password, to be able to access the token, if it is protected
by one. If the token is missing the user knows that it has been compromised. Besides, the
attacker will not be able to guess the passwords: either he has the token or the access will
not be granted.

Authentication based on passwords are prone to attacks that aim to guess or discover the
combination. This vulnerability usually requires some failure accounting, locking the system
after a predefined number of tries. This can lead to denial-of-service, because legitimate users
will be out of the system until the problem is solved.

35

As stated above, stronger authentication methods include two or more forms of authenti-
cation. Yet, single-token authentication should not be used to grant access. More commonly,
it can be used as a first line of defense protected by a password or PIN or associated to
biometric mechanisms. Albeit the latter is more expensive, it saves the user of memorizing a
password. The solution will be to use a biometric feature instead.

Biometric authentication has a residual probability of loss or to be eavesdropped, as
biometric features are more difficult to lend or to be stolen. However, this option also suffers
from the possibility of false positives: recognizing the same biometric features from different
subjects.

Usually, biometric features have two types of signals: stable and alterable. The stable
signals are more prone to be stolen and copied and alterable. Hence, they are more resistant
to forgery and replay, but they have the inconvenient of having more false non-matches
(avoiding to recognize the correct user).

For the above reasons, biometric authentication methods should not be used in a single-
factor mode. They should be combined with other methods and only used as a second-factor
authentication, for example with smart cards and Public-Key Infrastructure (PKI). Moreover,
a person’s biometric features are stable and distinct so, if it gets compromised, it is harder to
change.

Biometric authentication can be based on a large set of different features [73] such as face,
Facial Thermogram, Fingerprints, Hand geometry, Retinal Pattern, Signature, Iris, Speech
and many others. Each one of those techniques has a specific level of usability, error incident,
accuracy, cost, user acceptance, required security level and long-term stability. One of the
biggest problems associated with biometric authentication is surely the way to store the
features. A possible solution is the use of smart/crypto cards. Hence, recent type of cards
can secure store information using a cryptography built-in fingerprint reader to generate the
key used for cyphering and deciphering the data.

Another method of authentication makes use of a PKI. Hence, it uses public-key cryp-
tography for identification and authentication. This method is mathematically more secure
than biometrics and copes with Internet usage. However, it has the problem of private key
management, as it should be portable and protectable. Therefore, solutions to enhance se-
curity and privacy in biometrics-based authentication systems [74] are being studied. Some
solutions store the private key on a smart card protected by a biometric feature.

Among the previous discussed authentication methods, smart cards have been proposed
for several scenarios in the healthcare area. For instance, they are considered good solutions
for authentication [75, 76, 77] and for storing information to enable remote access to sys-
tems [75]. Hence, the card can be used for multiple purposes, integrating the authentication
and information that need to be portable and with the user. Moreover, some also integrate
a certificate which can be used for the authentication process. In addition, some authors
contemplate the use of government issued digital identification cards as a solution that could
be used in Health Information Systems [78].

Carlos referred that a smart card could be used as the token for identifying health profes-
sionals and patients [75]. In this approach, users could use a PIN or fingerprint to validate
them as card owners. Further, the card stores patient information and URLS for web services
where the patient’s clinical information exists. In brief, the card is a repository of links to
disperse healthcare information stored on the healthcare centers. However, it has some draw-
backs related with the use of tokens, such as problems to access patient information if the
patient forgets his card. Besides, the loss of the card or the need of its presence on the system

36

for some procedures as discussed in section 2.3. Finally, the cost of creating and maintenance
of a PKI is huge and difficult to implement in a worldwide scenario.

One important aspect of the use of smart cards and certificates for authentication is the
trust on the certificate. Therefore, PKIs have great importance, since they are responsible
for validating the information and identity of certificate requesters. Thus, if the burden
of the PKI management could be carried by a reputable actor, the trust on the certificate
would increase. Further, several countries are moving to Electronic Identification (eID) cards.
Those cards have certificates signed by the country PKI that enables strong identification and
authentication of a citizen. Thus, eID solutions enables citizens to make self enrollment in
systems with high trust of the identity of the user, even without the system being aware of
information about the user, as long as the system trusts the users’ country PKI. In Portugal,
the Citizen Identity Card has strong authentication and digital signature capabilities. It is a
secure card, with latest encryption and protection technologies. Moreover, it also supports a
RSA PKI managed by Portugal, enabling remote authentication, thus making it good for use
in Health Information Systems [79].

The Portuguese Citizen Card and other countries similar electronic identification cards
became good choices to authenticate remote users and even for self-enrollment in systems.

2.5.2 Authorization

After authentication, systems have to build an authorization profile, in order to describe
the capabilities and resources associated with a given user.

The most common authorization mechanisms are based on access control lists, such as
Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Role Based
Access Control (RBAC) [80, 81, 82]. Access control lists are built on the concepts of subject
and object: the former are who/what accesses (a user or a process) and the latter is the
accessed resource (files, pipes, network devices and others).

In DAC the access policy is determined by the owner of the object. The user that creates
the object becomes the initial owner and is responsible for defining the corresponding access
policy. In other words, the owner will decide who is allowed to access the object and what
privileges they have.

MAC is based on access policies determined by the system and can handle different clas-
sification levels between subjects and objects. It is usually used in multilevel systems that
process confidential data, such as classified government and military information. It depends
on the principle that every object and every subject has assigned labels (sensitivity labels)
to. The subject label specifies the level of trust. In order to access an object, the subject
has to have a label with the same level, or higher than the object. This access policy is used
for controlling the import and export of information from or to other systems. The most
commonly used methods for implementing MAC are the RBAC and the Lattice-Based Access
Control [83]. The first determines if access should be granted or denied, by matching the
sensitivity label of the object with the subject label. The second is used for complex access
control decisions, defining a lower-bound and upper-bound value for each pair of elements,
such as a subject and an object.

The access policies are defined by the systems in MAC as in RBAC. The system defines
the sets of permissions that may include operations, e.g. e-commerce transactions or a simple
read and write. Moreover, this access policy has its pillars on the following three primary
rules:

37

1. role assignment: a subject can execute the transaction only after selecting or assigning
a role;

2. role authorization: the active role of the subject must be authorized. Together with
the previous rule, this ensures that users can only be assigned to roles that they are
authorized to;

3. transaction authorization: a subject can only execute a transaction if authorized for the
user active role. Along with the previous rules, this insures that users can execute only
transactions that they are authorized to.

RBAC is more powerful than MAC, in the sense that more constrains can be applied.
More, roles can be combined in a hierarchy where higher-level roles include permissions from
the sub-roles.

A variation of the RBAC is the Rule-Set Based Access Control (RSBAC) [84, 85]. This
framework can implement almost any access control scheme and has more flexibility than the
RSBAC, whose functionality is built as modules, implementing different models or aggregating
groups of functionalities. Modules can be combined to achieve diverse access control models,
supporting MAC, ACL, User Management or custom made models (Table 2.7) [86].

Table 2.7: RSBAC Modules

Module Name Code name Short description

Authenticated User AUTH Authenticate Users
Role Compatibility RC Role based access control
Access Control Lists ACL Extensive Access Control Lists
Mandatory Access Control MAC Multi Layer Access Control
Pageexec PAX Prevention against unwanted code execution
Dazuko DAZ On-access anti-virus scanner
Linux Capacities CAP Manages Linux Capacities
Jail JAIL Encapsulation of individual processes
Linux Resources RES Manages Linux Resources
File Flags FF Set special access control flags per filedir
Privacy Model PM Controls data privacy in conformance to EU laws

The previous present authorizations methods need to be chosen wisely, because each one
have features and behaviors that are tailored to different proposes. Therefore, uses of those
methods in the healthcare, especially to control access to electronic health records are further
studied. One example of a project that targeted to use an authorization model oriented to
coloring access to electronic health records was the PING project. It defined a file system
structure for saving the health information in XML files, under role based access control [87].
Each file has a header, describing the access permissions, enabling the user total control to his
medical file. Using XML for saving the file allows an easy method for accessing the information
via a web server. Also, file compatibility problems are minimized because the information is
saved in a plain text file with XML tags. In this approach the privileges included create, read,
modify, delete or annotate. The role can be a specific person, an identity which can change
along the time (my psychiatrist, for example), or a group of individuals (the physicians of

38

an emergency department). There is the concept of the data owner (the patient), author
(practitioner who created the information) and others.

The choice of using RBAC as authentication mechanism for controlling access to electronic
health records is common [88, 89, 90] and the privileges of each role to each object are stored
in a structure. Then when a user requests access to an object, he will need to have successfully
gain access to a role that has privileges. This behavior enables that person to have templates
of roles to objects and then access control administrators can just choose what roles each
user can gain access. The use of RSBAC is widely diffused for controlling access to EHR.
In fact, the standard EN 13606-4[10] makes use of it, defining, first the types of information
sensitivity for record components (see Table 2.8).

Table 2.8: Values of Sensitivity for each Record Component [10]

Data Sensitivity value Sensitivity level Description of intended access

Personal care 5 Patient himself and one or two other people
trusted by him

Privileged care 4 A very small group caring intimately care to the
patient

Clinical care 3 Default for normal clinical care access
Clinical management 2 Wider range of personnel not all of whom are

actively caring for the patient
Care management 1 Wide range of administrative staff

These sensitivity levels can be seen as labels that can be associated to each object that
the infrastructure deals with. This approach enables the creation of consistent policies, since
it has the policy specified for a certain type of object, grouped by their level of sensitivity.

Another important aspect in RBAC is the role that the access control mechanism needs
to deal with. In the EHR context, the standard considers the roles explained in Table 2.9.

Table 2.9: List of Functional Roles [10]

Functional Role Brief Description

Subject of care Principal data subject of the EHR
Subject of care agent e.g., parent, guardian, carer or other legal representa-

tive
Personal healthcare professional Healthcare professionals that are closest to the patient
Privileged healthcare professional Nominated by the subject of care OR nominated by

the healthcare facility
Healthcare professional Party involved in providing direct care to the patient
Health-related professional Party indirectly involved in patient care, teaching, re-

search
Administrator Any other parties supporting service provision to the

patient

The roles are associated with the functions that each user performs related with the health-

39

care related activities. This information enables to simplify the creation of the access control
mechanism. As it specifies the levels of sensitivity, which will aggregate the objects that
have that kind of information, together with roles which will represent all types of possible
authorized users. Therefore the structure that maps the privileges that each role has can be
specified in a simple table. Table 2.10 shows the allocation of the privileges of each role to
the sensitivity level of information.

Table 2.10: Mapping Functional Roles to Sensitivity of Record Components [10]

Functional role
Record component sensitivity

Care Man-
agement

Clinical Man-
agement

Clinic care Privileged
care

Personal
care

Subject of care Y Y Y Y Y
Subject of care
agent

Y Y Y Y Y

Personal
healthcare
professional

Y Y Y Y Y

Privileged
healthcare
professional

Y Y Y Y+ Y++

Healthcare pro-
fessional

Y Y Y

Health-related
professional

Y Y

Administrator Y

NOTE 1 – Y indicates access will be granted unless dictated by other policy constraints
NOTE 2 - + indicates access will be granted if the EHR requester is a member of the same specialty
or clinical service in which the record component was created. This access may also be granted in
healthcare emergency situations if so authorized.
NOTE 3 – Y++ indicates that access to Personal care information may sometimes be granted by
mandate to Privileged healthcare professionals in some care settings.

The present approach allows the simplification of access control development, configura-
tion and administration, mostly because programmatically the systems will deal with pre-
defined roles and sensitivity levels. All the business logic of the systems can make use of this
simplification. The custom approach is when creating new data to associate it to a level of
sensitivity. Each user can request access to a role, based on the function that he is providing.
Then considering the roles that the requester has and using the mapping structure the access
to the object is either granted or not.

Although different approaches exist to implement access control to health records, some
problems still persist. Some authors state that access policies are locally defined and not
enforced in the health network. Others, mentioned problems related to the use of obsolete
technologies, the lack of system integration, negligence with security information (passwords,
tokens, and so on) and forgetting to close sessions [91], thus resulting in difficulties to enforce
the access control policy.

40

A simple solution for access control, orientated for a patient centric controlled policy needs
to be proposed. It should address the requirements of openness, mobility and secure access
and yet be coherent with ISO standards for the EHR.

2.5.3 Accounting

The use of strong authentication methods combined with a proper access control mech-
anism can improve the security of a system. However, monitoring mechanisms should be in
place, to ensure that processes are behaving as expected.

Accounting can be seen as a registry that stores information of who and how a system or
service was used. This detailed log can be used for charging resources’ usage, for verifying
the correctness and execution of a service, a system, or a user behavior, as well.

Systems that manipulate critical information, such as patients’ healthcare records, should
provide a robust and trustful accounting mechanism such as clearly identifying the requester,
the time of the occurrence, recording requests, detailing every operation and associating it to
data operations, e.g., creation, access or update. Some healthcare systems allow bypassing
the authorization process, in situations of extreme urgency. When this procedure occurs,
systems should have a log with auditing information of the access. This log will be critical to
decide if the access was abusive or, otherwise, justified.

The Internet Engineering Task Force (IETF) has been debating accounting and its use in
auditing. Auditing can be defined as “the act of verifying the correctness of a procedure. To
be able to conduct an audit it is necessary to be able to definitively determine what procedures
were actually carried out to be able to compare this to the recommended process. Accomplishing
this may require security services such as authentication and integrity protection” [92].

The aspects related to cost allocation and billing can be useful if the users should pay a
fee related to the resources usage. The auditing process is very important to security, as it
enables to verify the correct use of systems, as well to verify that the system is coping with
the access policies.

Authentication, authorization, and accounting is usually performed with the help of spe-
cific protocols such as the RADIUS, Diameter, TACACS and TACACS+. These are more
oriented for network and system environments and are not well designed for application layer.

Accounting models oriented for SOA have been discussed previously [93]. In this envi-
ronment, service composition is a possibility in which a business process may depend on more
than a single service call. In this scenario all the events have to be combined and related.
If a user makes a request to a service, and this service needs to invoke others, all the events
requested on all services should be recorded together. The auditing facility of the accounting
is important to check correctness of the operation of complex systems and specially to verify
access to sensible information.

The auditing information can be used for verifying the correct behavior of users, systems
and services. Considering systems that have critical information a continuous auditing can
bring advantages to enforce the correct operation. Continuous audit is “a methodology that
enables independent auditors to provide written assurance on a subject matter using a series of
auditors’ reports issued simultaneously with, or a short period of time after, the occurrence of
events underlying on the subject matter” [94]. Some work has been done to enable continuous
audit based on SOA [95] architectures. Such approaches can enable a continuous monitoring
of every service. Furthermore, it will allow checking if collaboration is respecting the initially
specified policies and if some anomalous activity occurs services can receive feedback from

41

the auditor to react.

Given the importance of securing the services provided to patients, it is of the utmost
importance to maintain a robust and tight accounting mechanism. Integrity of logs should
be maintained, with a clear identification of the user and the resources he used. Log privacy
is also an issue, since it records information that is potentially sensible. Moreover, the possi-
bility of service composition in SOA scenarios requires an integrating and secure accounting
mechanism.

2.5.4 Cryptography

As mentioned previously, privacy is mandatory in a secure architecture. It is ensured
through cryptography, a means to conceal the message from unauthorized parties. Cryp-
tography goes back many centuries. This term originated from the greek terms crypto, that
means hidden or secret, and graphy, that means writing. According to the etymology, it means
hidden writing or secret writing [96]. It can be seen as the usage and the study of methods
for achieving a secure communication in the presence of adversaries in a non-trusted chan-
nel. Different protocols were created to achieve information security, namely confidentially,
integrity and authentication [97].

Cryptography includes the encryption and decryption of information (Figure 2.16). Mak-
ing use of an algorithm and a secret key, information can be cyphered, therefore, enabling
its privacy which will be transmitted using an insecure channel. On the other end, using
the reverse algorithm and the secret key, the information can be deciphered. The security
of the data depends strongly on the secrecy of the key as well as on the algorithm. This
type of encryption is called symmetric key, since it uses the same key for both ends of the
communication channel. One of the main aspects is that the key has to be shared among
actors in a secure way.

Plain Tex

Encryption

Chipertext

Plain Tex

Encryption

Chipertext

Secret
Key

Pre-Shared over
secure channel

Unsecured Channel

Figure 2.16: Symmetric Cryptography

Usually, cryptography algorithms are block based or stream based. The block cypher

42

works using a fixed length group of bits. A common block has 128 bits which are converted
into 128 bits cyphered information by the algorithm. One of the most used algorithms is the
Advanced Encryption Standard (AES). It supports 128 bits blocks with keys of 128, 192 and
256 bits length. It was based on the Rijndael algorithm [98]. Other well known algorithms,
although less used nowadays, include the Data Encryption Standard (DES) and triple-DES
with single, double and triple keys [99].

Stream based cryptography is generally applied to bits instead of blocks. Algorithms can
be designed to be extremely fast, and produce cyphered text as the result of a combination
of a variable bit key with the plain text, usually using a XOR operation [100]. It requires a
key stream, independent of the plain text, before being used. Typically, a big, one time pad,
key is generated, with the same size of the plain text, and is normally used once. The use
of such solutions has perfect secrecy, but it also suffers from the problem of key distributing.
Solutions like code-books, shared by both parties through personal distribution methods, were
used during wartime. Others used extremely secure diplomatic channels. The distribution of
the keys makes their use unpractical [100]. One of the most used algorithms is RC4.

Cryptography is not only used for privacy. Another important application of cryptography
algorithms is in hash functions and Message Authentication Codes (MAC). Hash function are
one way functions that return a hash value or bit string calculated over a block of data. An
ideal hash function should not be able to restore the block data from the calculated hash
value, enabling the creation of a unique value for the data that can be used to check data
integrity. That unique value is also called a digital fingerprint. If data and fingerprint are sent
to a receiver, he can calculate the hash of the data received and compare to the fingerprint:
if it is equal the data was not corrupted.

Some algorithms are susceptible to attacks, such as the MD5 and SHA-1 that have been
proven to have collisions, allowing different data to have the same hash [101, 102]. This is, in
fact, vulnerable and these algorithms should not be used for signature purposes. The National
Institute of Standards and Technology has proposed alternatives such as the SHA-256, SHA-
384 SHA-512 [103].

MAC are typically used to authenticate messages, by creating a hash using a private key
and the message data. It generates a hash (the MAC) that is sent to the receiver together
with the message. The receiver authenticates the message by replicating the process.

Symmetric cryptography, although using computationally fast algorithms, has two main
problems. One is the key distribution problem and the other is validating the origin and the
validity of digital documents.

Asymmetric cryptography, also known as public-key cryptography emanates as an answer
to those challenges [104]. It involves two separated keys, in contrast with only one in the
symmetric cryptography, with consequences related to confidentiality, key distribution, and
authentication. A public-key encryption scheme has six ingredients [96]:

• Plaintext: readable message or data to be fed in the algorithm;

• Encryption Algorithm: that will perform transformations on the plaintext;

• Public and Private Keys: pair of selected keys – one is used for encryption the other
will be used for decryption;

• Cyphertext: scrambled output of the algorithm. It depends on the plaintext and the
key;

43

• Decryption Algorithm: uses the cyphertext and the matching key to produce the original
plaintext.

To start using asymmetric cryptography the user has to generate a pair of keys (public
and private keys). Then, he has to make the public key available to the other users, usually
by registering it in a public registry. The private key has to be protected and secure under
the user’s control.

For encryption, user A can send a private message to B by encrypting it with the public-
key of B. Then user B, and only him, can decrypt the message using his private-key.

For sending an authenticated message from A to B, the former generates a digest of the
messages and uses his private key to encrypt it. User B use A’s public-key to decipher the
digest and compare it with the independently computed digest for the message received. If
digests are the same, he is sure that the message came from A, since only he has his private-
key.

The two mechanisms described above are combined for confidentiality and message au-
thentication(Figure 2.17). A cyphers using his private-key a piece or the complete message
and then cyphers using B’s public-key. B deciphers using his private-key (confidentially, only
he can do it), and then deciphers using A’s public-key (message authentication, only A could
cyphered the message).

Plain Tex

Encryption
With A's

Private-key

Chipertext

Plain Tex

ChipertextUnsecured Channel

Actor A Actor B

Encryption
With B's Public-

Key

Decryption
With A's Public-

key

Decryption
With B's

Private-key

Message Authentication

Privacy

Figure 2.17: Public-Key Cryptography - Privacy and message authentication

The public-key crypto systems can be classified in three categories [96]:

44

• Encryption/Decryption: sender uses recipient’s public-key;

• Digital Signature: sender signs a message with is private-key. It can apply to all data
or to a portion (signing the result of an hash function over the message);

• Key exchange: two actors need to exchange a session key.

RSA and Diffie-Hellman are two of the most popular asymmetric cryptography algorithms.
The first was developed in 1977 by Ron Rivest, Adi Shamir and Len Adleman at MIT and
first published in 1978 [105]. Diffie-Hellman supports key exchange and the RSA supports
encryption/decryption, digital signature, and key exchange.

Public-key crypto systems have to respect some computational conditions. It should be
easy to compute the public/private keys pair; it should be easy to encrypt/decrypt using
the correct key; and the key directive for the algorithm is that it should be computationally
infeasible knowing the public-key to determine the correspondent private-key.

The use of public-key cryptography enables anyone to create his key pair and share the
public-key. However, making a public widely available does not guaranty that it really belongs
to the intended user – trust issues. The solution to the problem is public-key certificates.

A public key certificate consists of a public-key with a user ID of the key owner, and all
this block signed by a trusted third party. Normally, a trusted third party is a certificate
authority (CA), trusted by user community, a government agency, financial institutions or
other competent authority. The CA receives the public key of the actor in a secure way, vali-
dates the information contained in it and then signs it. When other users receive a certificate
they can check if the information is correct by checking the signature of the certificates. The
X509 standard defines the structure of these certificates, enabling the use of them on almost
all network security applications (IP security, secure socket layer, secure electronic transac-
tions, and S/MIME). They can be used for signing and cyphering, as well as authenticating
users [96].

Due to its role, CA is a component of a PKI. The PKI is responsible for all procedures
involving public key cryptography and enabling the use of digital signing and authentication
schemes. It should provide services for public-key binding, i.e. validate and signing the
actors’ public-keys [106]. It should support the revocation of certificates and procures to
verify revocation status of the certificates. The PKI has a revocation list where every revoked
certificate is announced, enabling services to automatically check the validity of a certificate.
The PKI is very expensive to maintain and the key point is the trust that the actors need to
have on the CA.

Countries are starting to issue digital identification cards that are based on a country
PKI. Identification cards have signed certificates by the country’s CA, inside a smart-card or
a crypto card. The countries maintain and support the cost of a PKI.

Digital signature schemes make use of certificates. These have expiration date, when the
time of storage and use if higher than the expiration date, the signature will be marked as
invalid. Thus, long time archiving for digital signing documents need to deal with this type
of challenges.

2.6 Summary

The bibliography analysis reveals good efforts to achieve an EHR that enables storing
clinical information generated by healthcare professionals within a healthcare network. Sev-

45

eral standards where proposed and are in place. Moreover, some create proprietary solutions
that augmented the heterogeneity of the systems and record formats that manipulate citizen’s
clinical data.

One of the big challenges that EHR systems and formats face is the constant evolution
of the requirements combined with the increased mobility of citizens and with health-care
providing liberalization that brought more players and procedures to citizens. Consequently
healthcare data was lead to become scattered among the diverse providers. The efforts of
integration and interoperability are being addressed by standards, but deployed in roughly
enclosed health care scenarios. Strict regulatory, ethic and legal issues have been hindering
the wide adoption of EHRs, contributing to delaying the establishment of a competitive mar-
ket where different providers could take full advantage of information exchange and regular
practitioners’ collaboration. Therefore, the creation of a real longitudinal lifelong healthcare
record demands the open collaboration between all healthcare providers and the patient him-
self. A collaborative approach seems to be the sustained way for achieving a real longitudinal
lifelong health record. Moreover, with the increasing awareness of medical subjects, patients
are demanding more control over their own personal data and active collaboration.

To cope with these new user requirements several Personal Health Record (PHR) solutions
have been developed which allow users to keep record of their own medical data. Examples of
such system are, for instance, Google Health [13], Microsoft HealthVault [13] and Dossia [13].
These web-based PHRs are mostly based on a central repository and on a set of core features
that, sometimes, can be extended by external third-party services.

The exchange and storage of health information are a major security challenge because
its disruption may compromise seriously personal privacy. Albeit legal constraints associated
with this type of data have been largely regulated [14], which imposes restricted rules on the
development of technical solutions. The Big Brother scenario emanates whenever centraliza-
tion is suggested, regardless of the guardian of the information being an enterprise or the
government, and this vision also slows down the adoption of any different solutions.

In the traditional approaches the patient cannot exercise full control of his record since
the providers are not only limited by patient authorization, but also depends of agreements
between the repository provider and the healthcare providers or other previous agreement to
enter on the network or federation. Also, information clinically related, but not strictly clini-
cal, is not normally stored on the record. The record can be improved with more information
that in the future can become important for new procedures or correlation.

To be effective the collaboration needs to open, secure, and support future evolutions.
In the following chapter a solution is proposed to achieve a secure solution for an open
collaboration between all the actors. The collaboration is only limited by the policy defined
by each citizen; the specification uses open standards to provide a manufacture independent
solution, giving the patient the freedom to choose healthcare and repository providers and to
the providers to develop their services to manipulate patient information.

46

Chapter 3

Enabling Secure Collaboration

In the background section we have raised several challenges in several directions, but the
big question is still how can we build and deploy electronic health records systems that can
cope with mobility? First, the dispersion of data among all actors is a challenge. Second, the
increasing supply of healthcare providers and new types of providers and procedures makes
it more complicated to have systems enabling access to information when needed. In fact,
traditional systems and solutions cannot cope with the requirements of nowadays healthcare
provision. Considering the analysis made, we have identified that mobility is a specific problem
caused by the lack of an open and secure way of collaboration between all actors, including
the patient. Therefore, this work proposes a solution to enable this collaboration.

This chapter lists the requirements of a secure solution for open collaboration between all
the actors related to the provision of healthcare services, limited only by the policy defined
by the citizen. Using open standards to provide a manufacturer-independent solution, we
advocate that this will enable the creation and use of a true lifelong electronic health record.

The solution should provide a way to allow information produced by clinical staff, patients
and others to coexist in the same record, without questioning the integrity of the information.
This solution is based on combining electronic health records and personal health records.

Electronic health records provide a trustworthy clinical record with high integrity of in-
formation. The personal health record brings patient empowerment, controlling access to
his repository, allowing the patient to annotate and create his/her own information. It also
enables non-clinical actors to complement and produce information that can be used in future
care, such as sports monitoring, remote monitoring, patient daily log and others (Section 3.1).

To allow truly open collaboration, the solution should employ the most common technol-
ogy used in industry to promote the development of new services. On the other hand, those
services can also contribute by providing new data format and interoperability methods which
can foster innovative uses for the available information. To achieve this goal, open standards
should be used whenever possible.

Access control requirements are related to any provider’s ability to access patient records,
when properly authorized by the patient. Thus, one problem is how to balance the require-
ments of openness and trust. As seen in the background analysis, digital identification cards
could be used for secure authentication.

With such an open and collaborative environment the solution should also enable services
for monitoring the correct use of all components. Services should enable accounting especially
with auditing facilities. Enabling the verification of correct enforcement by the systems of

47

the access policies and correct execution of all system components.

The patient should be free to manage his access policies. Managing privileges in such
a dynamic context can sometimes be a difficult task. Policies need to be effective with the
possibility of applying them in a way that patients understand what they are deciding. The
aim of this proposal is to create an architecture that copes well with security concerns related
to data integrity and privacy, but which, at the same time, should be based on open standards
to enable open collaboration. The architecture is presented in Section 3.2.

3.1 Hybrid Electronic Health Records

This section introduces the concepts behind the hybrid Electronic Health Record (hEHR)
and how it can contribute to solve some of the challenges, namely the ability of collaboration
from all actors.

The hEHR tries to combine features of the EHR and PHR. It can be described as a
collaborative record, a service on behalf of the user. Data can be created by the patient
and all actors that interact with him, and the access policy is defined and controlled by the
patient.

The hEHR is based on a centralized repository, trusted by the patient, to store his contri-
butions. The collaboration is illustrated in Figure 3.1, where the different actors contributing
to the creation of the patient longitudinal patient-centric EHR can be seen. Actors who can
contribute to and make use of a patient record are diverse and dispersed in a worldwide sce-
nario of mobility. They include the patient, clinical professionals in a healthcare institution
and private practice. Also research services, alternative medicine actors, complementary ser-
vices and others can benefit from the collaboration. Hence, they contribute to achieving a
richer and more complete lifelong healthcare record.

hEHR

Patient
Centered
Services

Research
Services

Other
Services

Laboratory

Alternative
Medicine
Center

Other LocationsPatient
Station

Health
Professional

Private Practice

Hospital Center

Figure 3.1: hEHR actors’

The patient can control other actors’ access through his station, where he can also make

48

contributions to his record. The healthcare provider in a healthcare facility such as hospi-
tals, laboratories and other medical centers can contribute by exporting reports from their
systems or by using external services that create the reports. All actors can make use of the
contribution when previously authorized by the patient. New services can manipulate the
information as patient centered services, e.g.:

• prescription alarms or other treatment alarms;

• research services which can be used by researchers when authorized by the patient;

• other new services which can bring added value to the use of patients’ clinical informa-
tion.

The patient will be empowered, since he can control who can access and how to access his
medical information. Simultaneously, he can easily give actors in the healthcare or similar
area access to his information, thus enabling the deployment of new services that can make
use of that information. Each new producer or consumer that wants to gain access to the
patient EHR needs only patient authorization. The clinical integrity of contributions can be
confirmed, increasing healthcare professionals’ trust in the system.

3.1.1 Document Format

As debated in Section 2.2, some available document standards include EHRcom, HL7
CDA, OpenEHR and the DICOM Structured Report. All of them enable the storage of
structured documents and the document is the basic unit, but the EHRcom and OpenEHR
also enable the aggregation of diverse documents in one composition. Multimedia and ref-
erence to multimedia is supported by all the discussed standards. Besides, all make use of
two level modeling, with some differences; the EHRcom and OpenEHR use archetypes while
the others use templates. This is the difference of how each one enforces constrains. Con-
strains on the generic model in HL7 is made generating more constrained Redefined Message
Information Model and Common Message Element Types with further constrains from HL7
templates. On OpenEHR constrains are enforced in archetypes, and a set of archetypes for
a specific data collection can be aggregated using templates [107]. Only the DICOM has
a pre-defined library of possible objects. Control of distribution rules can be made in the
EHRcom and OpenEHR, while the others lack this functionality [8].

Another important aspect is that many of the formats support serialization to an XML
document. The use of XML enables data to be manipulated with common tools and allows
document structure to be stored in the same file as the data. The type of format of the records
is transparent, and producers and consumers have to agree on a common format to be able to
collaborate in creating the full EHR record. If not, they must support export/import to/from
one common format, enabling a common understandable format to exist in the repository.

In our approach, actors’ contributions will be stored as serialized in XML documents.
The structure of the record can give information about the type of contribution existing in
the record. Even if the data is ciphered, access to the structure gives information about the
saved information. Especially, in cases that use a specific template for saving a result of a lab
test or medical procedure can reveal that the patient made that test or procedure. Hence,
with some mining over the structure of the full record, guesses about pathologies and chronic
diseases can be made. In order to mitigate these risks, the XML documents will be cyphered

49

to provide data and record structure privacy, ensuring that the structure does not disclose
information about the kind of information existing in a patient record.

The intention of OpenEHR project to enable collaboration in the creation and validation
of archetypes could allow OpenEHR archetypes to be common in different systems and work
as a common format to share information. Also, new archetypes for OpenEHR can be created
as new services or care providers can manipulate their information in an OpenEHR repository.

The OpenEHR can deal automatically with this serialization, and then common XML
APIs can deal with documents which will be in transit. Therefore, the manipulation of this
information will be accessible to a wider group of solution providers. Use of the OpenEHR will
also enable new requirements for any group of providers to be answered, as they can develop
new archetypes in collaboration and share them with all participants. This is already done
in clinical archetypes. A repository exists which all users can contribute to and use. Thus,
this philosophy can be extrapolated to new groups of providers with different requirements.

The OpenEHR format will also enable classification of the information directly on the
document itself, since it has a header for dealing with security constraints and information
classification. This classification will require the proposal of an expedite solution for access
management by the patient.

For those reasons and also the openness of the OpenEHR project itself, the proposed solu-
tion contemplates the OpenEHR as a document format for all actors. Almost all components
of the architecture will deal with a bulk of XML data, enabling other formats to be deployed
with few changes.

The future of the hEHR depends on the openness, trust and security of the architecture
that will support the required functionalities. The next subsections will describe in detail
how actors are expected to collaborate and how the citizen will manage their collaboration
regarding his record.

3.1.2 Collaboration between Actors

Collaboration between actors is carried out by uploading contributions (Figure 3.2), and
by accessing to a view of the information in the repository (Figure 3.3). Both actions are
decided by the patient according to the Patient Access Policy.

In the process of creating information on a collaborative record, the different actors men-
tioned in Figure 3.1 can have a system that is able to generate a report based on OpenEHR
archetypes or not. In cases where systems do not support them, external services with that
functionality should be used. The archetypes for generation of the summary should also be
available in a collaborative repository. After generation of the OpenEHR based report, it
should be signed by the actor. Then he requests to submit the report to the patient repos-
itory. If the actor has submission privileges, the repository will store the report ending the
process with success. Otherwise, the actor will be warned of the failure of the submission pro-
cess based on the lack of privileges. The process of using the information from the repository
is shown in Figure 3.3. External services for retrieving and displaying the information should
exist for users who do not have a system that supports information retrieval in OpenEHR
format. Systems that support it can access directly.

Whatever the method, the privileges of the requesting user are verified against the patient’s
access policy. If the actor cannot access the record, the procedure will warn the user of failure.
If the user has privileges, then the system lets him choose if he wants to retrieve the full record
or some subsets based on a query. All the sub-processes of querying and retrieving results

50

Generate Signed Report

Request Submission

Store on Repository

Warn Actor

OpenEHR Archetypes Repository

External Service

Generate Signed Report

Patient's Access Policy

End

Has Prvileges?

OpenEHR Archetypes Repository
Has Capable System ?

Start

UsesCreated New Info

Uses

Failure No

Success

Yes

Yes

Figure 3.2: Actors Creating Information

Use External Service

Make Query

Retrieve Full Record

Retrieve Results

Warn Actor

Has Privileges?

End
Patient's Access Policy

Needs Quey or Full Record

Has Capable System ?
Start

Fail

Sucess

Sucess

Yes

No

Yes Full

Query

No

Needs Information

Figure 3.3: Actors Accessing Information

and retrieving the full record apply the patient’s access policy, thus enabling more controlled
access to the patient record and also restraining the actor from querying the full record. He
will always work on the view granted by the access policy.

3.1.3 Managing Collaboration

To enable open collaboration, access is only dependent on the choice of the patient and the
providing actor. Each new actor must self-enroll in the system by creating an account. This
enables the system to authenticate providers and allows creation of a yellow pages service.
The process is explained in Figure 3.4.

51

Generate Keys

Certificate

Certificate Authority

Certificate Signing

Request a Provider Record
Extract Info From certificate

Prompt More

Information

Check Signing

Broker

Register Service

End

Actor Has Valid Certificate?
Start

Yes

Receive Signed Certificate

Send Certificate

No

Figure 3.4: New Provider

To ensure trust in the system, the user should have a valid certificate, signed by a trusted
external Certificate Authority (CA). If there is no valid certificate, the actor will generate a
key pair and send his public-key with identification information to be validated by the CA.
Then, the CA generates and signs a valid certificate for the actor. With a valid certificate, the
actor must create and sign a service description which identifies the services that the actor
provides along with an address and other important information. Then the actor should
register the service description on the registry service, which validates the signing.

The patient should also create an account in order to gain access to the infrastructure.
The process is shown in Figure 3.5.

Generate Keys

Certificate

Certificate Authority

Certificate Signing

Request a Patient Record Extract Info From certificate

Prompt More Information
Configure Repository Credentials

Initialize Access Policy

Sign Using Patient Certificate

Full Patient Access

Patient Has Valid Certificate?

End

Start

Yes

No

Receive Signed Certificate

Send Certificate

Figure 3.5: New Patient

52

If the patient does not have a valid certificate, he should ask for it to be generated and
signed by a trusted external Certificate Authority (CA). The following step is to use that
certificate to request a Virtual Health Card. First, the information needed to create the
card is extracted from the certificate. That information will enable reliable authentication of
the user and trust in his identity. Then the patient is asked for more personal information,
still without privileges for changing information extracted from the certificate. Next, the
repository associated with his record needs to be configured. In this step, the patient will
provide information that is needed to gain access to the repository to be stored in his Virtual
Health Card. Another important component of the Virtual Health Card is the access policy,
and this policy will control access to the patient’s Hybrid Electronic Health Record. The final
step in creating the Virtual Health Card is initiating the policy. The policy is initiated to
grant the patient full access to his data, followed by signing of the policy using the patient
certificate.

The aforementioned process enables patients and providers to use the infrastructure. To
allow collaboration between them, the patient should manage his policy, with the patient
having full control over what information can be retrieved from his health record and who
can retrieve it. One of the challenges is related to fine grain policies, because managing those
rules is a complex and arduous procedure for the patient. Therefore, to enable the use of fine
grain policies and reduce the patient’s workload, the access control is based on functional roles
extended from the standard EN 13606-4 [10], as presented in Subsection 2.5.2. Therefore,
the patient chooses roles that are more suitable to the provider. Then, using the mapping
between the functional roles and the sensitivity of the information, the system will grant
access to the information. To extend the creation of more restrained access, the patient can
create groups for aggregating providers, thus enabling collaboration between those providers
in a more contained access. The access control mechanism will be described in more detail in
the architecture section.

Figure 3.6 explains access policy management by the patient. The creation process is
triggered either by the patient or by the provider. When triggered by the patient, he searches
on the Broker for the Provider and gets the provider’s identification. When triggered by
the provider, the patient will receive a request from the provider and get the provider’s
identification. With the provider’s identification, the patient can choose the roles of the
provider or groups, or both. The functional roles are common to all patients, while the
patient groups are private. In the next step, the patient chooses how long he wants to give
access to the provider. Finally, the patient uses his certificate to sign the created policy to
enable future validation.

The patient can also remove policy rules and list them. The removal process will not delete
the policy, but will update the field that stores how long the policy is enabled to zero. The
operation of updating a policy is not contemplated. This procedure is made in two atomic
steps, first removing the old policy, using the previous present removal process, followed by
the creation of a new one. For supporting the hEHR presented, an adequate architecture that
copes with the requirements will presented in detail in the following section.

3.2 Architecture

This section describes an architecture that can support the previously presented require-
ments of the hEHR. The architecture enables openness and ensures secure collaboration con-

53

Broker

Search Provider

Search Request

Remove Access

Choose Roles

Associate Group

Choose TTL

Certificate

Sign Policy

List Policy

Patient Goups

Functional Roles

End

Type of Procedure
Start

Uses

Uses

List

Remove

Provider Triggered

Patient Triggered

Figure 3.6: Managing the Access Policy

trolled by the patient. The solution mimics the behavior of a safe deposit box inside a bank
and a proxy that will manage the information inside the safe deposit. The citizen will allow
the proxy to deposit and withdraw information from the safe deposit to answer the needs of
third parties previously approved by the citizen.

To ensure data protection, the safe will have small safes inside and the keys to them will
be stored in another secure place. The information will not be visible to the bank. So if a
requester needs to access the information, he will ask the citizen’s proxy to provide the data.
He will also give his representative an open safe that only the requester can open. The proxy,
after consulting the policy for the requester will act accordingly. If accepted he goes to the
bank and takes the small deposits that contain the information needed to the secure place
with the keys to open the small safes. In that place, the citizen’s safes are opened, information
will be filtered according to the requester’s policy and stored inside the requester’s safe. The
proxy will deliver the requester’s safe to the requester himself. This approach means that the
bank and the proxy cannot view inside the safes, the proxy can manage the safes but cannot
open them. Also, the secure key deposit needs the proxy to gain access to the data as it
cannot get the safe deposits. Figure 3.7 reproduces an overview of the actors and services of
the architecture.

Using the previous analogy, the Virtual Health Card Service (VHCS)) is the secure key
deposit, the Broker is the proxy and the Repository is the bank. Separation of the component
that has the keys (the VHCS) and the one that has access to the Repository (the Broker)
requires the agreement of two different components to give access consent. The Indexer will
enable query and selective retrieval to or from the Repository. Also, an auxiliary service for
accounting is used to store auditing information about requests to all the components of the
architecture. The creation and use of information is through the Broker for all actors, patient
and providers. The infrastructure deals with very critical information. Integrity and privacy
are very important and to cope with these requirements the information is cyphered, as shown
in Figure 3.8.

54

Accounter

Creates / Uses Information

Provider / Provider Service

RepositoryBroker

IndexerVHCS

Manages

Patient

Figure 3.7: Architecture Overview

Accounter

Repository

Indexer

Broker

VHCS

User / Service

Figure 3.8: Communication and Data Store Privacy

The main idea is that information is patient-owned, so it is cyphered with the patient
VHCS public-key. The patient record will be created by the contributions of each actor
uploaded to the repository. In it, all contributions are stored individually cyphered to the
patient public-key and signed by the producer. In the retrieval process those contributions
will be reassembled to create a unique bulk of data. The information in transit is always

55

cyphered. Besides, two components of the VHCS manipulate the information in plain text,
all other components using information in a closed envelope concept.

In the store procedure, the information is cyphered to the public-key of the patient before
leaving user system. On retrieval, it is ciphered to the receiver before leaving the VHCS.
The information related to indexing data of contributions deposited are also cyphered on the
indexer (using the patient public-key) and the query matching will be made on the VHCS.

The Broker is the only service that can contact directly with the repository, acting as a
middleman between the users and services that need access to the repository. It validates
requesters and fulfils their requests using VHCS functionalities as needed. To ensure that
the Broker is the component interacting with the Repository, bulks of data are also cyphered
with the Broker’s key. Therefore, the retrieval of information from the Repository requires
the agreement of both the VHCS and the Broker.

The VHCS is responsible for storing the patient’s credentials (public and private key),
patient repository links, the correspondent repository credentials and the access control policy
for the patient’s information. VHCS provides functions and an interface that the Broker can
request.

The Repository is a simple storage service that enables a service to request to store or
retrieve a bulk of data associated with a specific identifier. The identifier is unique in each
repository and associates the information stored with a specific patient.

All these components will push auditing logs to the Accounter component, thus enabling
future checks and continuous auditing of services. The only component that can access those
logs is the VHCS, because all the produced auditing will be cyphered with the patient public-
key.

This approach will make great use of public-key cryptography. Therefore, the confidence
between the components of the architecture and confidence between the patient and provider
services will be ensured using Certificate Authorities.

The modeling of the architecture follows a Service Oriented Architecture (SOA), resorting
to web services for the communication of components, thus making it suitable for future
deployment in cloud-like services

Generally, management functions are carried out by the Patient using the VHCS, where
he can manage repositories, his virtual health card and the access policy. The VHCS also has
components to support the manipulation of patient data and support the other components.

The Indexer provides indexing capabilities for enabling query of data that is stored
cyphered in the Repository. The Broker is responsible for managing the accounts for users
who want to have access to patient information. It also works as a registry service, en-
abling patients to search for providers. It also provides request and store functions to every
authorized actor.

The Repository has functions to allow the Broker to retrieve and store a specific contri-
bution.

The Accounter provides Store Auditing Log to all components and Retrieve Auditing Log
to the VHCS. In the next subsections, these components will be described in more detail.

3.2.1 Virtual Health Card Service

The purpose of the VHCS is to provide a service where the patient can store his credentials,
which will be used inside the system, together with repository and access policies (Figure 3.9).
This enables the disassociation of credentials that patients use to access the system from the

56

credentials used in the system. This will solve problems related to lost tokens, revalidation
of credentials, and provide easier and secure procedures of information backup.

VHCS

Repository Management

Manage VHC

Access Control

Cryptographic Component

Patient Credentials

Manage Access

Policy

Broker Interface

Manage Repositories

Reassembler

Policy

Management

Crytographic Functionality

Patient Credentials

Management

Repository

Credentials

Management

BrokerServices

EHR reassembler

Patient

Uses

Uses

Uses

Uses

Uses

Uses

Uses
Uses

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.9: VHCS Overview

All the management information about a patient’s health record is centralized, like the
systems studied using smart cards. However, this approach allows services to access this
information without the need for a physical card to be present. Moreover, this allows separa-
tion of the patient’s demographic information from the EHR repository, because the Virtual
Health Card will store the demographic information.

The VHCS is the only service that will be able to manipulate the information in plain
text and take care of most of the cyphering process. Therefore, it provides more components
than the ones used to manipulate the Virtual Health Card. It provides a cryptographic and
signature validation of the information. Also, a reassembler component will be responsible

57

for gathering all the individual collaborations in just one bulk of data. Finally, it provides a
broker interface to allow other services to communicate with the VHCS.

The service allows the disassociation of the credentials used in the architecture from the
credentials used by the patient to authenticate himself in the architecture. Thus, it facilitates
problems when the credentials used for patient authentication are compromised, as a new
credential can be issued and associated with the correspondent Virtual Health Card. Also,
when the internal credentials are compromised, the architecture can generate new ones and
update the stored information to use the new credentials, without the need to re-issue a new
certificate for the patient. Changes of credentials will be stored in a patient history log to
enable future validation of data created or signed by revoked credentials.

One important aspect is trust and management of patient enrolment in the Virtual Health
Card Service. The requirement of openness will foster the usage of a simple solution to self-
enrol patients in the system. To establish trust, it is proposed that the patient will use
his electronic identification card. Those cards are being currently implemented in various
European countries and most have certificates signed by a government Certificate Authority.
Therefore, the Virtual Health Card Service will rely on countries’ Certificate Authorities to
validate the certificates provided by patients and as such guarantee the identity of all patients.
For situations when countries do not have a PKI in place, specific Certificate Authorities can
be used. A new patient is registered by creating a new virtual health card, as follows:

• Authentication of the patient using his electronic identification card;

• Extraction of information from the card;

• Querying the user for complementary information:

– Demographic Information;

– Repository Information.

• Generation of the internal keys;

• Storing all the information;

• Initialize policy for enabling patient to access his record.

The service needs a database back-end to enable persistence of this information, and its
structure is presented in Figure 3.10.

The database’s back-end is used for storing demographics information about the patient,
together with information for patient authentication, repository access and patient access
policy. When necessary, this structure can evolve to store more information, especially de-
mographic one in the demographic table. The Table tokens are responsible for aggregating
information to associate the patient with the token used for authentication. The table inter-
nal tokens, stores information and the internal tokens for the patient used in the architecture.
The repository table stores information for access to the patient repository. The tables groups,
group provider and policy are used for patients’ access policy management.

The authentication method is solid, since the electronic identification card asks the patient
to insert the PIN to unlock the certificate to enable authentication. Then the challenge issued
by the service verifies that if the certificate is valid, checking the signature of the trusted Cer-
tificate Authority. The unique identifier for each patient is the Distinguished Name (DN) of

58

Figure 3.10: VHCS Data Model

the certificate. The structure of this DN can allow the system to check some of the information
on the database. For instance, using the Portuguese citizen’s card the DN has the following
structure: CN=Full Name, SERIALNUMBER=Identification Number, GIVENNAME=First
Name, SURNAME=Surnames, OU= Cidadão Português, OU = Autenticação de Cidadão,
O = Cartão de Cidadão, C=PT.

This DN validates the citizen’s identification number by checking the SERIALNUMBER
field. The public keys are also extracted and stored on the database (on table tokens) to
enable validation of signatures and to cypher information whenever the recipient is the pa-
tient. Then, demographic information is requested from the patient (demographic table), the
requested information is concatenated and signed using the certificate. The result is stored
on the Hash field of the demographic table. Then the private and public keys are created
in order to be used in the architecture (stored in table internal tokens). Those keys will be
used for ciphering/deciphering the information that will be stored in the Repository. The
cryptographic component is responsible for manipulating those keys securely and it ensures
that the private key never leaves the VHCS.

After this comes the process of configuring the repository to be used for storing the health
data. It will store a uniform resource identifier to request retrieving and storing of data from
the repository and the credentials to access the repository, this information is stored in the
repository table. The Repository component will be detailed in Subsection 3.2.4.

The tokens used for patient authentication and internal tokens used on the architecture
will eventually need to be revoked and new ones need to be associated. Hence, the tables
internal tokens and tokens store two dates associated with the token activation date, field
ActivatedDate and the revocation date on the RevokedDate field. Those fields will ensure
the systems keeps the history of all the credentials associated with a patient over time thus
enabling future validation of operations even after the token has been revoked.

Patient authentication is based on the token associated with the virtual health card. The

59

Algorithm used to validate patient authentication is described in Algorithm 1.

Algorithm 1 Patient Authentication

1: function PatientAuthentication . Authenticates Patient Using DN form Token
2: TokenDN ← ChallengePatient(Token) . Challenges the patient to authenticate with the token
3: if TokenDN then
4: TokenID ← Token.getID(TokenDN) . Gets the Token ID if token is activated and non revoked
5: if TokenID then

return Success
6: else

return Fail
7: end if
8: else

return Fail
9: end if
10: end function

After creating an account, the patient can authenticate using the token previously as-
sociated with the virtual health card. Normally, a PIN will be requested from the user to
gain access to the internal token certificate, enabling a response to the server challenge. The
certificate will be validated, checking if the Certification Authority is recognized by the archi-
tecture and the challenge is successful (line two of Algorithm 1). Then the system will check
if that token is valid for that patient checking the association dates. First, it checks if the
time-stamp of the authentication request is after the ActivatedDate and then if the token is
still active (if there is not a revoke date, or the revoke date is later than the time-stamp of
the request). If it is valid, the authentication method returns success, and if not, it fails.

The patient can decide the access privileges to his repository. Through the access control
component, they store the policies the patient defines for other users and services. To enable
easier and comprehensive management for the patient, the component uses role-based access
control which also enables the use of dynamic groups, allowing the patient to control more
specific scenarios of sharing.

The coexistence of clinical and non-clinical actors with access to the repository, combined
with a common space for clinical and non-clinical information, brings challenges to the access
control mechanisms. The idea is to make use of the standard EN 13606-4 [10] with some
modifications. The clinical data will use the sensitivity level with the functional roles. A new
role is proposed – uploader – to be associated with actors that can only upload information to
the patient repository. The roles that the patient can optionally choose are the ones specified
on the standard 13606-4 [10], extended with the uploader as in Table 3.1. The field Code will
be used for correlating the role with the sensitivity level of the information.

This approach enables the patient to use a more granular control. The process is also fa-
cilitated by the association of roles that he understands. By using those roles the architecture
maintains coherence with the information systems of the clinical providers. This means the
information can be classified on the side of the provider by using the same classification of
the information based on the sensitivity values of the standard, as explained in Table 3.2.

The information about roles, level of sensitivity and the matching privileges are common
to all users and this is saved in the access control component. Moreover, each patient will
define a policy that associates their providers with the roles that best cope with the type of
healthcare service they provide.

The patient could also allow actors to collaborate in a more delimitated group. In this
approach, the service allows the patient to manage groups by aggregating actors. Hence, this
approach can complement the use of roles and cope with collaboration of non-clinical actors,

60

Table 3.1: Roles - Adapted [10]

Roles Code Functional Role Brief Description

7 Subject of care Principal data subject of the EHR
6 Subject of care agent e.g., parent, guardian, carer or other le-

gal representative
5 Personal healthcare professional Healthcare professionals that are closest

to the patient
4 Privileged healthcare professional Nominated by the subject of care OR

nominated by the healthcare facility
3 Healthcare professional Party involved in providing direct care

to the patient
2 Health-related professional Party indirectly involved in patient

care, teaching, research
1 Administrator Any other parties supporting service

provision to the patient
0 Uploader Actor that only creates information on

the patient repository

Table 3.2: Values of Sensitivity for each Record Component [10]

Sensitivity level Data Sensitivity value Description of intended access

5 Personal care Patient himself and one or two other people
trusted by him

4 Privileged care A very small group caring intimately care to
the patient

3 Clinical care Default for normal clinical care access
2 Clinical management Wider range of personnel not all of whom

are actively caring for the patient
1 Care management Wide range of administrative staff

61

and complementary and alternative medicine providers. For each group the patient should
define also the sensitivity level of the information that will be created by group members,
storing it in the Sensitivity Level. It will also enable actors not belonging to the group to
access the information if they have a role that has access to that sensitivity level.

Hence, each patient can define his groups using Table 3.3 and associate actors with groups
and roles. An example of such an association is depicted in Table 3.4.

Table 3.3: Patient Groups

TimeStamp PatientID GroupIDGroupName Description Sensitivity
Level

Hash

2011-
05-22
14:42:11

Patient1DN 1 Sportactors Group for
actors related
with sports
care providing

3 9bd4ee14b
f46005e542
44b7b03f6e
806a164f993

. .

To allow patients to create groups, they need to store them in Table 3.3. In fact, this
allows the collaboration of a group of actors, not based on their role but only considering if
they belong to the sharing group. Each new group is represented by a new line inserted in the
table. Each line is signed using the patient authentication token and the result is stored in
the Hash field, therefore enabling future validation of the groups created. In this way, groups
not created by the patient can be detected.

Table 3.4: Patient Policy

TimeStamp PatientID ActorID Roles Groups TTL Hash

2011-05-28 14:42:11 PatientDN1 ActorDN6 3 1 48 8efb19e557a357eaf
97c318f2b624279b4
e723ab

2011-05-28 14:45:20 PatientDN1 ActorDN73 5 -1 c231e1634cdd66545
5a75e99d926f11f54
7a26ba

2011-05-28 14:50:20 PatientDN1 ActorDN32 0 -1 676959920c5ba5529
fa58ff3af6cc38a73
0b1f6f

2011-05-30 11:35:12 PatientDN1 ActorDN24 1 -1 3cbb3028872dc1c5e
b003a36a4a08a7f71
3e2f04

In Table 3.4, each patient can define the access policy for his records. Each policy entry is
identified by the combination of the patient’s distinguished name and the actor’s distinguished
name. The patient has the option of associating the actor with a specific role, based on
Table 3.1 He can also decide to associate the actor with groups defined by him, in Table 3.3.

62

The patient can decide if the policy has a time limit (TTL, in hours) or if it is valid until
he decides to revoke it (TTL=-1). Using the same principle of the patient groups table, the
information created by the patient is signed. In the Hash field, the result of the signature of
the inserted data is stored using the patient authentication token.

A proactive procedure can be executed to check the integrity of the information in those
tables. The workflow for checking the correctness of the information is delineated in Algo-
rithm 2. All the fields of data to be validated are concatenated except the Stored Hash.

Algorithm 2 Check Signature

1: function CheckSignature(DataToValidate, StoredHash, StoreTimeStamp)
. Validates the data inserted (DataToValidate), comparing the StoredHash and the StoreTimeStamp

2: PatientDN ← ExtractPatientDN(DataToV alidate)
3: PubCert← GetPubCert(PatientDN, StoreT imeStamp)
4: Hash← GenHash(DataToV alidade, PubCert)
5: if Hash == StoredHash then

return Success
6: else

return Fail
7: end if
8: end function
9: function GetPubCert(PatientDN, StoreTimeStamp)

. Get the public key associated to the private on the token used during the creation of the information
10: CodPatient← SelectCodPatientByDN(PatientDN) . Uses Demographic table
11: PubCert← SelectPublicSignByCodANDTime(CodPatient, StoreT imeStamp). Uses tokens, to retrieve the

public key valid for the CodPatient where the StoreTimeStamp is between ActivatedDate and RevokedDate
return PubCert

12: end function

The information in those tables is used to control access to the repository. To validate
requests, the system uses Algorithm 3.

Algorithm 3 Check Policy

1: function CheckPolicy(actorDN, patientDN, operation, dataHeader) . Verifies access for an operation requested
by an actor to patient data using information from its header

2: groups← GetGroupsForProvider(actorDN, patientDN) . Get list of actor’s groups for the patient
3: roles← GetRolesForProvider(actorDN, patientDN) . Get list of actor’s roles for the patient
4: if operation == Store then
5: if roles.code id ≥ Uploader.Code id then . Using the roles of table 3.1

return Grant
6: else if actorDN == groups then . If actor belongs to a patient group, on table 3.4

return Grant
7: else

return Deny
8: end if
9: else if operation == Retrieve then
10: sensitivity level← GetDataSensitivity(dataHeader)
11: group of creator ← GetCreatorGroup(dataHeader)
12: if roles.code ≥ sensitivity level then . Or apply an query to the mapping table between sensitivity and

roles
return Grant

13: else if group of creator == groups then . Check if requester belongs to the same patient group of the
producer

return Grant
14: end if
15: else

return Deny
16: end if
17: end function

The VHCS have three more components; the cryptographic component, the reassembler

63

and the broker interface.
The cryptography component performs all the encryption and decryption of the bulks of

data. It means the private keys never leave the VHCS and the unprotected information is
only temporarily processed in this component (and in the reassembler during the retrieval
process).

The reassembler component provides a way to aggregate all individual contributions when
a user asks to receive several or all contributions in the repository. During this phase, the
access control policies can be applied to discard information that the requesting user does not
have access to.

The broker interface component enables the Broker to request functions from the VHCS.
It allows the Broker to check the access policy, to know what Repository to contact to receive
or to store the information, the methods and the credentials. It also enables the Broker
to request the patient’s public key and request ciphering or deciphering of data through
the Cryptography component using that key. Moreover, another important function of the
Cryptographic component is the ability to receive ciphered data from the patient key and the
receiving actor’s public key, for deciphering the information and ciphering it to the receiver.
Summarizing, the broker interface deals with requests from the Broker component, with the
most important services provided being:

• CheckPolicy(PatientDN, ActorDN, Operation) This method is invoked when the broker
needs to check if an Actor has access to perform the Operation (Store or Retrieve)
requested for a specific Patient.

• GetPatientPubIntKey(PatientDN, ActorDN) This method is used when the broker
needs to receive the associated patient Public Key to forward it to a specific Actor.
This is used for enabling the actor to cipher the data to the patient before sending it to
the broker and also for ciphering queries.

• GetRepositoryInfo(PatientDN, ActorDN) This method is used when the broker needs
to gain access to a patient repository to perform actions requested by a specific actor. It
will return the information necessary for enabling the broker to make use of the patient
repository.

• CypherDataFor(Data,PatientDN,ActorToDN,ActorToPublicKey) This method is used
when the Broker retrieves data from the repository and needs to reassemble it to send
to a specific actor. The data is sent to the VHCS, which is able to decipher it using
the patient internal private key. Then it reassembles all the bulks to which the Actor
has access, and will cypher the result using the Actor Public key, send it back to the
Broker to be forwarded to the requester.

• Query(CypheredQuery, PatientDN, ActorDN) This method is used when actors want to
receive only data that match a specific query. The actor sends the Broker the cyphered
query using the key returned by the GetPatientPubIntKey method. Then the Broker
requests the VHCS to query a specific Patient, as explained in detail in Algorithm 4.

• AuthenticatePatient(PatientDN) This method is used when the Broker needs to au-
thenticate a user that is a patient, requesting the VHCS to carry out authentication. If
this is successful, the PatientDN is extracted and used for querying the VHCS if that
token is valid.

64

• StoreIndexer(PatientDN, ActorID, BulkID, Sensitivity, CypheredHeader) This method
is used when the Broker stores new information, depositing a cypheredHeader with
information to be used for querying about a specific patient by an actor. It also receives
the sensitivity level of the information, the bulkID in the repository for direct retrieval
and the actorID of the creator of the information. Before invoking the method on the
Indexer, Indexer.Store(PatientID, ActorID, BulkID, Sensitivity, CypheredHeader), the
PatientDN is converted to his PatientID.

The query methods explained in Algorithm 4 enable the Broker to retrieve the bulkIDs
from the Repository that match a specific query made by an actor.

Algorithm 4 VHCS Query

1: function Query(CypheredQuery, PatientDN, ActorID) . Queries patient’s repository metadata for an actor
2: patientID ← Patient.getID(PatientDN) . Converts PatientDN to his ID
3: ActorsSameGroupsofRequester ← GetActorOnSameGroups(ActorID, PatientID) . Returns the

ActorsIDs that belongs to the same groups that the ActorID
4: ActorRoleCode← GetActorRoleCodeForPatient(ActorID, PatientID) . Gets the code associated top the

role that the patient defined to the Actor on the patient policy
5: temptable← IndexerRetrieve(PatientID,ActorsSameGroupsofRequester,ActorRoleCode,ActorID)
6: patientIntprivatekey ← GetPrivateIntKey](patientID)
7: query ← Decypher(CypheredQuery, CypheredQuery) . Decipher the query using the patient internal private

key
8: resultset← SelectBulkIDWhereMetadata(query) . Get the bulks identifiers where the metadata matches

the actor query
return results . Returns the metadata to the Broker

9: end function

3.2.2 Broker

The Broker components are directly related to actions that other users or services perform
over the patient repository. The main functions are associated with registry, storing and
retrieving information, as shown in Figure 3.11.

Registry

Request Data

Store Data

Broker

User/Service

Figure 3.11: Broker Overview

The registry component is bound to user management. This component enables user
registration and searching, and authenticates all actors that want access to a patient record,

65

even patient access through the Broker to store or retrieve information from his repository.
The patient only accesses the VHCS for management purposes. When the patient accesses
the Broker, the authentication process is forwarded to the VHCS. Therefore, the creation of
a new patient and re-association of the patient’s authentication token is made by the VHCS.

The creation of all other users is through self-enrolment on the Broker. This requires a
certificate signed by a Certified Authority recognized by the architecture. Complementary
information is requested from the user, thus enabling better identification and search capa-
bilities for the patients. This allows the patient to search for a specific provider or a provider
for a specific service.

The database that supports the Broker is shown in Figure 3.12.

Figure 3.12: Broker Data Model

The Registry component stores the Distinguished Name and other information extracted
from the certificate used by the provider for creation of the account. It also stores additional
information requested from the provider, namely, address, contacts and service descriptions
characterizing the available services on that provider. The information is signed using the
provider certificate, thus enabling future validation of the stored information. The registration
process is explained in Algorithm 5.

Algorithm 5 Registration

1: function RegisterActor(actorDN, actorInfo, actorSignature) . Register an Actor
2: permission← CheckValidToken() . Checks if is a valid token
3: if permission then
4: creation← CheckIfUserExist(actorDN) . Checks if user already exist
5: if !creation then . If not user create it

StoreActor(actorDN, actorInfo, actorSignature)
return True

6: else . Update Info
UpdateActor(actorDN, actorInfo, actorSignature)
return True

7: end if
8: else

return Fail
9: end if
10: end function

After registration, the provider can manage the services he provides. He is able to associate
new ones or remove discontinued services. Thus, the patient can search for a specific provider
or a provider of some service. One important aspect is how the Broker deals with the data
using the closed envelope concept aforementioned.

66

After successful authentication, the actor can request the Broker to store or retrieve data.
Algorithm 6 explains the storing procedure available in the Broker.

Algorithm 6 Store Data

1: function StoreBulk(actorDN, patientDN, datacyphered, dataHeadercyphered, sensitivity) . Stores the data and
dataHeader for a patientDN by an actorDN

2: permission← VHCS.CheckPolicy(actorDN, patientDN, ”Store”, NULL) . Checks privileges
3: if permission = Grant then
4: RepositoryInfo← VHCS.GetRepositoryInfo(PatientDn,ActorDN)
5: doublecyphered← Cypher(datacyphered,BrokerKey)
6: bulkid← StoreOnRepository(doublecyphered,RepositoryInfo)
7: patientPubkey ← VHCS.GetPatientPubIntKey(patientDN, actorDN)
8: cypheredbulkid← Cypher(bulkid, patientPubkey)
9: VHCS.StoreIndexer(patientDN, actorDN, cypheredbulkid, sensitivity, datacyphered)
10: else

return Fail
11: end if
12: end function

The store method receives the actorDN requesting the store action and the patientDN
representing the owner of the information being stored. It also receives ciphered data (data-
cyphered) and the header (dataHeadercyphered). Both are cyphered with the patient public
key before leaving the actor. The actor also sends the sensitivity level of the information
being stored. The header has the sensitivity classification for the enclosed data along with
information considered useful by the actor to enable a search related to the stored information.

To consume the information in the repository, the Broker enables a method for retrieving
the data. The retrieval process can be divided in two types of access. The actor can request
all the patient’s record, or a specific part, both enforcing the access policy defined by the
patient. As a consequence of the information being stored cyphered with its structure and
to increase security, the query mechanisms are not provided directly by the repository. To
retrieve a specific subset of the record, a query mechanism supported on an indexer service is
provided in the architecture. This will be further explained in the Indexer(Subsection 3.2.3).

After successful authentication, the actor can request to retrieve the patient record or a
subset as follows in Algorithm 7.

The method receives an actorDN representing the requesting actor, a patientDN which
identifies the patient and a cyphered query. The query is cyphered by the requesting actor
using the patient internal public key. Thus, if the user wants all the record the query is empty,
if not it will send a specific query.

The first step of the algorithm is to check if the actor is allowed to request the retrieve
operation. The request goes to the VHCS to make the query to the Indexer and returns the
bulk identifiers of the contributions that matched the query. Then the Broker requests from
VHCS the information needed to enable it to retrieve the bulks of data. That information
has the credentials to request the operation from the repository, with the url for invoking
the web service methods to retrieve the bulk of data. The Broker also receives additional
information that is used when the Broker Key is rotated, i.e. a flag that describes if the data
in the repository is still being updated. If this flag is active it will use the old Broker key,
if not it will use the new one. This information supports the process of revoking credentials
that will be discussed in Subsection 3.3.6.

For each bulk identifier, the Broker concatenates the web service methods to retrieve
the bulk of data with the bulk identifier and requests the Repository for the correspondent
data bulk, using the received credentials. Since in the store procedure the Broker has double

67

Algorithm 7 Retrieve Data

1: function Retrieve(actorDN, patientDN, cypheredquery). Retrieves data using a query to a patientDN record by
an actorDN

2: permission← VHCS.CheckPolicy(actorDN, patientDN, ”Retrieve”, NULL) . Checks privileges
3: if permission = Grant then
4: bulks← VHCS.Query(cypheredquery, patientDN, actorDN)
5: RepositoryInfo← VHCS.GetRepositoryCredentials(PatientDn,ActorDN)
6: NewKey ← RepostitoryInfo.GetBrokerKeyInfo
7: retrieved data = newvector
8: for each bulk in bulks do
9: retrieve url← RepositoryInfo.RetrieveURL + bulk
10: doublecyphered bulk ← Repository.Retrieve(retrieve url, RepositoryInfo.username,

RepositoryInfo.password)
11: if NewKey == Old then
12: if bulkdata cyphered modificationdate < BrokerKey.CreationDate then
13: bulkdata cyphered← Decypher(doublecyphered bulk,BrokerOldKey)
14: else
15: bulkdata cyphered← Decypher(doublecyphered bulk,BrokerKey)
16: end if
17: else
18: bulkdata cyphered← Decypher(doublecyphered bulk,BrokerKey)
19: end if
20: retrieved data.add(bulkdata cyphered)
21: end for
22: ActorToPublicKey ← GetActorPublicKey(actorDN)
23: cypheredtoactor ← CypherDataFor(retrieved data, patientDN, actorDN,ActorToPublicKey)

return cypheredtoactor
24: else

return Fail
25: end if
26: end function

cyphered data, now the Broker will decipher it to remove the outer envelope using his internal
key. In fact, if the flag returned the old key, this means that not all the patient’s information
is cyphered with the new key. Therefore, it also has to check if the date of modifying the
bulk retrieved is more recent than the creation of the key. If it is more recent, the Broker
uses the old key. If one of the previous conditions is not verified, the Broker uses the current
key. Finally, the resultant bulks are temporarily stored in a vector for further manipulation.

Once the previous process ends, the vector has the bulks of data that matched the query.
As they are still cyphered with the patient internal public key, they cannot be manipulated by
the Broker. Therefore, the Broker will send this vector to the VHCS requesting deciphering
the current protection and ciphering again according to the requester. The Broker will send
the data, the patientDN and the public key of the requesting actor. The VHCS will decipher
the data bulk by bulk, and using a reassembler it will aggregate all the individual bulks in just
one. Then the individual bulk is cyphered using the requester public key. These operations are
performed inside the cryptographic and reassembler component of the VHCS. To conclude,
the VHCS sends the cyphered bulk to the Broker, which forwards it to the requesting actor.

The Broker works strictly with the broker interface component on the VHCS to enable
the storage and retrieval of information from the Repository. The Broker manipulates the
information using a closed envelope concept as the information is always ciphered for the
receiver, the patient or the requesting user or service. The Broker provides services for man-
aging actors’ registration, credential management, methods of updating actors’ information
and service descriptions. It also provides a yellow pages service that enables patients to search
for providers.

68

3.2.3 Indexer

The choice of cyphering the data along with the structure improves privacy. Cyphering
only the data enables the structure to be analysed, and infer about the data stored in it. One
of the challenges of dealing with cyphered information is the overhead caused by cyphering
and decyphering operations. The information is stored along with the structure in a cyphered
bulk. Therefore, the repository can only send all the bulks or a specific bulk, because the
repository only manipulates bulk identifiers and not field of the contributions. This limitation
is due to the cyphering structure and data of the bulk, e.g. to prevent actors to request all
bulks where some field has specific value or other type of query. To minimize the need of
retrieving all the bulks and deciphering them to enable the retrieval of a subset of information
from the repositories we propose an Indexer. This service will enable query capabilities over
the cyphered data and structure.

The indexer service will work as an external repository, with metadata for indexing the
information stored for each patient. The Indexer service is only accessible through the VHCS.
Some of the fields are stored in plain text and others considered more critical are stored
cyphered using the patient internal public key. The fields in plain text enable the execution
of some queries on the Indexer, the other fields being made by the VHCS. Therefore, for a
complete query from an actor, the query is made first on the Indexer to extract only the
metadata the actor has access to. Once in the VHCS, after deciphering the metadata, the
query is made against the metadata.

The fields on the Indexer are explained in Table 3.5.

Table 3.5: Indexer fields

Field Description Encrypted

ID Incremental identifier for indexer field No
PatientID Internal code that represents a patient No
ProducerID Internal code that represent the producer of the data associated No
Sensitivity Sensitivity level of the information associated No
Metadata Metadata generated by the producer of the information associated Yes
BulkID Bulk identifier for the patient repository Yes

The ID field is an auto increment field, PatientID is the patient’s identifier that only the
VHCS can match, the ProducerID is the actor’s identifier than only the Broker can match,
and the sensitivity field stores the sensitivity level attributed to the stored bulk of data. These
fields are in plain text and enable the VHCS to retrieve only the metadata that a specific
actor has for a specific patient. The Metadata and the BulkID is cyphered using the patient
internal public key, ensuring that only the VHCS can manipulate this data.

The services provided by the Indexer are the store and retrieve procedure. The store pro-
cedure just receives all the fields for the table and stores them. The retrieve is in Algorithm 8.

The result is forwarded to the VHCS. Then, using the patient internal private key, the
VHCS can match the requester query on the metadata and give the Broker the information
about what bulks of data should be retrieved from the repository. This method is requested
by the VHCS Query method.

69

Algorithm 8 Indexer Retrieve

1: function IndexerRetrieve(PatientID, ActorsSameGroupsofRequester, ActorRoleCode, ActorID) . Retrieves the
metadata to the VHCS

2: condition← PatientID==PatientID
. Get rows of specific patient, if

AND (Sensitivity >= ActorRoleCode
. The actor role is equal or superior to the sensitivity level of the information

OR ActorsSameGroupsofRequester.has(ProducerID))
. Or if the requester belongs to a patient groups common between the requester and the producer

3: resultset← SelectWhere(condition)
. Get rows that match the condition

4: if resultset then
return resultset

5: else
return NULL

6: end if
7: end function

3.2.4 Repository

Achieving a secure and open collaboration architecture lies also in the patient’s freedom to
choose his repository which has to implement two mandatory methods to enable the Broker
to store and retrieve a bulk of data. As the data are bulks that combine the data and their
structure in an glsxml format in a double-cyphered bulk, the repository can use different
back-ends, such as file-system, relational database, no-sql databases among others.

The methods required in the interface with the Broker are:

• Store(AuthUser, AuthPassword, DataBulk) This method is used by the Broker to store
information in the repository, by requesting the repository to store the DataBulk using
the AuthUser and AuthPassword credentials. This method should return the identifier
whom the repository assigned to the stored bulk. This identifier will be used by the
Indexer.

• Retrieve(AuthUser, AuthPassword, BulkID) This method enables the Broker to retrieve
a specific bulk of data from the repository, making use of the credentials for authen-
ticating in the Repository – AuthUser and AuthPassword, and requests the data bulk
identified by the BulkID.

If the Repository accepts the reception of extra parameters, such as the information of the
ActorID that is requesting the information to the Broker, it will enable the Repository to log
also information about which actor originated this operation over the Repository. Besides,
the custom repository should make use of the Accounter store method to save its accounting
information in an external service. To allow use of the accounter, the repository should
provide a method for the patient to associate his internal public key with his account in the
Repository.

3.2.5 Accounter

The Accounter is a service that will allow examination of the correct behaviour of the
system, and if the policies are accurately enforced and respected by all actors.

All services will contribute to the Accounter by storing all the requests they receive,
combining the granted and refused requests with the full request, identifying the requester,
the time stamp and the operation. As this information can also reveal information that can

70

be used to extrapolate patient record pathologies and treatments, the information is stored
cyphered using the patient internal public key. To maintain the integrity of the information,
the services sign the information with their certificate prior to cyphering to the patient internal
public key.

Considering the information stored in the Accounter, Table 3.6 details the information
stored in plain text and cyphered.

Table 3.6: Accounter fields

Field Description Encrypted

ID Incremental identifier for indexer field No
TimeStamp Time Stamp associated with the operation No
TimeStampSignature Hash result of signing the TimeStamp made by the Ser-

vice
No

ServiceDN Service Distinguished Name, provided from service cer-
tificate

No

ServiceDNSignature Hash result of signing the ServiceDN made by the Ser-
vice

No

PatientID Internal code that represents a patient No
PatientIDSignature Hash result of signing the PatientID No
ActorID Internal code that represent the actor that generated

the accounting info
No

ActorIDSignature Hash result of signing the ActorID No
AccountingInfo Full description of the action requested, requester and

exceptions generated
Yes

The plain text fields enable querying and retrieving more specific information from the Ac-
counter. This allows a patient or patient services to retrieve all their accounting information,
or anything particularly related to an actor or a service in a determined time frame.

The Accounter has two main methods that can be used remotely by web-services, the Store
and the Retrieve. The Store method is available to all the services on the architecture, while
the Retrieve can only be invoked by the VHCS. The Store method, depending on the service
generating the accounting information, needs to convert some information to the correct form
to be stored. Such operations are related to the local knowledge of each service and separation
of information which prevents each one from having all the information. This operation is
better explained by the algorithm used in the store procedure (Algorithm 9).

The information in the Accounter is produced by all the services in the architecture, with
the exception of the Repository, which is external to the architecture. This means that all
accountable services have to implement the procedure to store the events generated in each
service in the Accounter. This procedure has some specific information, depending on the
service generating the information. This method is executed whenever each service executes
a request made to them. Generically, the procedure is explained in Algorithm 10.

The retrieve method provided by the Accounter, which is only available to the VHCS, can
be used by patients to retrieve all their accounting information, or more specific information.
Specific information can be queried using any combination possible using the fields that are in

71

Algorithm 9 Accounter Store

1: function Store(TimeStamp, TimeStampSignature, ServiceDN, ServiceDNSignature, PatientInfo, PatientInfoSig-
nature, ActorInfo, ActorInfoSignature, AccountingInfo) . Stores accounting info on
Accounter

2: if ServiceDN.has(”Broker”) then
. Request VHCS to translate the PatientDN to PatientID

3: PatientID, PatientIDSignature← VHCS.GetPatientID(PatientInfo)
. Broker knows the ID of the actor

4: ActorID ← ActorInfo
5: ActorIDSignature← ActorInfoSignature
6: else if ServiceDN.has(”V HCS”) then

. Request Broker to translate ActorDN to ActorID
7: ActorID,ActorIDSignature← Broker.GetActorID(ActorInfo)

. VHCS knows the ID of the patient
8: PatientID ← PatientInfo
9: PatientIDSignature← PatientInfoSignature
10: else if ServiceDN.has(”Indexer”) then

. Indexer knows the ID of the patient and the actor
11: PatientID ← PatientInfo
12: PatientIDSignature← PatientInfoSignature
13: ActorID ← ActorInfo
14: ActorIDSignature← ActorInfoSignature
15: else if ServiceDN.has(”Repository”) then

. Repository doesn’t know the PatientID associated with the Repository, it will query it to the VHCS using
the internal public key of the patient

16: PatientID, PatientIDSignature← VHCS.GetSignedPatientIDbyIntPubKey(PatientInfo)
. Repository knows the ID of the actor

17: ActorID ← ActorInfo
18: ActorIDSignature← ActorInfoSignature
19: end if

StoreOnAccounter(TimeStamp, TimeStampSignature, ServiceDN, ServiceDNSignature, PatientID, Patien-
tIDSignature, ActorID, ActorIDSignature, AccountingInfo)

20: end function

Algorithm 10 Accounter Store Method usage by the Services

1: function StoreToAccounter . Method executed in all architecture services
. These procedures are common to all architecture serices

2: T imeStamp← TimeStamp()
3: T imeStampSignature← Sign(T imeStamp, ServicePrivateKey)
4: ServiceDN ← GetServiceDN
5: ServiceDNSignature← Sign(ServiceDN, ServicePrivateKey)
6: PatientInfo← GetPatientInfo()
7: PatientInfoSignature← Sign(PatientInfo, ServicePrivateKey)
8: if Service == ”Repository” then . The repository has locally stored the patient public key
9: PatientPubKey ← GetPatientPubKey()
10: else

. The other services will request it to the VHCS
11: PatientPubKey ← VHCS.GetPatientPubKey(PatientInfo)
12: end if
13: AccountingInfo← GenerateAccountingInfo
14: AccountingInfoSignature← Sign(AccountingInfo, ServicePrivateKey)
15: AccountingInfo← Concatenate(AccountingInfo,AccountingInfoSignature)
16: AccountingInfo← Cypher(AccountingInfo, PatientPubKey)

Accounter.Store(TimeStamp, TimeStampSignature, ServiceDN, ServiceDNSignature, PatientInfo, Pati-
entInfoSignature, ActorInfo, ActorInfoSignature, AccountingInfo)

17: end function

plain text on the Accounter, namely TimeStamp, ServiceDN, and ActorID. The PatientDN is
locked to the identifier of the patient who is requesting the information from the Accounter.

Concerning the common repositories that cannot collaborate with the Accounter service,
the patient can still make use of the information on the Accounter generated by the Broker. He

72

can request accounting information related to requests made by the Broker to the Repository
and with the Repository logs check if the is receiving requests not originated by the Broker.

The Accounter can be used not only to verify that all the actors are acting in accordance
with patient policies, but also to verify the correct execution of the request and all architecture
participants to achieve the contemplated results. This continuous auditing enables valuable
feedback to the architecture about status and health that can allow correction of unexpected
errors or malfunctions. The auditing can also identify problems with the policies defined by
the patient and alert him to correct them.

This service can support future development of pro-active measures to detect and contain
misbehaviour based on the information mining enabled by the Accounter.

3.2.6 Summary

The previous sections delineated the components, how they interact with users and pro-
vide services between all of them. It was also important to explain how trust between the
components is managed. The services of the architecture enable each component to make use
of the services provided by another. It was explained how authentication is performed and
how some functions are invoked, but before this procedure, the service itself is validated. This
allows only trusted components to interact. The assumption is that a PKI for the architecture
components exists, so each component has a certificate to enable correct identification and
authentication between services, providing yet cryptographic capabilities.

The interaction between all the components, together with their functions, is illustrated
in Figure 3.13. Besides those already listed, the OpenEHR archetype is present and a trusted
third party for managing the Certificate Authority for the architecture components.

The PKI for components is directly related to trust between the architecture components.
Each service requests a certificate from the PKI services, to use for authentication between
each other through mutual certificate authentication. During authentication, the services
verify the Certificate Revocation List of the PKI to check if the certificate is valid. The PKI
also maintains a historic list of all certificates that were issued to the services, to be able to
verify past log actions that were logged in the Accounter.

The OpenEHR archetype repository is used for storing and enabling retrieval by all actors
of the archetypes used in the contributions stored in the patient repositories. This is also a
collaborative repository that allows actors to develop new archetypes for dealing with new
types of information that can be produced in new services. This will enable continuous
evolution of the type of information that the records can manage.

Considering this approach, patients can manage, store and retrieve data from his own
record using services from the architecture. Users or services that want to collaborate can
also access to the services of the architecture. Already deployed systems can collaborate by
creating a connector service that act as a user or service. Enabling Hospital Information
Systems, national EHRs, epSoS or others to collaborate, as depicted in Figure 3.14.

3.3 Common Operations

Following the proposed architecture and behavior already described, this section explains
how components interact to achieve the most important use cases: how to create a new patient
or a new provider; how do the patient manage the access policies to his record; how can actors
contribute to each EHR, namely storage and retrieval methods; and how new services can be

73

Broker Repository

VHCS

Indexer

Accounter

Store Auditing Log

Retrieve Auditing Log

OpenEHR Archteypes

Certificate Authority

Store Data

Request Data

Registry

Store

Retrieve

Repository Management

Manage VHC

Access Control

Cryptographic Component

Patient Credentials

Manage Access

Policy

Broker Interface

Manage Repositories

Reassembler

Indexer

Services

Backend

Repository

PKI Services

Policy

Management

Crytographic Functionality

Patient Credentials

Management

Repository

Credentials

Management

BrokerServices

EHR reassembler

User/Service

Patient

Uses

Uses

Uses

Uses
Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses
Uses

Uses

Uses

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.13: Interaction between users and services components

added to this core architecture. Moreover, credential revoking and digital signature validation
are also addressed, and, finally, availability challenges are discussed at the end of the section.

3.3.1 New Patient

Figure 3.15 represents the states and interactions between services to create a new patient
in the architecture.

Operations related to patient management are carried out through the VHCS. This pro-
cess also needs the Accounter and Repository services. The Accounter stores accounting
information while a new patient account is created. The Repository will only be used to

74

Patient

Submit Retrieve

New
/

Man
age

User / Service

Submit Retrieve

New
/

Man
age

Service Oriented Architecture

epSoS ...EHRptHIS

Figure 3.14: Connecting with existent repositories

verify the accuracy of the repository credentials and configuration.

The patient needs a certificate issued by a Certificate Authority trusted by the architecture
and therefore by the VHCS. As countries are promoting the use of electronic identification
cards, their Certificate Authorities are trusted by the system. Therefore, any citizen with a
trusted signed certificate can self-enroll and create his account. Another prerequisite is to
have an account in a repository that will enable storage and retrieval of data.

The process is simple. In step one the patient requests the creation of a new account to
the VHCS. The VHCS carries out authentication using the certificate challenge and logs this
information with the Accounter. The VHCS extracts the information from the certificate,
using it to create the Virtual Electronic Card (step 4), requests more information from the
patient that is not available on the certificate (step 6) and all phases are logged with the
Accounter. Another request to the patient follows, for information related to the patient
repository. Once this is received, the VHCS tries to connect to the repository to check if the
credentials are correct. Finally, the VHCS stores all the information on the database. After
this process the patient can connect to the VHCS and manage his Virtual Health Card. The
logging messages sent to the Accounter are signed and cyphered using Algorithm 10 described
earlier.

3.3.2 New Provider

The Broker is the service responsible for managing the actors in the architecture. So a
provider will be created through interaction between the actor and the Broker service. The
Accounter service is used to store all the logging information produced during the creation
process. The logging information is sent to the Accounter using Algorithm 10.

Creation of a new provider is illustrated in Figure 3.16.

Responsibility for creating certificates for providers is delegated to Certificate Authorities

75

RepositoryAccounterVHCSPatient

14: Logging

11: Logging

5: Logging

8: Logging

10: Sent Repository Info

7: Send Info

6: Request More Info

4: Extract Info From Certificate

1: Create Patient

17: Ok
16: Logging

15: Store

13: Repository Response

12: Check Access

9: Request Repository Info

3: Logging

2: Authenticate Using Certificate

Figure 3.15: Creating new Patient

considered trustworthy in the country where the provider is registered. Therefore, the Broker
requests the Actor to use his certificate authentication (step 2). The actor can progress to
creating his account if the request is successful and the Certificate Authority is trusted.

The provider has to give more information related to their office, such as address, phone,
other contact and descriptive information to create a complete entry. This information will
also be used to enable a Yellow Pages Service on the Broker, enabling patients to search for
providers. This information is signed using the provider authentication key, and then the
information and the signature hash are sent to the Broker.

The actor also describes the services he has available to the patient, signing this informa-
tion. Each piece of service information is signed by the actor and sent to the Broker.

When the actor stops sending the services he provides to the Broker, the Broker stores
all the information, logs all the operations made and informs the actor of the success of the
operation.

The information stored in the Broker enables providers to authenticate, and if the patient
policy lets them, collaborate in creating or consuming information from the patient repository.

76

AccounterBrokerActor

4: Request More Info

7: Logging

11: ActorCreated

9: Store Actor Info

17: Ok
16: Logging

15: Store Services

14: Logging

13: Send Services

12: Create Services Provided and sign

10: Logging

8: RegisterActor

6: Sign Info

5: Extract Info From Certificate

2: Authenticate Using Certificate

3: Logging

1: Create Actor

Figure 3.16: Creating new Provider

This also enables patients to search for a specific provider, or search for providers of a specific
service in a specific area.

3.3.3 Managing Access Policies

Each patient can manage his policy, resorting to the services provided by the VHCS. The
policy management component enables the patient to list, update, disable and create policies
associated to each provider or group of providers.

The process of creating a new policy is explained in Figure 3.17.

The patient asks the VHCS to create a new policy for a specific provider, identified by
his Distinguished Name. After authentication, the VHCS (step 2) retrieves from the Broker
information related to the provider, forwarding it to the Patient. The patient can associate
the provider with previously created groups, retrieving the group id from the VHCS (step
9). The patient can then choose the role he wants for this provider, using the role id. The
patient also decides the TTL of the policy in hours. The value -1 leaves the policy active

77

l oop

[AllChoosed==False]

BrokerAccounterVHCSPatient

16: ok

15: Logging

14: StorePolicy

13: Sign all Info

12: ChooseRoleID

11: SentGroupID
10: Choose Groups

9: GetGroups

8: Sent Provider Info 7: Logging

6: Logging

5: SendProviderInfo

4: GetProviderInfo

3: Logging

2: Authenticate

1: CreatePolicy

Figure 3.17: Creating a new policy

until the patient revoke it. Then all this information is signed, the resulting hash with this
information is passed to the VHCS as arguments of the StorePolicy method (step 13). After
correct storage, the VHCS logs the operations in the Accounter and sends an ok message to
the Patient.

78

3.3.4 Storage

The storage process is requested by an actor through the Broker, using services provided by
the VHCS, Repository, Indexer, Accounter, Certificate Authority of the architecture and the
OpenEHR Archetypes repository. The interaction between all those components is described
in Figure 3.18.

AccounterRepositoryIndexerVHCSBrokerActor

2: Authenticate Using Certificate

26: Logging

32: Logging

27: Logging

22: Logging

18: Logging

19: Logging

33: ok

31: ok

30: Logging
29: IndexerStore

28: CypherBulkID

25: BulkID

24: Store

23: CypherDataBulk

21: RepositoryInfo

20: GetRepositoryInfo

16: ok
17: CheckPolicy

15: CheckPolicy

7: CheckPolicy

14: StoreBulk

13: CypherDataHeader

12: CypherDataBulk

11: PatientPubKey 10: Logging
9: PatientPubKey

8: Logging

6: RequestPatientPubKey
5: RequestPatientPubKey

4: ok

3: Logging

1: Login

Figure 3.18: Storing a contribution

The actor uses his certificate to authenticate with the Broker. If successful, the actor
requests the patient public key from the Broker, which forwards this request to the VHCS,
which in turn returns the response to the Actor. With this information, the actor cyphers
the bulk of data and data header. Then the actor asks the Broker to store (step 14), sending

79

the actor and patient Distinguished Name with the data, data header cyphered to the patient
public key and the sensitivity level associated with the data.

With this information, the Broker checks if the policy allows the requesting actor to store
information. If the actor has authorization, the Broker asks the VHCS for the Repository
information of the patient. Then the Broker double cyphers the data information with his
internal key and stores the data in the Repository using the information received from the
VHCS (step 24). The Repository returns the identifier (ID) given to the new stored data
bulk. The Broker then cyphers the ID using the patient public key. The Broker stores
information on the Indexer, sending the patient identifier, actor identifier, sensitivity of data
and the cyphered fields with the bulk identifier and data headers with the metadata. Once
this is done, the Indexer sends an ok message to the Broker informing the actor that the store
procedure occurred without problems. All the requests between services are registered in the
Accounter service.

3.3.5 Retrieval

The retrieval process is shown in Figure 3.19. After the Actor authenticates using his
certificate on the Broker, the Actor will request the patient’s public key identified by the
Patient’s Distinguished Name that the Actor knows. The Broker will forward this request to
the VHCS, which after checking the policy, returns the public key back to the Broker, which
delivers it to the Actor. Then the latter can encrypt a query, enabling him to retrieve the
data he needs from the repository.

The Actor requests the Broker to retrieve the data, sending the patient and his Distin-
guished Names with the cyphered query. Then the Broker requests the VHCS to send the
repository information related to the patient. This information will enable the Broker to
access the patient Repository.

Then the Broker forwards the query to the VHCS, which will answer with the bulks of
information matching the query in the following steps. First, the VHCS checks that the
requesting actor can make the query, then deciphers the query. Second, the VHCS retrieves
from the Indexer the information that is needed to match the received query. Finally, the
VHCS deciphers the metadata and the bulks’ identification fields, executes the query and
returns the result set (bulk identification) to the Broker.

The Broker can then retrieve each bulk from the repository and decipher it using the
broker’s secret key. Thus, the Broker requests the VHCS to cypher all the bulks to the Actor
requesting the information. The VHCS deciphers using the patient internal private key, checks
the actor’s privileges and the granted bulks go to the reassembler to be consolidated as just
one bulk. The resulting bulk is cyphered with the actor’s public key. Then the cyphered data
is forwarded to the Broker, which delivers it to the Actor.

During this process, all services log information to the Accounter, allowing accounting
information about all processes for future validation of correctness and adherence to patient
policies.

One important aspect that has not yet been discussed is the mutual authentication be-
tween services. Actors and patients use their certificates to authenticate with the Broker
and the VHCS. But for a more secure environment, services may use mutual authentication
using their certificates and then all requests between services and components are preceded
by mutual authentication.

80

l oop

[For each bulk]

VHCS AccounterRepositoryIndexerBrokerActor

34: CheckPolicyForBulk

40: CypherDataToActor
39: Logging

38: CypherDataToActor

37: Logging

36: CypherToActor

35: Reassembling

33: Decypher

32: CypherDataFor

31: Decypher

30: Logging

29: Bulk

28: RetrieveBulk

27: Logging

16: RepositoryInfo
15: Logging

14: GetRepositoryInfo

26: SentBulks

25: Logging

24: MatchQueryWithIndexer

19: DecypherQuery

21: IndexerRetrieve

23: IndexerInfo
22: Logging

20: IndexerRetrieve

18: CheckPolicy

17: Query

12: CypherQuery

13: Retrieve

11: Logging
10: PatientPubKey

9: PatientPubKey
8: Logging

7: CheckPolicy

6: RequestPatientPubKey

5: RequestPatientPubKey

4: Ok

3: Logging
2: Authenticate Using Certificate

1: Logging

Figure 3.19: Retrieving data from repository

3.3.6 Revoking Credentials

Possibly, some credentials will be compromised. It may be an actor credential, a patient
authentication token or internal patient keys. It can also be service credentials or services’
internal keys.

If a patient has his authentication token compromised, he needs to ask his Certificate
Authority to revoke the current certificate and issue a new one. Then he needs to associate

81

the new one with his account on the VHCS. This process is explained in Figure 3.20.

AccounterVHCSPatient CAPatient

13: Logging

12: Ok

11: Associate New Credentials

10: Logging

9: Set Revoke Date to Previous Token

8: Logging

7: Identify Patient VHC

6: Logging

5: Reassociate

4: Send Certificates and Keys

3: Issue a New One

2: Revoke Current

1: Revoke and Issue a new One

Figure 3.20: Revoking Patient Certificates

The Patient starts by contacting his Certificate Authority, requesting the revocation of
his compromised certificate and the creation of a new one. The Certificate Authority then
revokes the certificate and updates his Certificate Revocation List to include the certificate the
patient has requested to be revoked. Then the Certificate Authority issues a new certificate
and forwards it to the patient securely.

The Patient can ask the VHCS to re-associate his Virtual Health Card with the new cre-
dentials. The VHCS will identify the patient’s Virtual Health Card, since the new certificate
has information that should enable the system to automatically re-associate. Information that
can be used is the distinguished name and the identification number, the system extracting
this information from the certificate and searching the Virtual Health Cards. If it finds a
match, the system can update the tokens associated with that card. If not, human assistance
will be needed. The first step is to set the revocation date to the previously activated tokens,
then extract the information from the new one to associate it as a new token, and inform the
patient that the operation has been successfully concluded.

After the patient requests his CA to revoke the credentials (step 2), any use of the compro-
mised certificates should be easily denied, since services check the CRLs to see the certificate
status. If the lists are not updated or the CA has become corrupt, the authentication will
not fail in the first step, but will do so in validation by the VHCS, since the service can check
the revokedData value on the tokens table of the service.

The revocation process for actor credentials is very similar to patient revocation. It only
differs in the services used, as the actor uses the Broker service instead of the VHCS and

82

uses the actor certificate authority. When the need is to revoke a patient’s internal tokens,
it will be necessary to revoke and create a new pair of keys. Hence, the patient information
needs to be deciphered using the old internal patient private key and cyphered using the
new internal public key. This has to be done for all the information that is stored cyphered
using the patient internal private key. The information is in the Accounter, Indexer and the
Repository. The process is explained in Figure 3.21.

The VHCS starts by setting the revoke date of the internal keys. Then it generates a new
pair of keys and stores them on the database. As the internal keys are used for cyphering
the information stored in the Repository, Indexer and Accounter, the information has to
be retrieved, deciphered with the old internal private key and cyphered again with the new
internal public key.

The VHCS continues with the Indexer information, since the entire retrieval process needs
access to the information in this component. The VHCS requests the Indexer for entries
related to the patient, deciphers the fields that are cyphered using the old internal private
key, and cyphers the same fields to the new internal public key. It then sends the data to the
Indexer to update the changed fields on the Indexer database. After that comes the process of
manipulating the bulks of data stored in the Repository. The Broker requests the repository
credentials and retrieves the bulks. It deciphers each bulk, sends it to the VHCS which will
decipher it using the old internal private key, cyphering it with the new internal public key.
Then the bulk is sent back to the Broker, which cyphers it using the Broker key and then
requests to store it using the same bulkid.

The final procedure is to change the information cyphered in the Accounter service. The
VHCS asks the patient for accounting information, deciphers the fields that are cyphered
using the old internal private key and cyphers the same fields to the new internal public key.
Finally, the VHCS requests the Accounter to update the accounting information with the
new cyphered fields.

The Broker uses a secret key to cypher the outer envelope before storing the bulk of data
in the repository. If this key is compromised, it is possible that others can decipher the
outer block of data. The information is still protected because it is also cyphered with the
patient internal public key. Hence, the Broker needs a new key for his cyphering operations.
It is necessary to re-cypher the information. The information must be retrieved from the
repository, deciphered using the old key, cyphered with the new one and stored using the
same bulkid. The process is explained in Figure 3.22.

Revocation of the patient internal private key means that all the patient’s bulk of data in
the Repository needs to be re-cyphered. This is a very time-consuming operation, although
the system can simultaneously be active and functional while this operation is running. Hence,
this operation is made in the background, using the old Broker key to access data bulks that
were not already re-cyphered with the new key. The Repository Information stored in the
VHCS has a flag to show each key still in use for a specific patient data. This flag states if the
information in the Repository is using the old Broker key or the new one. In this process, the
storage date of bulks in the Repository is checked. If it is stored after creating the new key,
the new key is used, and if not, the old key is used. This will allow access to the information
even if a specific patient does not have all bulks of data re-cyphered.

The Broker starts the procedure of revoking the internal key used for cyphering the outer
envelope by generating a new key. It is inserted in the internal table, setting the previously
active key to old and storing the creation date of the newly generated key. Then the Broker
requests the VHCS to set a flag at all patients’ repository information to show that the

83

l oop

[For each bulk]

IndexerAccounterRepositoryBrokerVHCS

38: Logging

35: Logging

33: Logging

37: UpdateAccountingInfo

36: CypherAccountingFields

34: DecypherAccontingFields

32: PatientAccountingInfo 31: Log

30: GetPatientAccounting

11: Logging

8: Logging

6: Logging

10: Update IndexerInfo

9: CypherIndexFields

7: DecypherIndexerField

5: IndexerInfo

4: IndexerRetrieve

29: Logging

28: ok

27: Logging

26: ok
25: UpdateBulk

23: CypherDataBulk

24: Logging

22: CypherDataToActor

21: CypherDataFor
20: Decypher

19: Logging

18: Bulk

17: RetrieveBulk

16: Logging

13: Logging

15: RepositoryInfo

14: GetRepositoryInfo

12: Request All Patient Contributions

3: Generate a new pair of keys

2: Logging

1: Set Revoke Date to Previous Token

Figure 3.21: Revoking Patient Internal Keys

information about the patient is cyphered on the Broker using an old key.

The VHCS is asked by the Broker to re-cypher the outer envelope of all patient data
bulks. Each bulk retrieved by the Broker is de-cyphered using the old key, cyphered with the
new key and updated in the Repository. Finally, the VHCS is asked to set the flag to inform
that this patient is using the new Broker key. This process enables access to the information

84

l oop

[For each patient]

AccounterRepositoryBrokerVHCS

13: Logging
12: RepositoryInfo

11: GetRepositoryInfo

3: Set new key to default

2: Generate new Key

25: Logging

24: Set Flag New on Patient RepositoryInfo
23: Logging

22: UpdateBulk

21: Logging
20: CypherDataBulk

19: Logging

18: Decypher

17: Logging

16: Bulk

15: RetrieveBulk

14: Logging

9: Logging

10: Request All Patient Contributions

8: RecypherBrokerEnvelopePatient

7: RecypherBrokerEnvelope

5: Set Flag Old on RepositoryInfo
4: Logging

1: Revoke Broker Key

6: Logging

Figure 3.22: Generating a new Broker Internal Key

during updating of the data bulks in the Repository, since the store procedure is carried out
with the new key, and during reading the flag is checked. If the flag is set to new, the new
key is used, and if not, it checks the update date of the bulk stored in the repository. If the
date is before the date of creating the new key, the old key is used. Otherwise, the new one
is used.

After finishing for all patients, all accesses use the new key, ensuring that all information
in the Repositories is protected against use of the compromised Broker internal key.

The credentials of the Repository can be also compromised. Thus, the information stored
is protected by double cyphering of the bulks. The credentials should be changed. First,
credentials are changed in the Repository and then updated in the VHCS. Since the Broker
requests this information in every session, no more operations are needed.

Certificates can also be compromised. When this occurs, the PKI should append the
credentials to the Certificate Revoking List (CRL). Hence, the service that has its credential
revoked is no longer able to connect to other services, since every service checks the CRL when
initiating the connection. The service should request a new certificate, and depending on the

85

service, may ask to revoke other compromised credentials. Once the Certificate Authority
issues a new certificate, the service can connect again to all services.

3.3.7 Digital Signature Validation

The integrity of the produced and stored data is achieved using digital signature mecha-
nisms. Concerning data in the repository, the actor producing the information signs it using
his certificate before the store procedure starts. So it is possible to verify if the information
deposited was created by a trusted actor.

The information stored in the VHCS needs integrity validation and non-repudiation by
patients. Therefore, the VHCS database stores hash results of the signatures of all the
concatenation values stored. This enables verification of the information in the demographic,
groups and policy tables. The VHCS has a procedure for checking the signature of some
data. Using Algorithm 2, the method receives the data to check, the hash stored and the
time-stamp of when it was stored.

Providers also sign their information when creating their accounts with the Broker. They
sign the information related to their contact information, numbers and description of services
they provide.

The information created by the actors is also ciphered using their certificates. Here, the
serialized data bulk in XML and the metadata are signed before being cyphered with the
patient internal public key. The bulk is stored in the Repository and the metadata data
on the Indexer. Both are validated on retrieval. The information on the Indexer, when it
is retrieved to the VHCS for making a query, has its signature checked. The signature of
the information stored in the Repository is also checked during the retrieval process. Thus,
during reassembly, each bulk signature is verified. After this process the resultant bulk is
signed using the VHCS certificate.

The Accounter also has signed information, with all fields having a complementary field
for storing the result of the signature function which uses the certificate of the service that
generated the information. The accounting information is also cyphered for the internal
patient public key.

One challenge is how to store signed data over a long time, since certificates will expire
or will need to be revoked after the signing process takes place. The approach followed was
to store all the certificates. The VHCS stores all the patient certificates, the Broker all the
actors’ certificates and PKI services those related to architecture services certificates. These
lists are associated with the date of activation and revocation. Hence, when validating a
signature, the method receives the data, the stored hash of the signature and the date and
time of the signature. The date and time will enable a search for the public key used by
the actor at the time of signing, enabling the generation of the hash for the data stored and
comparison with the stored one. So services can check the integrity and the creator of the
information even after the certificate has expired or been revoked.

3.3.8 New Services Integration

One of the goals of the proposed architecture is to enable collaboration between all the
actors involved in healthcare or healthcare-related activities. Hence, the architecture allows
the creation of new services to manipulate or create information in the patient repository,
for wider collaboration. The new services are external to the architecture, using the Broker

86

service as an interface for communicating with the full architecture. The actors contemplated
during the architecture modeling can be human actors interacting with the low level methods
provided by the web services of the Broker and the VHCS, or automated software clients
interacting with those services to create a richer experience for users or bring functionality
to the architecture. The new services can be service providers that give the patient access
to more information or they can be automated processes, applications or agents helping the
patient to manage and exploit his information.

External services can be divided in two main categories: consumers and producers. Both
are seen as actors in the architecture and so services just need to register on the Broker as a
service, using a certificate signed by a trusted Certificate Authority. Then, when authorized
earlier by the patient, services can store or retrieve information for their purpose, using the
low level methods available on the Broker.

One important aspect is related to services that create information. The service has to
check if the archetype needed for the type of information that they are creating exists in the
OpenEHR Archetypes Repository. If it does not exist, the user or service should store it in
the Repository prior to any data operation.

Another important aspect concerning retrieval operations using external services, is that
information privacy should be ensured by the external service. Since information is cyphered
before leaving the VHCS to the requesting actor public-key, i.e., to the external service key,
the service will be able to manipulate the patient information in plain text.

The architecture also enables integration of new services in the core of the architecture.
These services require a prior certificate issued by the Certificate Authority of the architecture.
They are normally components inside the VHCS allowing data manipulation in plain text or
extending the requests an actor can make to the architecture. The components should respect
the BrokerInterface of the VHCS, and after deploying the service inside the container, the
new methods available to the Broker are registered on this interface.

Future development of services related to patients’ management of the virtual health
card are expected. Those services also need to request a certificate and are deployed inside
the VHCS, each one inside the corresponding container: Repository Management, Patient
Credentials Management, and Policy Management.

3.3.9 Availability

This architecture deals with critical information and should address high availability and
fault tolerance. Connectivity is a strong point of failure that should be addressed by actors
needing access to services. It they work in emergency care, backup connections should be in
place.

The proposed model, a Service Oriented Architecture, is based on self-contained compo-
nents, aggregated in service containers which are executed without the need to store results
for future invocations. Another important design decision was the separation of the data
layer from the service layer. This aspect permits different policies related to data backend
replication and service layer replication.

Repository services should be provided externally by other players in the market. The
patient is free to choose what provider to use. The repository provider chosen by the patient is
responsible for high availability and fault tolerance. To enable a solution with high availability
and fault tolerance, service and database replication are considered with the aim of achieving
more resilience and performance solution.

87

Database replication works not only in enabling the architecture’s performance and fault
tolerance, but also as an alternative to most backup solutions. If a database instance becomes
corrupt, the services that make use of that database are forwarded to another replica. Hence,
a new replica can be created, using another in perfect condition. Most database management
systems support solutions for snap shooting and roll-back that help databases to recover from
errors, enabling the database to be restored to the last stable state.

The prototype is deployed using J2EE technology on an application server. Most of these
services support clustering. Clustering is an easy method of allowing the architecture to scale,
increasing the performance and availability of the service layer.

Considering the back-end of services, the cluster solution can also be used to increase
the availability and performance of database level operations, therefore increasing the overall
performance and availability of the architecture.

Replication of the services layer is not a critical procedure since this can be done without
the need for synchronism between replicas and propagation of replica states. However, the
challenge arises with the need to replicate the databases, as each operation that creates or
updates information on a database has to be propagated to other replicas.

Some database management systems support data replication. The implemented architec-
ture is based on a solution that mediates access to the database through a specific container.
Therefore, low-level replication control at the database level can bring some data inconsis-
tency between the services that use the various replicas. Since the application services make
use of caching mechanisms, at the database link and container levels, these caches have to be
invalidated whenever the database itself is changed by propagation of changes in one replica.
Therefore, the solution of replication should be implemented at the database mediation access
level of the application server. With this approach, on data creation or updating, a trigger
can be launched to propagate the changes to all replicas and invalidate the caches of the
services that make use of the database replicas that were updated.

3.4 Summary

This chapter presents a solution that copes with mobility by addressing the challenges of
collaboration.

First the business logic associated with a platform that copes with the open and secure
collaboration between all the actors that the patient desires was defined. The approach was
based on the combination of the strengths of EHR and PHR oriented for clinical integrity,
collaboration and patient control.

Secondly an architecture was modeled to implement the business logic required, also ad-
dressing the security challenges. This architecture was modeled to enable easy access to new
providers and patients, with freedom of choice of repository for storing the patient record
and based on open standards for enable the development of new services that can use the
architecture.

The following chapter analyzes how the requirements where addressed, it also delineates
a methodology for security analysis and makes an assessment of the security of the proposed
solution. The security validation of the prosed architecture is critical to verify that required
security properties are respected and to provide feedback to correct them before going further
with the development. Enabling detection and correction of problems in early stages mini-
mizes future detection of structural security problems. Another result is the description of a

88

common methodology and mitigation techniques that can be used for similar architectures.

89

90

Chapter 4

Discussion

4.1 Coping with Requirements

The solution proposed in the previous chapter was designed to cope with requirements
of mobility, collaboration, openness and security. Mobility requirements were addressed by
enabling the collaboration of all actors. For effective collaboration, it should be available
to all actors, it should be open and should use the most common standards in information
technology. The proposed solution should also have the flexibility to support future demands.

Collaboration is achieved by enabling all involved players to access patient repository.
Since they are worldwide, the architecture supports different Certificate Authorities. Initially,
it will support the most commonly used ones, preferably CAs in countries with Public Key
Infrastructure for issuing electronic identification cards (e-id) with certificates. Patients can
use their e-id for auto-enrolment and for authentication purposes. After auto-enrolment,
providers need manual validation of their information. This approach ensures trust between
providers.

Providers contribute to a patient central repository using OpenEHR contributions corre-
sponding to the information created on the patient. Using the OpenEHR archetypes enables
semantic validation of the data. Data signing brings clinical trust to the information stored
in the repository. Providers can keep using their systems to store their data, only needing to
create a service that uploads a signed resume, in this case using the OpenEHR format.

The contribution is not restricted to healthcare professionals. Providers and users consid-
ered by the patient can boost his electronic health record by creating and using information.
Those actors can extend the type of information by proposing new archetypes. It is possi-
ble to know who created the information and to check its integrity, since all contributions
are signed, thus enabling clinical trust of the stored information. All contributions will be
stored in a repository whose provider the patient can freely choose. The proposed solution
has complementary services to ensure security regardless of the repository as our approach
protects against disclosure of information in the repository, even from the repository system
administrators. The repository provider will be responsible for replication and backup, for
high availability and performance of access to this service.

The success of this approach is based on the active collaboration of all actors. The
limitation to collaboration is only caused by the policy managed by the patient. To lower
barriers to the development of new applications by new players or even by providers, openness
was a requirement.

91

The openness of the solution was achieved by adopting widely used standards in informa-
tion technology and making them compatible with the medical area. Use of the web service
with publicly available interfaces enables easy collaboration to create new services and appli-
cations which can interact with the services of the proposed architecture. Use of the XML
standard makes it easier for developers to manipulate the information, as they use the normal
tools for data processing. Combining with the OpenEHR archetype, semantic constraints can
be enforced in the stored data. Storing the data in an XML format allows protection of
the data structure and the data simultaneously. The OpenEHR framework is open source,
enabling collaboration in its development, customization and it is vendor-free.

Another important aspect of systems that deal with long store information is the capability
of future evolution. This support is based on the OpenEHR archetype approach that enables
the coexistence of different versions. Also, if a new type of information needs to be managed,
the actors involved can collaboratively create an archetype to be used for that information
and share it in the OpenEHR archetype repository. As the solution deals with transparent
bulks of data, the core services do not need any changes to enable and use of new archetypes
or updates.

To verify the applicability of the proposed solutions, a brief explanation of some uses
follows. Some common operations were detailed previously in Section 3.3. These operations
support some of the use cases that will now be demonstrated.

Access to the architecture is based on the creation of an account. The patient has first to
create his account with the VHCS and providers need to create an account with the Broker,
as illustrated in Figure 4.1. A patient should first choose a service provider to work as a
back-end of his repository.

Broker2

Create Account

Repository Account

CA Validated Certificate

E-ID

extension points

Certificate

E-ID

Inicialize Policy

Logs to Accounter

CA Validated Certificate

Create

Account

Request Demographic Info

Request Service Description

Validates

Provider

Info

Request Demographics

Initialize

Summary

Validator

Provider

Patient

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Creating accounts

After having an account in the repository, the patient should created an account in the

92

VHCS using his e-ID. After creating the account, he will be requested to store information
related to demographics and information to access the patient repository service. Then the
patient allows services to manage information on his behalf, based on the policies he defines.

Providers should create their account with the Broker, using their certificate in an auto-
enrolment process. They give their information and a statement of the services provided.
This information is signed using the certificate.

The working procedure is based on the patient’s desire to give a specific provider access
to his record. The patient searches in the Broker for providers and then, in the VHCS,
configures a policy for the chosen provider. When this process ends, the provider can start
to collaborate. The process can also be triggered by a provider requesting access to a specific
patient. At this stage, the patient receives the request, and if he wants to grant access he
creates a policy for the requester. This process is illustrated in Figure 4.2.

VHCS

Broker

Search Provider

Manage Policy

Request access

Providers

Patient

Trigger Request

Request

Search provider

Create a policy for provider

Uses

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.2: Managing Policy

The provider needs to verify if there are already existing archetypes for the information
that he manipulates in the repository. If the archetype exists, he can use it. If not, he has to
create one, preferably in a collaborative process with other providers from the same area to
propose a consensual archetype that will benefit all. This approach will enable new providers
to collaborate in innovative ways.

This will allow non-medical providers to store information which they manipulate with
clinical information. A patient who is being accompanied by a doctor, alternative medicine
provider, physiotherapist or sport monitor could benefit from closer collaboration between all
the providers. In Figure 4.3, some common operations are explained. Each provider should
verify that there is an archetype for managing the information.

This enables other collaborators providing patient care to read the information or create
new information respecting the semantic constraints. The patient can also collaborate by
making annotations using a correspondent archetype. New ways of monitoring will also
appear. Players who create these new ways can create a consensual archetype or use one
already defined to upload the information directly to the patient repository, using the pre-

93

Portal or External

Services

Generate Contribution

Query /

Retrieve

OpenEHR

Archetypes

Repository

VHCS

Broker3

Internal Services
Registry

Store

Retrieve

Policy Management

Generate

Contribution

Query/Retrieve

Generate

Contribution

Query/Retrieve

Sports Monitor

Physiotherapist

Alternative Medicine Provide

Doctor

Patient3

Check Policy

Identify Provider

Grant Access to providers

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.3: Actors’ collaboration

established interface and protocol.

In the above depicted scenario, the patient needs to configure a policy to enable actors
to collaborate. The patient searches for each provider and creates the policy for each one.
Specifically, he could decide to create a policy based on the roles and sensitivity of information,
or based on a group. The patient’s choice depends on the granularity level of the policy that
he wants to enforce.

When the patient goes to a provider, and the provider has an internal system for managing
records, the provider could create information in his system and later upload a summary using
the correct archetype for the architecture. If not, he could use a portal or other external service
to create the information or generate contributions in the form the architecture stipulates.
For search and retrieval, external services or a portal could give access to the requester to
receive information. Also, if they respect the interface they could query the Broker for the
internal system to retrieve information for some patient.

This analysis verifies that the proposed solution copes at a functional level, satisfying the
requirements that emerged during the problem analysis. Considering that security is very
important and the security model is an important part of this dissertation, a security analysis
of the proposed solution follows.

4.2 Security Analysis Methodologies

The security of a solution depends on all its components and dependencies, both physical
and logical. Hence, the security of applications, services, systems and networks concerns and
depends on all actors involved in its creation, maintenance and use. There are three main
vectors of data security: privacy, integrity and availability. Those can only be achieved if all
the application layers address those challenges implementing suitable controls.

94

To address these challenges, Jones and Rasto [108] recommend that security should be
incorporated in the Software Development Life Cycle, making security transversal to all the
development phases. In the design phase, the security context and security requirements
should be decided. A risk assessment contemplates asset identification and the creation of
a threat model should be considered. Risk mitigation procedures should be carried out on
the threat model and a security review made. During the development phase, the developer
should be aware of security risks, and should use secure coding patterns and approaches.
In the testing phase, unit testing can be used for code reviewing, integration and quality
assurance testing, penetration testing, and optionally certification of the system. It is also
important to consider the operations and maintenance phase’s specific procedures related to
security, such as security training, management of cryptographic material, management of
privileges, monitoring and others. The disposal phase should consider operations connected
to the movement, sanitization, disposal and archiving of software, data and hardware.

Threat modeling can be seen as a core step to achieve a secure solution [108], as it is in
this phase that an application model is created and the nodes that can become a target of
security attacks are identified. The procedure comprises the following phases:

• Each target node is analyzed for attacks

• Construction of an attack tree describing vulnerable system areas to specific threats

• Risk mitigation phase – Analysis each identified threat to answer the following questions:

– How an attack arises

– How the vulnerability can be exploited

– What are the suitable controls to mitigate the threat

Different methods and tools exist for threat modeling and analysis, such as misuse cases
and attack trees [109]. The misuse cases are use cases that represent misuse behavior (attack)
from attacker to systems, enabling to reason over the vulnerabilities that are exploited on
each attack and how each vulnerability can be mitigated. The attack trees enable to create
a tree that shows how an attack is performed, being the root the attack objective and the
arrangement of the leafs (each one represent sub-attacks needed to achieve the propose)
represents possible vectors of attack.

Historical data related with attacks, vulnerabilities and weakness, configuration errors
enable security experts to understand how systems and its components can be attacked.
This information is available in security databases such as National Vulnerability Database
(NVD)1, Common Weakness Enumeration (CWE)2, Common Attack Pattern Enumeration
and Classification (CAPEC)3, and Common Configuration Enumeration (CCE)4 [12]. The
attack patterns give information about how an attack works. It has a unique pattern name and
classification, the attack prerequisites, description, analogous vulnerabilities (uses common
Vulnerabilities and Exposures (CVE) number5) or weaknesses (uses CWE). It also describes
the method of attack, attack motivation-consequence, attacker skill or knowledge required,
resources required, solutions and mitigations, context description and further references [110].

1http://nvd.nist.gov/
2http://cwe.mitre.org/
3http://capec.mitre.org/
4http://cce.mitre.org/
5http://cve.mitre.org/

95

http://nvd.nist.gov/
http://cwe.mitre.org/
http://capec.mitre.org/
http://cce.mitre.org/
http://cve.mitre.org/

When analyzing the possible attacks to a node, the STRIDE approach can be used. The
STRIDE approach represents Spoofing, Tampering, Repudiation, Information Disclosure, De-
nial of Service and Elevation of privilege. Using this systematic approach, some security
properties can be verified [11]. The process is based on the analysis of how each compo-
nent behaves when under each attack classes. For instance, the security expert can search
for spoofing attacks to architecture functionalities, using historical databases or personal ex-
pertise and verify if that attacks will succeeded. If it does the related security property is
compromised. The relations between threats and security properties are illustrated in Ta-
ble 4.1. These relations enable us to understand which threats the systems need to mitigate
to support the security properties.

Table 4.1: Threats and Security Properties [11]

Threat Security Property

Spoofing Authentication
Tampering Integrity
Repudiation Non-repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Elevation of privilege Authorization

The security assessment of an architecture can be made using different approaches. A
good survey [111], divided the approaches in the following areas: capture of the security
architecture, techniques for discovering attacks and techniques for comparing and assessing
security architectures.

One of the challenges of ensuring security in all phases of software development is the
knowledge gap between security experts and developers. To narrow that gap, with the purpose
of reducing the occurrence of security vulnerabilities, the SHIELDS project6 arose. The
project brought new and innovative security inspection and vulnerability detection tools,
integrating security aspects and activities into software methodologies, advancing security
modeling technologies [12]. Collaboration was addressed by the creation of a central repository
(called the SVRS) that enabled the sharing of security models. Those models can be used in
development tools to automatically detect and eliminate possible vulnerabilities [112]. The
models should be developed by security experts. SHIELDS has different models with diverse
purposes summarized in Table 4.2.

SHIELDS proposes six different activities to improve security during software develop-
ment:

• Security Goal and Vulnerability Class Identification

• Goal Driven Security Inspections

• Vulnerability Driven Security Inspections

• Selecting Mitigation Strategies

6http://www.shields-project.eu/

96

http://www.shields-project.eu/

Table 4.2: Overview of Models [12]

Model Purpose Relation to other models

Misuse case Get an overview of typical threats towards func-
tionality commonly found in software systems,
and common countermeasures.

Provide input for finding
relevant VCGs, SGITs and
VIDs.

Attack tree Get an overview of how an attacker can achieve a
specific attack goal, in order to protect a system
from such attacks.

Provide input for finding
relevant VCGs, SGITs

Vulnerability
Cause
Graph
(VCG)

Improve understanding of software vulnerabili-
ties by identifying a vulnerability’s causes and
their relationships.

Will provide Causes and
paths leading to a vulnera-
bility that will allow defin-
ing VDC (see below).

Security
Activity
Graph
(SAG)

Identify software development activities that
can prevent vulnerabilities by addressing their
causes.

A SAG is typically associ-
ated with a cause or a se-
curity activity.

Vulnerability
Detection
Condition
(VDC)

Formally describe system or application behav-
ior that allows proving that a cause is present in
the implementation and execution traces. This
information is then typically used by testing
tools to perform automated vulnerability detec-
tion.

Can be linked a VCG; sev-
eral VDCs can be derived
from a VCG.

Security
Goal Indi-
cator Tree
(SGIT)

Describe indicators that can be examined to
find if a security goal has been correctly imple-
mented. The structured set of indicators can
then be used to guide inspections.

Can refer to indicator spe-
cialization trees, and are
related to security goals.

Security
indicator
special-
ization
tree

Give more details on an indicator that can be
used for inspections, e.g. how to check for this
indicator in different document types and on dif-
ferent platforms.

Connected to SGITs.

Guided
security
inspection
checklist

Provide an easy to use guide for how to inspect
whether a security goal has been correctly im-
plemented.

Created based on SGITs
and indicator specializa-
tion trees

Vulnerability
Inspection
Diagram
(VID)

Guide inspections for a specific class of vulner-
abilities.

Related to vulnerabilities.

Security
inspection
scenarios

Give concrete guidance as to how to perform the
actions described in a VID in order to inspect
for the vulnerability.

Created based on VID.

97

• Vulnerability Cause Presence

• Security education of vulnerability Causes

As previously mentioned, security should be integrated in all phases of software develop-
ment cycle. During the design phase an analysis should be made before starting the devel-
opment phase. The security review made in this phase allows the detection of design choices
that could block the implementation of controls to achieve the required security properties.
Incorrect design choices can compromise future development, making impossible to implement
required security properties as they can be incompatible. This verification is more complex
when the systems use services composition and the security properties need to be enforced
among different provides. The security analysis made to our proposed architecture is based
on the creation of a high-level threat model to enable to verify how it copes with common
threats to the security properties. Considering that the Security Goal and Vulnerability Class
Identification phase of SHIELDS enables the creation of a threat model, this activity will be
explained in detail. For threat modeling, the forms used in SHIELDS are misuse cases and
attack trees. To create a high-level threat model, the proposed workflow is illustrated in
Figure 4.4 [12].

Create and analyze generic system description

Create misuse case diagram

Create attack tree

Upload model to SVRS

No

Link attack tree to misuse case

Yes

Detail misuse cases ?

Figure 4.4: Example of a high-level threat modelling process

The phase of creating and analyzing generic system description can be performed with
a use case model of the software, or by identifying all the verbs in the system description,
following the identification of nouns to understand what actors and assets are. Finally, the
functionality of the system should also be identified.

The next phase is the creation of misuse cases. SHIELDS proposes two alternatives,
firstly the use of pre-existent misuse case models in the SVRS and the other is modeling
from scratch. In the first approach, using the centralized repository, a search is made to
select existent models that are analogous to the system being developed. Then the models
are imported and updated to cope with the functionality of the new system. The inclusion of
new threats is made by brainstorming or by updating the model with misuse case stubs, as
the second alternative. In the misuse case, countermeasures should be proposed to mitigate

98

threats. If it is useful to explain in detail how an attack can be made, an attack tree can be
associated with the misuse core elements.

The second approach to creating misuse cases is to use categorized threats and misuse case
stubs as a source of creating new misuse cases. First, a use case for the software should be
created with the functionality. Then for each use case, brainstorming is used to select relevant
threats that can influence the functional properties of the system and to find security activ-
ities that can mitigate those threats. To search for possible threats, a list of known attacks
and threat categories can also be used, such as the STRIDE (Spoofing, Tampering, Repudi-
ation, Information Disclosure, Denial of Service, Elevation of privilege), threat taxonomies,
textbooks and own security expertise. Hence, each misuse case is connected to the use case
using a threatening relationship. If the use cases have potential vulnerabilities, the misuse
case is connected to vulnerabilities using the exploit relationship. Then security activities are
associated with the misuse cases using the mitigating relationship to identify how the threats
can be mitigated. This process may be repeated several times, as security functionality ap-
pended to mitigate can provoke new threats and attacks. Optionally, a textual misuse case
description can be created elucidating in detail the threats with description, motivation and
mitigation activities shown in the misuse case [12].

The other phase of high-level threat modeling is the creation of attack-trees to explain
how an attack can be carried out. Attack trees enable developers to understand how attackers
work and how common exploits can work against the system. They enable the developer to
have a better understanding of attacks and attack patterns without the need for thorough
knowledge of security, enabling him to be better prepared to define mitigation strategies. The
first step, in creating attack trees, is to decide the attack goal that is going to be modeled, and
include it as the root node. Then the diverse attack paths to achieve that goal are modeled
as child notes of the tree. Brainstorming is used with different sources of information, such as
information from real life incidents, security knowledge, and databases such as the CAPEC
or others referred to earlier. The paths can be combined with alternative paths, or if some
of the child paths have to be achieved to reach the parent, the child nodes are aggregated
using the AND gate. This should start with the topmost attack goal node. When the tree
is complete, an analysis should be made to verify what security activities can mitigate the
attack branches. Those activities should be appended to the misuse case diagrams as security
use cases [12].

All the models produced, in this case the misuse case and the attack trees, should be
shared for feedback in order to improve the models. Good models will allow the creation
of a more secure system, based on model analysis and checking [12]. The SHIELDS project
enables collaboration through the centralized repository SVRS.

Different tools were created to enable the SHIELDS approach. The SeaMonster [113] is
an open-source tool compatible with SHIELDS approaches and their SVRS repository. It
permits the creation of misuse cases and attack trees, enabling security to be modeled, with
different linked viewpoints of vulnerabilities, facilitating the revelation of causes, threats and
countermeasures within the same tool.

4.3 Security Analysis

The security analysis of the proposed solution is made resorting to a threat model, em-
ploying misuse cases and attack trees.

99

The actions considered for creating the threat model were high-level. For the Patient, the
following was considered: Manage Repositories, Manage VHC, Manage Access Policy. For the
User/Service, Registration was considered. In both type of actors we have considered the Store
Data, Request Data and Authentication services. The functions provided by complementary
services of the Certificate Authority (CA), OpenEHR archetypes will not be represented in
the misuse cases, as they implement common functions. The CA is self-managed and enables
common services to the architecture components. The OpenEHR repository stores signed
archetypes that each components or actors can request to retrieve without authentication.
The storing of new archetypes is done manually.

Using the SRVS models, with databases with past security data and own security expertise,
we construct the high-level threat model for security validation of the proposed model. The
misuse case models reflect a subset of threats from the STRIDE analysis.

Figure 4.5 illustrates a subset of a misuse case model for contemplated threats. In this
model, for better readability, the threaten legend is not present. Here, the most common
misuse cases (ellipses with a black background) are represented. This model is an overview
of the considered threats coming from an analysis of the information in the SRVS repository.
The attacks contemplated in the Create/Use information use case are:

• Modify Database

• Replace Content

• Make Service Unavailable

• Create False Message

• Spoof server

• Spoof user service

• Replay another users’ data packages

• Modify Data in Transit

• Eavesdrop

• Access to private/secret data

For the registry were considered the following misuse cases:

• Replace Content

• Make Service Unavailable

• Create False Message

• Spoof server

• Spoof user service

• Replay another users’ data packages

• Modify Data in Transit

100

• Eavesdrop

• Access to private/secret data

• Create and use fake user account

Analogous, to the manage use case, were contemplated the following misuse cases:

• Replace Content

• Make Service Unavailable

• Create False Message

• Spoof server

• Spoof user service

• Replay another users’s data packages

• Modify Data in Transit

• Eavesdrop

• Access to private/secret data

• Create and use fake user account

The authentication action is requested by other use cases and was considered to be threat-
ened by the following misuse cases:

• Replace Content

• Make Service Unavailable

• Create False Message

• Spoof server

• Spoof user service

• Replay another users’s data packages

• Modify Data in Transit

• Eavesdrop

• Access to private/secret data

• Create and use fake user account

• Steal Digital Identity

• Steal Session

• Get access to administrative operations

101

• Bypass access control

• Take control over user terminal

• Steal user terminal

A deeper analysis follows, by creating a more comprehensive misuse case for each of the
STRIDE vectors. Figure 4.6 considers the subset of misuse cases related to spoofing. This
shows the misuse cases linked to the vulnerabilities (dotted line ellipses) that are exploitable
and linked to security activities (grey ellipses) that can mitigate those misuse cases. The base
definitions and mitigations came from the SVRS repository of the SHIELDS project.

In this context, spoofing is a method of attack which tries to get illegitimate advantage
by masquerading as another person or software component. Considering the proposed archi-
tecture, the misuse case for spoofing is resumed in Table 4.3.

Table 4.3: Misuse case diagram: Spoofing

Threat Description Motivation Mitigation

Steal Ses-
sion

Sessions are utilized
to be able to keep
state information in
a web application,
and by stealing the
session of an authen-
ticated user it will be
possible to get unau-
thorized access to re-
sources.

An attacker tries to steal
a session already estab-
lished by a trusted user,
or a sessions established
between each architec-
ture services and com-
ponents, with the pro-
pose of use the services
as the previous authenti-
cated user.

Use sessions expiration
and protect credentials.
Make sure sessions have
limited lifetime to avoid
that attackers can reuse
them. Protect e.g. pass-
words and keys when
stored and when trans-
mitted over a network.

Steal Digi-
tal Identity

An attacker steals
user credentials, for
enabling him to au-
thenticate using a
trust user account.

By stealing a user’s dig-
ital identity it will be
possible to spoof a user
identity and get unautho-
rized access to system re-
sources.

Protect e.g. passwords
and keys when stored and
when transmitted over a
network. Do not rely
on password based au-
thentication, but rather
use two-factor authenti-
cation by e.g. also using
digital certificates or one
time passwords. The pro-
posed solution uses two-
factor authentication, us-
ing certificates protected
by password, some of
them securely stored out-
side the systems on a
crypto-card as on Elec-
tronic Citizen Cards.

Continues on next page

102

Table 4.3 – Continued from previous page

Threat Description Motivation Mitigation

Spoof
the User
Service

Attacker can offer a
false service similar
to the original one.

The attacker tries to de-
ceive users and services
to interact with fake ser-
vice. With the propose
of gaining access to priv-
ileged information, cre-
dentials or send false in-
formation for gaining ille-
gitimate advantage.

Verify the server’s iden-
tity by using e.g. signed
digital certificates. The
proposed solution, uses
an internal Certificate
Authority for controlling
the issued certificates
for the architecture
services. Services use
signed certificates to
authenticate themselves,
services use mutual au-
thentication using the
issued certificates.

Spoof
Server

Attacker can set up
e.g. a fake web
server that replicates
the graphical user
interface of a legiti-
mate server.

The attacker tries to de-
ceive users and services to
interact with fake server.
With the propose of gain-
ing access to privileged
information, credentials
or send false informa-
tion for gaining illegiti-
mate advantage

Verify the server’s iden-
tity by using e.g. signed
digital certificates. The
proposed solution makes
heavy use of mutual au-
thentication using the is-
sued certificates.

Take con-
trol over
user termi-
nal

Attacker gets illegit-
imate access to a
user’s terminal

The attackers tries to
gain access to users ter-
minal, to have access
to information to enable
him to access to user ser-
vices.

Control who gets access
to resources, and make
sure access control mech-
anisms cannot be circum-
vented. The user’s termi-
nals were not considered
in the architecture.

Continues on next page

103

Table 4.3 – Continued from previous page

Threat Description Motivation Mitigation

Steal User
Terminal

Physically steal a
user’s terminal

Tries to gain access to
privilege information,
that will enable him to
impersonate the user
that owns the terminal.

Control who gets access
to resources, and make
sure access control mech-
anisms cannot be circum-
vented. Encrypt the hard
disc content of a termi-
nal. As earlier stated
the terminal security was
not considered, but the
design protects the cre-
dentials if the users au-
thenticate recurring to
Electronic Citizen Cards,
or external dongles, with
cryptographic protection.

In the proposed solution, the credentials stored in the architecture make use of crypto-
graphic mechanisms. Users’ certificate authentication is also used, making it very difficult to
steal a digital identity via the server side, since the server/service has the public-key and it is
computationally infeasible to compute the private part from the public part. The VHCS ser-
vice has two components, Patient Credentials and Repository Management, which store some
credentials. If those components and service are compromised by administration privileges,
those credentials could be accessed.

Service or server spoofing is mitigated using mutual authentication of client application
and services using certificates. As such, every service and components of the architecture
perform mutual authentication before any communication negotiation between them. An
internal certificate authority issues these certificates. Also, users’ authentication in the VHCS
and Broker is assured through certificates issued by trusted Certificate Authorities.

Another aspect contemplated is related to tampering. Tampering is interference aiming
to cause damage or make unauthorized alterations. The tampering misuse case is shown in
Figure 4.7 and resumed in Table 4.4.

104

Table 4.4: Misuse case diagram: Tampering

Threat Description Motivation Mitigation

Modify
database

The attacker mod-
ifies the underline
databases that are
used to store infor-
mation to the appli-
cations and services.

Many applications and
services rely on databases
for data persistence. This
approach can be more ef-
fective than attacking the
front-end of the services,
as usually implement less
security mechanisms and
are at mercy of an insider.
The attacker tries to gain
access to the database,
and modified it, in other
to change the business
logic of the application or
service.

Log all activities. By
logging all activities, pro-
hibited activity can be
detected. Perform strict
database access checks.
Do not let anyone read,
add, modify or delete
data to the database
without proper access
control. The proposed
model makes use of digi-
tal signing and cyphering
of data present on the
underline databases to
enabling detection of
abnormal modifications
of the data.

Replace
content

An attacker replaces
the original content
with malfunctioning
or malicious content.

The attacker has two
types of motivations.
First, he want’s to inject
malicious code, for trying
to execute commands on
client side, or on service
side when parsing the
contents. Second, is to
modify the information,
that change the normal
function of the services.
E.g. change the reposi-
tory information, forcing
the Broker to store the
new patient data bulks
in other repository.

Perform strict database
access checks. Use data
hashing and signing on all
content.By hashing and
signing all content the
users will be able to ver-
ify its origin.

Create
false mes-
sages

An attacker inserts
false messages in an
electronic conversa-
tion.

The attacker creates mes-
sages, for educing other
services to execute re-
quested actions as it were
requested by a valid ser-
vice, application or actor.

Use data hashing and
signing on all content,
and also certificates to
mutual authenticate the
services and application.

Continues on next page

105

Table 4.4 – Continued from previous page

Threat Description Motivation Mitigation

Modify
data in
transit

The attacker, tries to
intercept and modify
network traffic be-
tween systems. E.g.
using web proxies or
making an attack of
the type of Man In
the Middle.

The purpose of the at-
tacker is to change the
information that a sys-
tem is sending to another,
to work for the attacker
proposes. E.g. if the
message is a command to
grant access to user X to
a record, the attacker can
try to change the message
to grant access to the user
attacker.

Sign data in transit.
Signing data in transit
makes it impossible for
an attacker to modify the
data without detection.

One form of attack is on the VHCS, to gain access to modify the supporting database of
the Patient’s Policy, so as to manage the access policy for the patient’s records. The patient
credentials database could also be changed, to corrupt patient access to the platform, or the
public token changed to enable the attacker to use one for which he holds the private part,
giving him access as the patient. The attacker can also try to modify the contents of the
Repository Credential database in the VHCS, forcing the Broker to initiate a new patient
repository to store contributions.

Modifying databases that support the Broker’s normal operation could enable the attacker
to act as a provider by changing the public token, allowing him to use one for which he holds
the private part. He could also change the type of services provided, the provider’s information
and more.

The attacker can also target other services, such as the Accounter, Repository or Indexer.
On the Accounter, the attacker can try to change the logged information stored by other
services to camouflage attacks on the architecture services. The attacker can modify the data
in the Repository to create false data for the patient, and can also try to change information on
the Indexer, to disturb the normal process of information searching over the patient repository.

These types of attacks are mitigated by predominant use of cryptography. The infor-
mation on databases and in repositories is usually signed using the token used by the actor
and cyphered to the patient internal public-key, for patient-related information. Therefore,
the change of information on databases, change of content, creation of false messages or
change of the information in transit can be detected and refused by the architecture services.
Hence, access to the services of Accounter, Repository, Indexer, Certificate Authority, chang-
ing databases on the VHCS or on the Broker (Internal) is controlled by mutual authentication,
making it harder for the attacker to access them directly and launch an attack. The attacker
has to gain access to a valid certificate to allow communication with those services.

The repudiation misuse case diagram is illustrated in Figure 4.8 and resumed in Table 4.5.
Repudiation is the concept in which a user can dispute a transaction or a request to a system.
Normally, this is associated with insufficient logging and auditing information, or the ability
to verify the identity of the requesting user. This analysis contemplates the attempt to act
as another user, by creating a false account or replaying data packets or other users.

106

Table 4.5: Misuse case diagram: Repudiation

Threat Description Motivation Mitigation

Create
and use
fake user
account

If an attacker creates
a fake user account
it can be difficult to
trace an abuse back
to the legal person or
entity.

The attacker tries to de-
ceive the system, by cre-
ating an account using
fake information, making
very hard to trace to the
legal person. This will
push the attacker act on
the system has untrace-
able. Or traceable to
other person or entity.

Request email confirma-
tion. For systems that
need a strong binding,
they can require identi-
fication document. Re-
quire that users prove
their identity by show-
ing an identification doc-
ument.

Replay
another
users’s
data pack-
ets

Repudiation can be
challenged by users
replaying previous
packets from an-
other user to get
some information
or perform some
actions on a system.

The attacker tries to send
previous packets for mak-
ing the same request that
an authorized user had
done in the past.

Use session expiration.
Validate freshness of each
packet. Perform checks
on the freshness of pack-
ets in order to detect
packet replay.

Some approaches consider using an email address to validate user information. The user
needs to have access to that email account to validate the email address. Usually it is an
email that contains a URL or a token needed to confirm the action. This approach is used
for some services that do not request a strong bond between the legal person or entity and
the account being created, as false e-mail accounts can be easily created or even corrupted.
This approach may be weak for the creation of e-banking accounts and other critical services.
As countries are adopting the use of Electronic Citizen Cards, the proposed solution uses the
token on those cards to create the accounts. The user is requested to use the certificate inside
those cards and asked for a PIN or password for identification purposes in the self-enrolment
process.

Repudiation is also minimized by signing all the requests and data with the token used by
the requesting user. The services use mutual authentication, which makes it more difficult for
an attacker to replay previous data packets, such as the capture of packets in communication
between services. Electronic Citizens’ Cards are also used for reliable authentication of the
person creating the accounts in the systems, enabling the legal person or entity to be traced.

Another important aspect to be analyzed is information disclosure. Figure4.9 shows mis-
use cases of access to private or secret information, eavesdropping and taking control of the
user’s terminal. An explanation appears in Table 4.6.

107

Table 4.6: Misuse case diagram: Information Disclosure

Threat Description Motivation Mitigation

Access pri-
vate or se-
cret data

If the applica-
tion/service stores
private or secret
data, an attacker
can try to access
such data by ex-
ploiting weaknesses
in access control
mechanisms, vul-
nerabilities in the
application/system
or by attacking the
storage media.

The attacker tries to ac-
cess information that is
private, or secret. This
could give him private in-
formation that the sys-
tem is manipulating, in
this case medical related.
Or he can try to access to
secret information for en-
able him to gain knowl-
edge to defect security
mechanisms.

Encrypt data during
storage. Information
can be encrypted during
storage to make it harder
for attackers to get ac-
cess to the information.
When using encryption
it is important to choose
recognized encryption
algorithms and to protect
keys. Enforce proper ac-
cess control. Control who
gets access to resources,
and make sure access
control mechanisms
cannot be circumvented.
Use strong authentica-
tion. Do not rely on
password based authen-
tication, but rather use
two-factor authentication
by e.g. also using digital
certificates or one time
passwords.

Continues on next page

108

Table 4.6 – Continued from previous page

Threat Description Motivation Mitigation

Eavesdrop With the right tools,
all network data can
be read by an at-
tacker.

The attacker try to mon-
itor the communication
between services, or ser-
vices and users. The mo-
tivation is to gain access
to the information during
transmission instead of
need to bypass authenti-
cation and authorization
mechanism to read the
stored data. Other pro-
pose is to analyze queries
and responses to extrap-
olate data. Also ana-
lyzing communication en-
ables the attacker to gain
more knowledge, even
capture some credentials,
which can use for future
attacks.

Encrypt data in transit.
By encrypting data in
transit it gets harder for
attackers to get access to
the information by eaves-
dropping. For encryp-
tion to be effective it is
however also important
to protect keys and to
to use encryption algo-
rithms that are well rec-
ognized.

Take con-
trol over
user termi-
nal

Devices such as
laptops, USB pens
and cell phone often
contain confidential
data that needs
protection.

Patient’s and User’s ter-
minal systems are juicy
in terms of information
and some times creden-
tials. The attacker can
sometimes get the infor-
mation directly to the
producer or the con-
sumer. Those systems
are normally configured
with less security mech-
anisms, with loose se-
curity policies, therefor
more vulnerable to a suc-
cessful attack.

Despite of the scope of
the proposed solution is
restricted to the core ar-
chitecture, some security
activities can be made
for mitigate this attack
vector. E.g. use disc
encryption, encrypt the
hard disc content of a ter-
minal; enforce user au-
thentication, enforce all
users are authenticated
and that the authentica-
tion procedure cannot be
circumvented.

Protecting private and secret data is critical when manipulating this type of information.
The functionalities requested challenge the privacy of the data. Therefore, the data stored
in the Repository is double cyphered on a file per contribution, without exposing the data
structure which could lead to extrapolation of the stored data. If an attacker wants to read
the data, he must gain access to the private key of the Broker, the current internal patient
private-key stored in the VHCS and gain access to data stored by a direct Repository attack
or by eavesdropping on the communication. To minimize the risks of eavesdropping, services

109

and their components make use of mutual certificate authentication and cypher the data
during the communication. Data sent is cyphered by the communication channel, but it is
also cyphered by the requester public key or patient internal public key. This mitigates a
man-in-the-middle attack, tricking users into accepting the keys blindly, which could enable
an attacker to act as a proxy in the middle of two cyphered channels to read the information in
plain text. If this attack succeeds, the information that the attacker gained is also cyphered,
and so privacy is not compromised.

The critical service is the VHCS which holds the credentials that can give access to the
information cyphered to the patient internal public-key. The other architecture services meet
the challenges of being deployed in normal service providers, since the risk of information
disclosure even from the services and system administrator is mitigated as the information is
manipulated through cyphering without access to the keys used. The VHCS service, especially
Cryptographic Component, Patient Credentials and Repository Management, should deal
with trustworthy providers, as it manipulates cryptographic function, has the credentials for
the repository and the patient internal private-key that can decipher the information stored
for the patient. But as the information is stored in other services, the attacker has to corrupt
more that the VHCS to gain access to the information.

Denial of service is the result of disrupting normal service provision. A generic misuse
case is illustrated in Figure 4.10 and explained in Table 4.7.

Table 4.7: Misuse case diagram: Denial of Service

Threat Description Motivation Mitigation

Make
service
unavailable

Denial of service is
the common term for
blocking access to
network services and
resources.

The attacker may want to
disrupt the normal func-
tioning of the services or
make it unavailable users,
not just for not enable
to make use of the ser-
vices but also to easily
substitute it by a mali-
cious service. The ma-
licious service could help
the attacker to gain ac-
cess to privilege informa-
tion, that can be used for
deeper attacks.

Restrict number of con-
current requests. Re-
duce the amount of traf-
fic to the server by us-
ing e.g. ingress filtering.
Use fault tolerant mecha-
nisms. Utilize clustering
and load balancing. Con-
sider replicating parts of
your system so that you
can handle failure of in-
dividual components.

Mechanisms for achieving fault tolerance and load-balancing may mitigate denial of ser-
vice attacks. To enable correct exploitation of the load-balancing mechanisms, the proposed
solution was based on small, simple sessions, and when possible stateless components, en-
abling them to be easily replicated and concurrently executed, allowing fault tolerance and
scalability.

Elevation of privileges relates to an attacker or authorized user’s attempt to gain more

110

privileges. This aspect is explained in Figure 4.11 and Table 4.8.

Table 4.8: Misuse case diagram: Elevation of privileges

Threat Description Motivation Mitigation

Bypass ac-
cess control

Poorly implemented
access controls can
be circumvented,
e.g. by using
SQL injection to
comment out the
password validation.
URL jumping is
another attack path.

Systems and applica-
tions, enable to have
different privileges for
users by implementing
access control mecha-
nisms. Attacking those
mechanisms could enable
to gain access access to
the system or to escalate
privileges that should
not be available for that
user.

Sanitize input. En-
force proper access con-
trol. Control who gets
access to resources, and
make sure access con-
trol mechanisms cannot
be circumvented.

Take con-
trol over
admin-
istrator
terminal

Attacker gets illegit-
imate access to an
administrator’s ter-
minal.

Taking control over the
administrator terminal
could give access to
credentials for manipu-
late the access control
mechanisms, enabling
the attacker to gain
access to systems and
services. This enable
the attack to gain access
without the need of
attack the services, as
he will access with valid
credentials, likely with
special privileges.

Enforce proper access
control. Use strong au-
thentication. Do not rely
on password based au-
thentication, but rather
use two-factor authenti-
cation by e.g. also using
digital certificates or one
time passwords.

Continues on next page

111

Table 4.8 – Continued from previous page

Threat Description Motivation Mitigation

Get access
to adminis-
trative op-
erations

Attacker gets access
to operations only
meant for adminis-
trators.

The attacker tries to gain
access to operations that
are intent to be avail-
able only to administra-
tors by exploring mis-
configuration, weak pass-
words, or incorrect priv-
ilege assignment for ma-
nipulate access control
mechanisms. Enabling
him to execute operation
that he can use to his own
propose – owning the sys-
tems, services and infor-
mation.

Use strong authentica-
tion. Follow principle of
least privilege. Make sure
users and applications
only have access to in-
formation and resources
that they need. Con-
sider among others ac-
cess control policies and
the privileges of applica-
tions. Force strong pass-
word. Require that pass-
words are of sufficient
length and that they con-
tain numbers, symbols
and upper and lower case
letters. Check passwords
against dictionaries.

The process of elevating privileges is through tricking the access control mechanism or
gaining more and more privileges by exploiting poorly implemented security mechanisms,
vulnerabilities in the systems and services that support the proposed solution, to reach ad-
ministrative operations. The proposed solution makes use of thorough authentication to
minimize the risks associated with password issues. The proposed solution follows the prin-
ciple of the least privilege in all services and components and makes it necessary to corrupt
more than one service to gain access to a patient’s information in a repository. It even protects
from system administrator access to the information that their services have stored, except
components in the VHCS. The VHCS components can detect if the information stored has
not been tampered with, using digital signing of the information stored.

A threat model was presented, based on the most general attacks and mitigation actions
with analysis of the proposed solution. Given the value of the manipulated information, a
more comprehensive analysis of attack vectors to gain access to patient information is made,
considering the attempt to access the patient’s medical information stored in services or
capture it during communications.

Considering that all the services and components of the architecture require mutual au-
thentication and use certificates issued by an internal Certificate Authority the attacker needs
to corrupt the CA to create a certificate enabling him to communicate with the other services.
Then he can launch other types of attacks on other services or components. This attack is
very challenging as the online PKI services are mostly related to the lists of revoked certifi-
cates and validation, and even for those services he needs a valid certificate. The certificate is
created in an offline node as guidelines suggest. Therefore the attacker normally chooses an
easier approach trying to attack more exposed services, such as the VHCS, Broker and user
stations, as earlier discussed.

112

The normal behavior of the solution is to have users requesting actions from the Broker.
These actions imply access to the Repository and further manipulation on the VHCS. Captur-
ing traffic between these three services has interest to the attacker as he can try to eavesdrop
on communication between these three services. The attack tree is shown in Figure 4.12. He
first needs to break the network encryption or make a man-in-the-middle attack. Nonethe-
less, the attacker will still have access to cyphered information, because the data in transit
is cyphered and not only the channel. If he captured it during a request to the Broker, the
attacker needs to gain access to private keys. In communication between the Broker and the
VHCS when storing, the attacker needs the patient internal private key stored in the VHCS
in the Patient Credential component. When retrieving, the attacker needs the user’s private
key owned by the user to control his physical access. Another approach is to try to capture
the traffic between the Broker and the User. When the user is storing, the attacker needs
the patient internal private key. When retrieving, the attacker needs the user private key to
decipher the data. Another possibility is to try to capture and decipher the data between the
Broker and the Repository. Here, the attacker needs access to the Broker’s private key and
the patient internal private key.

A direct attack on the service Broker manipulating requests is also possible. If successful,
the attacker could gain access to the Broker key used for cyphering data to and from the
Repository. However, this would not give access to the information, as it is cyphered to
the patient internal public-key or the user public-key. Even queries are encrypted and so
protected from attacker analysis. The attacker could try to change the registry, creating a
new entry for him, or associate his certificate with another provider already in the system.
In the first approach, the attacker would try to create a false account, to deceive patients
into giving him access to their medical data. In the second one, the attacker would try to
spoof the identity of a provider that patients had already given access to their medical data.
But as the Broker will check with a valid and trusted CA, the system should detect that the
information on the certificate or the CA signature is not correct, and therefore block access
to whoever uses that certificate.

The attacker could also try to change the access control defined by a patient by manipulat-
ing the information on the Policy Management in the VHCS. The system stores permissions
with a signature generated by the authentication token the patient is using, so tampering can
be detected. The attacker could only change or create other entries if he gained access to
the patient authentication token. But the attacker would probably try to request the Broker
for all the patient’s information immediately, before the patient requests revocation of the
compromised token. Such a query to retrieve all the information can easily trigger some
red flags. Therefore, the attacker could create an entry on the policy to enable him to use
the user normally by requesting information from the Broker. The attacker would need to
have created a fake account with the Broker earlier, which is very difficult to achieve without
being detected. Also, the time-stamps of rule creation give information that the rules were
created close to the loss or corruption of the token, thus, enabling revocation of those rules
or requesting the patient to revalidate those rules with the new token.

A direct attack on the VHCS can also be made, to get access to information from some of
the components of that service. It is very difficult to modify the information present in this
service as it uses a digital signature on most of the information stored in its components. The
attacker could gain access to the patient internal private key and the Repository credentials
the Broker uses to access the Repository, but even with this information he will need the key
the Broker uses to cypher the data in the repository. The attacker also needs to corrupt the

113

Broker to be able to gain access to information in plain text.
Another approach is to attack the servers which support the services. This is also challeng-

ing, as even if the attacker could bypass firewalls, authentication and authorization mecha-
nisms, gaining administrative privileges on the server, the information stored in them is
cyphered for the patient’s public-key. Not even the data structure can be analyzed, because
in the Repository the data and structure are stored in cyphered data bulks, and on the In-
dexer too. If the attacker had somehow got the patient internal private key, he could try
to corrupt the Indexer, attacking the server that supports the service, because the service
accepts only connections from services that have a valid certificate. Therefore, a direct attack
on the underlying server could be the attacker’s preferred approach.

The service Accounter receives all the logs from the services, ensuring privacy by cyphering
the log information created by other services to the corresponding public internal patient key.
The service accepts connections from all services with a valid internal certificate, but only to
append information. Therefore, the system can verify the correct behaviour of all services
and users, and using continuous accounting, could trigger security actions to mitigate possible
abuse, as it can detect use of the same user certificate from different locations, incorrect
signature on policies, erroneous behaviour of actors, and more.

4.4 Summary

This chapter presented a functionality analysis of the proposed architecture to verify that
it answers to the requirements. Also, proposed a methodology to inspect the security of the
proposed architecture. This step enabled to verify if every request security proprieties were in
place and that no structural design decision that can compromise future development of the
security mechanisms was made. Considering this a critical step when proposing a solution,
we defend that this approach can be used to verify other architectures. The process can be
summarised as follows:

• To identify the functions and the nodes which provide them

• For each STRIDE vector use the misuse cases that make sense to the architecture, using
SVRS models, combined databases with past security data and own security expertise

• To construct the threat model using that knowledge and verify how the architect will
behave with those misuse cases

• To complement with the table that analyses each misuse case, objective and mitigation
activities

• For misuse cases without mitigation strategies or complex ones, attack trees can be
created to better understand how the attack is performed and its extension. Enabling
also to understand how to mitigate it

• If the attack vector represents very high risk, the architecture may need to be changed
to provide mitigation to this attack, if so the analysis should be restarted, since anew
security functionality can also lead to a new vector of attack

• When all the desired mitigations are in place and verified, or the risk can be considered
acceptable, the analysis can stop

114

One of the big challenges found is the privacy protection of the information during trans-
mission, storing and processing. As providers are migrating to solutions based on cloud
services the extension of a break, malicious users and administrators bring a huge challenge
to maintaining information’s privacy and at the same time enable the collaboration. Another
important attack vector is the analysis of data structure or the queries made to a database
to extrapolate the information store on databases or files, even with cyphered content.

The mitigation techniques used for this type of information, despite of the normal controls,
were based on the minimal functionality of each component, cyphering storage and indexation.
The access to the clinical information required more than one service to interact and grant
access. Hence, the information is manipulated in cyphered bulks as much as possible, even
in query functions. Besides, the use of a central service for continuous accounting of all
services enables the correlation between actions and requests, thus, enabling to take preventive
measures with more accuracy to protect the information and the infrastructure.

115

Patient

Provider
/

Provider
Service

C
reates /
U

ses
Inform

ation

M
anage

A
uthenticate

R
egistry

M
odify D

atabaseR
eplace C

ontent

M
ake service

U
navailable

C
reate false
m

essage

Spoof server

R
eplay another
user's data

packets

M
odify data in

transit

Spoof user
service

Evesdrop

A
ccess private/
secret data

C
reate and use

fake user account

Steal digital
identity

Steal session

G
et access to

adm
inistrative

operations

Bypass access
control

Take control over
user term

inal

Steal user
term

inal

F
igu

re
4.5:

M
isu

se
case

h
igh

level

116

A
tta

ck
er

St
ea

l s
es

sio
n

St
ea

l d
ig

ita
l

id
en

tit
y

Sp
oo

f t
he

 u
se

r
se

rv
ic

e
Sp

oo
f s

er
ve

r
Ta

ke
 c

on
tr

ol
 o

ve
r

us
er

 te
rm

in
al

St
ea

l u
se

r t
er

m
in

al

In
su

ffi
ci

en
t s

es
sio

n
ex

pi
ra

tio
n

En
fo

rc
e

us
er

au

th
en

tic
at

io
n

<e
xp
lo
it>

U
se

 d
isk

en

cr
yp

tio
n

<m
itig

at
es
>

<m
itig

at
es
>

En
fo

rc
e

pr
op

er

ac
ce

ss
 c

on
tr

ol

<m
itig

at
es
>

A
ut

he
nt

ic
at

e
se

rv
er

<m
itig

at
es
>

U
se

 a
 si

gn
ed

ce

rt
ifi

ca
te

 to

id
en

tif
y

pe
er

se

rv
ic

e

<m
itig

at
es
>

U
se

 st
ro

ng

au
th

en
tic

at
io

n

Pr
ot

ec
t c

re
de

nt
ia

ls

U
se

 se
ss

io
n

ex
pi

ra
tio

n

<m
itig

at
es
>

<m
itig

at
es
>

<m
itig

at
es
>

<m
itig

at
es
>

A
ut

he
nt

ic
at

io
n

by
pa

ss
 b

y
sp

oo
fin

g

Pe
rm

iss
iv

e
w

ith
el

ist

C
er

tifi
ca

te
 Is

su
se

s
A

cc
es

s C
on

tr
ol

(A

ut
ho

ri
ca

tio
n)

Is

su
es

<e
xp
lo
it>

<e
xp
lo
it>

<e
xp
lo
it>

<e
xp
lo
it>

<e
xp
lo
it>

Im
pr

op
er

au

th
en

tic
at

io
n

<e
xp
lo
it>

<e
xp
lo
it>

<e
xp
lo
it>

F
ig

u
re

4.
6:

M
is

u
se

ca
se

fo
r

sp
o
ofi

n
g

at
ta

ck
s

117

Attacker

Modify database Replace content Create false
message

Modify data in
transit

Access Control
(Authorization)

Issues

<exploit>

Sign data in transit

<mitigates>

Use data hashing
and signing on all

content

Preform strict
database access

checks

Log activities

<mitigates><mitigates>

<mitigates><mitigates>

Insufficient
verification of data

authenticity

<exploit> <exploit>

Failure to preserve
SQL query

structure (aka SQL
injection)

<exploit>

Context
transmission of

sensitive
information

<exploit>

Figure 4.7: Misuse case for tampering attacks

118

Attacker

Create and use
fake user account

Replay another
user's data packets

Use single-factor
authentication

<exploit>

Sign data in transit

<mitigates>

Require
identification

document

Request email
confirmation

<mitigates><mitigates>

Insufficient session
expiration

<exploit>

Incomplete
Blacklist

<exploit>

Insufficient
verification of data

authenticity

<exploit>

Use session
expiration

<mitigates>

Figure 4.8: Misuse case for repudiation attacks

Attacker

Access private/
secret data

Take control user
terminal

Authentication
bypass issuses

<exploit>

Use disk
encryption

<mitigates>

Enforce proper
access control

Use strong
authentication

<mitigates><mitigates>

Clear text of
sensitive

information

<exploit>

Privacy leak
through data

queries

<exploit>

Access control
(Authorization)

issues

<exploit>

Enforce user
authentication

<mitigates>

Evesdrop

Encrypt data
during storage

<mitigates>

Encrypt data in
transit

<mitigates>

Failure to encrypt
sensitive data

<exploit>

Information leak
through log files

<exploit>

Weak Encryption

<exploit> <exploit>

<exploit>

Figure 4.9: Misuse case for information disclosure attacks

119

Attacker

Make service
unavailable

Restrict number of
concurrent

requests

Use fault tolerant
mechanisms

<mitigates><mitigates>

Figure 4.10: Misuse case for denial of service attacks

Attacker

Bypass access
control

Take control over
administrator

terminal

Get access to
administrative

operations

Authentication
bypass issues

<exploit>

Follow principle of
least privilege

<mitigates>

Force strong
passowrd

<mitigates>

Use strong
authentication

Enforce proper
authentication

Sanitize input

<mitigates><mitigates> <mitigates><mitigates>

Access Control
(Authorication)

Issues

Use of password
system for primary

authentication

Weak password
requirements

<exploit>

Trapdoor

<exploit><exploit>

Legitemate
User

<mitigates>

Use of cookies in
security decisions

<exploit>

Incorrect privilege
assigment

<exploit>

<exploit>

Figure 4.11: Misuse case for elevation of privileges attacks

120

Capturing Broker Traffic

MIT or Break Network
Encryption

Broker <-> VHCS

MIT or Break Network
Encryption

Broker <-> Repository

MIT or Break Network
Encryption

Broker <-> User

Broker key [Broker]

User Private Key
[User Terminal]

Patient Internal Private
key [Patient Credentials -

VHCS]

AND

Figure 4.12: Attack tree - Capturing Broker Traffic

121

122

Chapter 5

Conclusions and Future Work

This dissertation started with the incursion in the area of medical informatics, specifically
in the Electronic Health Record. Electronic Health Records for mobile citizens was the pro-
posed challenge. As such, the initial research focused on patient’s mobility and the problem
of scattered information. This reality fostered the study of a collaborative solution, managed
by the patient, involving all actors, clinical or not, to achieve an updated record, composed
by clinical and complementary information. Most of the available solutions does not enable
actors to have an active collaboration where every actor can contribute and benefit with
the collaborative approach. The lack of access by all actors hinders the massification of the
Electronic Health Records use, which limits improvements on health-care services and opera-
tional costs. Also, supporting the collaboration of complementary health-care services enable
to have richer records which can help professionals keep a broad patient health monitoring,
providing integrated care solutions (specially designed for each citizen) based on clinical and
non-clinical information that resides on the record. A solution that enables the creation of
new services, new providers, easy association and a secure international collaboration between
actors managed by citizens will push further the use of Electronic Health Records.

The research of solutions will have to cope with the collaboration goal emanated challenges,
such as freedom, openness, evolution, trust and security. Targeting those challenges, we
have studied solutions and developed a secure architecture to allow all actors’ collaboration,
fostering patient empowerment and conciliating clinical integrity with third party access. A
brief description follows of how challenges were addressed.

Freedom is related with the patients’ liberty of choice and his empowerment. He should
be able to choose his provider, to manage access control to his record and to contribute to it,
without depending on service agreements between providers or by the technology used. The
creation of an open architecture, using industry standards enables any provider to develop
their tools and services upon the architecture. Moreover, it enables patients to choose their
repository provider. The coexistence of information produced by clinical staff and third party
is address by the concept of hybrid Electronic Health Records, which combine the clinical
trust of EHR and the openness with patient control of PHR.

The openness is achieved through open standard framework, such as OpenEHR, specif-
ically by using archetypes for data format which is serialized to XML, moreover, a service
oriented architecture with public available interfaces enables providers and enterprises to
develop their products.

The trust between actors and integrity of data is achieved by the use of certificates on

123

electronic identification cards or signed by trusted Certificate Authorities. It also enables users
auto-enrolment with strong authentication after prior validation of authorities. OpenEHR
archetypes helps to make some semantic validation of the stored data, combined with digital
signature of the stored information the integrity is protected.

Systems that manipulate and store medical information have to deal with lifelong storage
challenges and need to support evolution. OpenEHR archetypes enable the coexistence of
different versions of the same archetype, enabling services to use the correct one for the data
that is on the repository. Thus, new archetypes can be developed for supporting new services,
to incorporate new types of data on the repository and to support new procedures.

The security issues were incorporated since the design phase. Strong authentication is
made using certificates, the services make mutual authentication, and only trusted Certifi-
cate Authorities are valid to be used by patients and providers. Internal services use an
internal CA. The information is always manipulated and stored cyphered. The only service
that temporary manipulates the information in plain text is the VHCS and only at the cryp-
tographic and reassembler component. Data and structure are stored together in an XML file,
protecting from analysing the structure for extrapolating data contents. Privacy is ensured
also from the services administrators, with exception of the cryptographic and reassembler
component of the VHCS. The tampering of patients’ policies and actors’ descriptions can also
be detected because they are signed using the actors’ authentication tokens, whose private
keys reside outside the architecture and only the actors have access to. The data integrity
of the logs and patient clinical information can also be verified due to the use of digital
signatures.

Resuming the security validation, the attack vector for gaining access to a patient’s clini-
cal information is very expensive. An attacker needs to corrupt patient’s internal private key,
the broker internal private, repository credentials and deceive the Accounter service simulta-
neously. The most critical data stored in the architecture are the Patient Credentials on the
VHCS, since it contains the internal private key for each patient. The Accounter can detect
abnormal services requests since it receives information from all the services, enabling to have
a global view of the requests, with traceability to the requester actor.

The proposed architecture does not have the intention to substitute systems and records
already being used in hospitals and clinics. Those systems can continue to be used on their
organizations, but should enable the generation of reports to the architecture and when
allowed by the patient can access to the patient controlled collaborative record.

5.1 Main Results

This dissertation contributed mainly with a novel and secure approach for dealing with
the problem of creating and maintaining an updated record that can cope with mobility.
During the initial research diverse approaches where studied, but in the end all of them
where oriented to a specific set of requirements. Of course, when the requirements change
or evolve the solutions normally tend to fail. When figuring out a solution that could cope
with the mobility issues and that empowers the patient, we did not try to change the normal
way of working. If providers use their custom configured systems for manipulate records, and
have their federations for enabling sharing they can maintain their workflow. Our approach
only requires the creation of resumes to be submitted to our service architecture, where the
patient can control the access by others and enable open collaboration of all the actors.

124

The solution can aggregate information from the medical staff, patient and third par-
ties. The aggregation is supported by hybrid Electronic Health Records that are based on
the combination of Electronic Health Records and Personal Health Records approaches. It
incorporates the clinical data integrity of Electronic Health Records with the patient empow-
erment of the Personal Health Records. The patient can control the access of all the actors
he wants and the medical staff can trust in the clinical information on that repository, en-
abling to have a richer repository with complementary information that could enable better
and differentiated care. Every actor that the patient wants can have access to his record,
in a simple way, without the bureaucratic burden of communication agreements between the
different providers, enabling a wider concept of collaboration, where the limitation is made
by access to Internet, open and standard tools and patient consent.

The success of the previous approach depends on a secure architecture that provides
the functionalities needed to support this type of records. The more open and secure the
architecture, the more actors are expected to contribute, enriching the patient repository.
During this phase, the necessary functionality was combined with security requirements and
use of open standards in industry technology. This openness can enable more players to
develop tools and services upon this base architecture. The security concerns modeled the way
of managing the data and the collaboration. Functionality was divided in different services
and components, where each component was only local view of data and needs collaboration
of other components and services to be able to respond to actor’s requests. This approach
allows the creation of a more secure solution based on the principle of minimal functionality
and privileges.

For a secure and robust solution, security should be involved in all phases. This disser-
tation also contributed to the creation of a threat model for a service architecture that deals
with patient clinical data. The treat model followed the STRIDE approach for creating a
misuse case for the architecture. It enabled reasoning on how the architecture would respond
under the considered attacks.

This work contributed to the body of knowledge by proposing an innovative approach
of collaboration of all actors to create and maintain patient’s health record – the hybrid
Electronic Health Records. It presented a secure architecture for manipulate the records.
Furthermore, a security analysis of the full proposal using the threat model was made.

5.2 Future Work

The natural step that follows is further developing and implementing the proposed archi-
tecture.

When all the components have been fully implemented, we expect to make performance
testing, verifying individual components’ times. Despite the fact that the architecture had
been modeled to enable the use of high availability mechanisms, some measurements can
help to determine where to start to optimize the solution. The analysis can indicate where
further research can be applied to optimize the response time of the architecture, especially
when retrieving information. One of the critical performance issues can be related with the
heavy use of cryptography. There is also a big performance difference between symmetric
and asymmetric cryptography. A hybrid solution can bring advantages when dealing with
large data block [114, 115]. The proposed solution makes heavy use of public key cryptog-
raphy, the information produced is related with a patient, therefore cyphered for his public

125

key. This way the different actors and services do not share a symmetric key, enforcing that
only patient internal private key can be used to open the created information. On storing,
the data to be cyphered tend to be small. On the retrieving process, if the response is com-
posed by various individual contributions, the contributions are deciphered using the patient
internal key, reassembled and cyphered for the requester actor’s token public key. This can
be a procedure that may gain of the hybrid approach, the public key cryptography can ne-
gotiate to negotiate a symmetric key for the VHCS to be used for cyphering the response
to the requester. This can bring other attack vectors and should be measured to verify if it
changes the overall response time. Concerning that the architecture uses web services, for
making a request between services, the use of the public key cryptography enables to make
the request in just one instruction. The need to make more requests between requester–
Broker–VHCS for negotiating a symmetric key, considering the small volume of data to be
cyphered, could be overkill. Hence, dedicated hardware is being developed for accelerating
cryptographic functions [116], using graphic processors [117], and pipelining/parallelism in
crypto engines [115], which decrease the time spent in cryptographic functions. Even then,
symmetric crypto should be faster than asymmetric, in the cyphering/deciphering processes,
but the values may start to be negligible when considering the impact in the overall perfor-
mance. Another point that should be considered is the study of the applicability of other
asymmetric key techniques, such as Elliptic Curve Cryptography. As they are considered
to enable a faster method of encryption when compared with current standard public key
cryptography algorithms of RSA [118, 119, 120].

A full assessment should be made using test data and actors. To create the test data the
approach, if no better test data appear, is to generate random data based on the constrains
of the archetypes as it was used for OpenEHR repository based on web services and native
XML databases.

Another line of research is to study the deployment of the proposed architecture on the
cloud. We believe that it can be done in a smooth and efficient way, as the architecture is
service oriented, it can be easily deployed in such a scenario. The security functionalities of the
solution enable more trust regarding privacy, confidentiality and integrity of the information.
The full architecture can be deployed in a hybrid cloud environment where the most critical
component – the VHCS, should be implemented in a private cloud and the others could
be deployed in public ones. The change of the deployment scenario may slightly change
requirements pushing further changes on the architecture. During this study, a new threat
model analysis should be made to verify how it would cope with some attack vectors.

Solutions specifically orientated to the sharing of medical imaging are being researched,
within our group. A line of investigation is the complementariness of combining solutions.
Starting with the proposal of an external service that when creating the contribution, can
push the imaging file to the specific store solution, it generates a URL for storing with the
contribution to enable future retrieving if necessary.

One of the contributions of this thesis is the proposal of a solution that can work as
a back-end to enable to collaboration of all actors the patient would like to involve in the
production and use of his clinical and clinical related data. Therefore, this architecture can
support the creation of new services. Challenges need to be addressed, such as systems
already in place need to create their submission systems, with the capability of translation
to the OpenEHR format. If needed, new archetypes should be proposed and agreed, and
maintaining the semantic of the contribution is a special challenge. Another challenging issue
is the automatic extraction of the metadata, of the record that is being stored, if we want

126

a less naive solution than using the most representative fields of the archetype. Another
interesting problem is the automatically classification of sensitivity level of the information
that is being uploaded.

Considering that this solution will fail when connectivity fails, a solution that will enable
the patient to have a synchronized replica, or a snapshot, of the information in the repository
in an external mass storage can be helpful in same cases. The approach based on a self-
managed and contained Personal Health Record is also being studied in our research group.
It makes use of OpenEHR as data format, with different containers on a usb mass storage
device. Therefore information can be created on the storage device, later be uploaded to the
architecture, and the pen could receive information from the architecture. One could backup
the other. Even so, a service to manage the synching mechanism needs to be analyzed.

The openness and the use of standard information technologies tools enable any actor
to create services to make use of the proposed architecture. Providers of wearable monitor-
ing gear, remote monitoring, sports activity monitoring and other sensor bases can provide
capabilities to the base station to upload the information directly to the patient repository.
Also, producer/consumer services can be created such as, patient annotation service, patient
logbook, service for monitoring the diet of a patient and his evolution. Others can be patient
alert systems, e.g. for medication, treatments, consultation and other alerts.

The capability of aggregating information from so many sources in a structured, trusted
and semantically enforced record will have huge value. Hence, another line of research is the
creation of a service that would enable a researcher to make queries and retrieve information
from the patient repository, if duly authorized by the patient. A researcher would gain access
to a very rich repository that can enable them to find new relations, analyze procedures,
treatments, detect anomalous reactions and detect public health problems in a proactive sce-
nario. Anonymization of the patient information before sending it to researchers is one big
challenge. There are some ways for de-identification, some are already in place as the identi-
fication among the identification number on the records and the demographic information is
only made by the VHCS. Although, for some type of stored information the de-identification
is not sufficient to protect the patient from being identified. Thus, the anonymization tries
to go further to stop the ability to identify the patient. This approach depends of the type
of data stored, as in the repository different types of information coexist and the challenge
increases.

Existing and future services will enrich the ecosystem, with new type of information or
new and innovative ways of manipulating and using the information already stored, enabling
the patient to maintain a full updated collaborative electronic health record that can evolve,
keeping up with new requirements.

127

128

Bibliography

[1] R. Zhang and L. Liu. Security Models and Requirements for Healthcare Application
Clouds. In 2010 IEEE 3rd International Conference on Cloud Computing, pages 268–
275. IEEE, 2010.

[2] A. Sunyaev, JM Leimeister, A. Schweiger, and H. Krcmar. It-standards and stan-
dardization approaches in healthcare. Encyclopedia of Healthcare Information Systems.
Editors: Wickramasinghe, N.; Geisler, Publisher: Idea Group, 2008.

[3] HL7. Hl7 standards timeline. http://www.hl7.org/documentcenter/public_temp_

D67F8EC2-1C23-BA17-0C34F13A4B0DD1EE/training/IntroToHL7/data/downloads/

hl7_standards_timeline.pdf, 07 2011.

[4] Digital Imaging and Communications in Medicine (DICOM). Digital imaging and
communications in medicine (dicom) part 18: Web access to dicom persistent objects
(wado). Technical report, NEMA Publications, 2009.

[5] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and GB Laleci. Electronic health
record standards–a brief overview. In 4th international conference on information and
communications technology, Cairo, Egypt. Citeseer, 2006.

[6] T. Beale, S. Heard, D. Kalra, and D. Lloyd. Openehr architecture: Architecture
overview. OpenEHR Foundation. Accessed October, 2007.

[7] D.A. Clunie. DICOM structured reporting. PixelMed Publishing, 2000.

[8] Linda Maria Velte. Repositório de registos electrónicos de saúde baseado em openehr.
Master’s thesis, Universidade de Aveiro - Departamento de Electrónica e Telecomu-
nicações, 2011.

[9] epSOS. epsos technical aspects. Technical report, epSOS, 2012.

[10] EN 13606-4:2007(E). Part 4: Health informatics - Electronic health record communica-
tion – Security. CEN, 2007.

[11] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack. Threat modeling-uncover security
design flaws using the stride approach. MSDN Magazine-Louisville, pages 68–75, 2006.

[12] ESI, SINTEF, LIU, and TXT. Detecting known security vulnerabilities from within
design and development tools - d1. 4 final shields approach guide. Technical report,
SHIELDS Project http://www.shields-project.eu/, 2010.

129

http://www.hl7.org/documentcenter/public_temp_D67F8EC2-1C23-BA17-0C34F13A4B0DD1EE/training/IntroToHL7/data/downloads/hl7_standards_timeline.pdf
http://www.hl7.org/documentcenter/public_temp_D67F8EC2-1C23-BA17-0C34F13A4B0DD1EE/training/IntroToHL7/data/downloads/hl7_standards_timeline.pdf
http://www.hl7.org/documentcenter/public_temp_D67F8EC2-1C23-BA17-0C34F13A4B0DD1EE/training/IntroToHL7/data/downloads/hl7_standards_timeline.pdf
http://www.shields-project.eu/

[13] G. Eysenbach. Medicine 2.0: social networking, collaboration, participation, apomedi-
ation, and openness. Journal of Medical Internet Research, 10(3), 2008.

[14] J.G. Hodge Jr, L.O. Gostin, and P.D. Jacobson. Legal issues concerning electronic
health information: privacy, quality, and liability. Jama, 282(15):1466, 1999.

[15] A. Shabo. A global socio-economic-medico-legal model for the sustainability of longitu-
dinal electronic health records-part 2. Methods of information in medicine, 45(3):240,
2006.

[16] M.K. Abd Ghani, R.K. Bali, R.N.G. Naguib, and I.M. Marshall. Electronic health
records approaches and challenges: a comparison between Malaysia and four East Asian
countries. International Journal of Electronic Healthcare, 4(1):78–104, 2008.

[17] I. Román, LM Roa, J. Reina-Tosina, and G. Madinabeitia. Demographic management
in a federated healthcare environment. International Journal of Medical Informatics,
2006.

[18] E. Coiera. Guide to health informatics. Arnold London, 2003.

[19] WJ Pories. Is the medical record dangerous to our health? NC Med J, 51(1):47–55,
1990.

[20] Aykut M. Uslu and Jürgen Stausberg. Value of the electronic patient record: An
analysis of the literature. Journal of Biomedical Informatics, 41(4):675 – 682, 2008.

[21] HIMSS. Himss ehr definition. http://www.himss.org/ASP/topics_ehr.asp, July
2010 (accessed July 19, 2010).

[22] D. Garets and M. Davis. Electronic medical records vs. electronic health records: yes,
there is a difference. A HIMSS Analytics White Paper. Chicago, IL: HIMSS Analytics,
2005.

[23] Technical Committee ISO/TC 215. Health informatics — electronic health record —
definition, scope, and context - iso/tr 20514:2005(e). Technical report, International
Organization for Standardization, 2005.

[24] NCRR. Electronic Health Records Overview. Technical report, MITRE, April 2006.

[25] The Lancet. Electronic health records. The Lancet, 371(9630):2058–2058, June 2008.

[26] HIMSS. Himss phr definition. http://www.himss.org/ASP/topics_phr.asp, 2010
(accessed July 19, 2010).

[27] J.C. Santos, Tiago Pedrosa, Carlos Costa, and J.L. Oliveira. Modelling a portable
personal health record. In HealthInf 2010 Proceedings, 2010.

[28] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G.B. Laleci. A survey and analysis
of electronic healthcare record standards. ACM Computing Surveys (CSUR), 37(4):277–
315, 2005.

[29] D. Kalra. Electronic health record standards. IMIA yearbook of medical informatics,
2006:136–144, 2006.

130

http://www.himss.org/ASP/topics_ehr.asp
http://www.himss.org/ASP/topics_phr.asp

[30] R.H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F.M. Behlen, P.V. Biron, and
A. Shabo Shvo. Hl7 clinical document architecture, release 2. Journal of the American
Medical Informatics Association, 13(1):30, 2006.

[31] George W Beeler. Hl7 version 3–an object-oriented methodology for collaborative stan-
dards development. International Journal of Medical Informatics, 48(1-3):151 – 161,
1998.

[32] G.V. Koutelakis and D.K. Lymperopoulos. Pacs through web compatible with di-
com standard and wado service: advantages and implementation. In Engineering in
Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference
of the IEEE, pages 2601–2605. IEEE, 2006.

[33] Sanromà, M.B. and Mateu, A.V. and i Oliveras, K.G. and Universitat Rovira i Virgili.
Departament d’Enginyeria Informàtica. Survey of Electronic Health Record Standards.
Universitat Rovira i Virgili. Departament d’Enginyeria Informàtica, 2006.

[34] T. Beale, S. Heard, D. Kalra, and D. Lloyd. Archetype definition language (adl).
OpenEHR Foundation, 2005.

[35] T. Beale, S. Heard, D. Kalra, and D. Lloyd. Archetype query language (aql). OpenEHR
Foundation, 2005.

[36] R. Noumeir. Integrating the healthcare enterprise process. International Journal of
Healthcare Technology and Management, 9(2):167–180, 2008.

[37] T. Aden and M. Eichelberg. Cross-enterprise search and access to clinical informa-
tion based on the ihe retrieve information for display. International Congress Series,
1281:986–991, 2005.

[38] A. Dogac, V. Bicer, A. Okcan. Collaborative business process support in ihe xds through
business process. In Proceedins of the 22nd International Conference on Data Engineer-
ing. IEEE Computer Society, 2006.

[39] A. Dogac, T. Namli, A. Okcan, G. Laleci, Y. Kabak, and M. Eichelberg. Key issues
of technical interoperability solutions in ehealth. In Proceedings of eHealth 2006 High
Level Conference Exhibition, 2006.

[40] The European Economic and Social Committee and the comittee of regions. Final
report on the implementation of the commission’s action plan for skills and mobility
com(2002) 72 final. Technical report, Commission of the European Communities, 2007.

[41] D. Ferreira Polónia, C. Costa, and JL Oliveira. Architecture evaluation for the im-
plementation of a regional integrated electronic health record. Connecting Medical
Informatics and Bio-Informatics—Proceedings of MIE2005—The XIXth International
Congress of the European Federation for Medical Informatics. Geneva: IOS Press, 2005.

[42] Carlos Costa, José Lúıs Oliveira, Augusto Silva, Vasco Gama Ribeiro. A new concept for
an integrated Healthcare Access Model. Studies in health technology and informatics,
95:101, 2003.

131

[43] JS Wimalasiri, P. Ray, and CS Wilson. Security of electronic health records based
on Web services. Enterprise networking and Computing in Healthcare Industry, 2005.
HEALTHCOM 2005. Proceedings of 7th International Workshop on, pages 91–95, 2005.

[44] M. Hori and M. Ohashi. Applying XML Web Services into Health Care Management.
System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii International
Conference on, pages 155a–155a, 2005.

[45] Tiago Pedrosa, Carlos Costa, R.P. Lopes, and J.L. Oliveira. Virtual health card system.
Inforum 2009, 2009.

[46] Tiago Pedrosa, R.P. Lopes, J.C. Santos, Carlos Costa, and J.L. Oliveira. Towards an
EHR architecture for mobile citizens. In HealthInf 2010 Proceedings, pages 288–293,
Valencia, Spain, 2010.

[47] Pradeep Ray and Jaminda Wimalasiri. The need for technical solutions for maintaining
the privacy of EHR. In Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.
Conference, volume 1, page 4686, 2006.

[48] L. Seitz, J.M. Pierson, and L. Brunie. Encrypted storage of medical data on a grid.
Methods of Information in Medicine, 44(2):198—-201, 2005.

[49] H. Wang and L.V.S. Lakshmanan. Efficient secure query evaluation over encrypted
XML databases. In Proceedings of the 32nd international conference on Very large data
bases, page 138. VLDB Endowment, 2006.

[50] Aministração Central do Sistema de Saúde. Rse – registo de saúde electrónico - r1:
Documento de estado da arte. Technical report, Ministério da Saúde, 2009.

[51] Administração Central do Sistema de Saúde. Rse – registo de saúde electrónico - r2a:
Orientações para especificação funcional e técnica do sistema de rse. Technical report,
Ministério da Saúde, 2009.

[52] epSOS. Safe access to medical data abroad: The epsos services. Technical report,
epSOS, 2012.

[53] epSOS. D3.3.2 final epsos system technical specification. Technical report, epSOS, 2010.

[54] epSOS. Work package 3.5 - semantic services appendix g - cen en13606 technical spec-
ifications. Technical report, epSOS, 2009.

[55] Lei no 67/98, 26 Outubro 1998.

[56] Lei n.o 48/90, de 2l de agosto lei de bases da saúde, Agosto 1990.

[57] Código deontológico da ordem dos médicos.

[58] Lei 12/2005 - informação genética e informação de saúde, January 2005.

[59] Council of Europe Committee of Ministers. Recomentation on the protection of
medical data. Available from: https://wcd.coe.int/wcd/ViewDoc.jsp?Ref=

ExpRec(97)5&Language=lanEnglish&Ver=original&Site=CM&BackColorInternet=

DBDCF2&BackColorIntranet=FDC864&BackColorLogged=FDC864, 1997.

132

https://wcd.coe.int/wcd/ViewDoc.jsp?Ref=ExpRec(97)5&Language=lanEnglish&Ver=original&Site=CM&BackColorInternet=DBDCF2&BackColorIntranet=FDC864&BackColorLogged=FDC864
https://wcd.coe.int/wcd/ViewDoc.jsp?Ref=ExpRec(97)5&Language=lanEnglish&Ver=original&Site=CM&BackColorInternet=DBDCF2&BackColorIntranet=FDC864&BackColorLogged=FDC864
https://wcd.coe.int/wcd/ViewDoc.jsp?Ref=ExpRec(97)5&Language=lanEnglish&Ver=original&Site=CM&BackColorInternet=DBDCF2&BackColorIntranet=FDC864&BackColorLogged=FDC864

[60] Council of Europe Committee of Ministers. On the impact of information technologies
on health care – the patient and internet, 2004.

[61] D.M. D’Alessandro and N.P. Dosa. Empowering children and families with information
technology. Archives of Pediatrics and Adolescent Medicine, 155(10):1131, 2001.

[62] Miller SoM. Health insurance portability and accountability act of 1996 (hipaa). Avail-
able from:privacy.med.miami.edu/glossary/xd_hipaa.htm, 2005.

[63] C.R. Dalton. The NHS as a proving ground for cryptosystems. Information Security
Technical Report, 8(3):73–88, 2003.

[64] J. Wainer, CJR Campos, MDU Salinas, and D. Sigulem. Security requirements for a
lifelong electronic health record system: An opinion. The Open Medical Informatics
Journal, 2:160, 2008.

[65] FH France and PN Gaunt. The need for security–a clinical view. International journal
of bio-medical computing, 35:189, 1994.

[66] R.C. Barrows and P.D. Clayton. Privacy, confidentiality, and electronic medical records.
Journal of the American Medical Informatics Association, 3(2):139, 1996.

[67] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha, E. Oliveira-Palhares, D.W. Chad-
wick, and A. Costa-Pereira. How to break access control in a controlled manner. In
Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Sym-
posium on, pages 847–854. IEEE, 2006.

[68] Javier López-Muñoz Paloma Garćıa-López, Stefanos Gritzalis. Monograph: Standard-
ization for ict security, 2005.

[69] ISO 22600-1:2006(E). Part 1: Health Informatics - Privileges management and policy
management – Overview and policy management. ISO, Geneva, Switzerland.

[70] ISO 22600-2:2006(E). Part 2: Health Informatics - Privileges management and policy
management – Formal Models. ISO, Geneva, Switzerland.

[71] William Stallings. Network Security Essentials, Applications and Standards. Prentice
Hall, 2003.

[72] L. O’Gorman. Comparing passwords, tokens, and biometrics for user authentication.
Proceedings of the IEEE, 91(12):2021–2040, 2003.

[73] A. Jain, L. Hong, and S. Pankanti. Biometric identification. Communications of the
ACM, 43(2):90–98, 2000.

[74] N.K. Ratha, J.H. Connell, and R.M. Bolle. Enhancing security and privacy in
biometrics-based authentication systems. IBM Systems Journal, 40(3):614–634, 2001.

[75] Carlos Costa. Concepção, desenvolvimento e avaliação de um modelo integrado de
acesso a registos cĺınicos electrónicos. PhD thesis, Universidade de Aveiro - Departa-
mento de Electrónica e Telecomunicações, 2004.

133

from: privacy.med.miami.edu/glossary/xd_hipaa.htm

[76] J.J. Shen, C.W. Lin, and M.S. Hwang. A modified remote user authentication scheme
using smart cards. Consumer Electronics, IEEE Transactions on, 49(2):414–416, 2003.

[77] H.Y. Chien, J.K. Jan, and Y.M. Tseng. An Efficient and Practical Solution to Remote
Authentication: Smart Card. Computers & Security, 21(4):372–375, 2002.

[78] R. Santos, M.E. Correia, and L. Antunes. Securing a health information system with
a government issued digital identification card. In Security Technology, 2008. ICCST
2008. 42nd Annual IEEE International Carnahan Conference on, pages 135–141. IEEE.

[79] R. Santos, M.E. Correia, and L. Antunes. Securing a health information system with
a government issued digital identification card. In Security Technology, 2008. ICCST
2008. 42nd Annual IEEE International Carnahan Conference on, pages 135 –141, oct.
2008.

[80] Qamar Munawer Sylvia Osborn, Ravi Sandhu. Configuring role-based access control
to enforce mandatory and discretionary access control policies. ACM Transactions on
Information and System Security (TISSEC), 3(2):85–106, May 2000.

[81] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control
Models. 1996.

[82] S. Osborn. Mandatory access control and role-based access control revisited. Proceedings
of the second ACM workshop on Role-based access control, pages 31–40, 1997.

[83] RS Sandhu. Lattice-based access control models. Computer, 26(11):9–19, 1993.

[84] Marek Jawurek. Rsbac - a framework for enhanced linux system security. Conference
Seminar ”Dependable Distributed Systems” - RWTH Aachen University, 2006.

[85] A. Ott and S. Fischer-Hübner. The ‘Rule Set Based Access Control’(RSBAC) Frame-
work for Linux. Proceedings of the 8th International Linux Kongress.

[86] A. Ott. Rule set based access control (rsbac). In the Snow Unix Event-unix. nl congress
“Reliable Internet”, Waardenburg, 2001.

[87] Alberto Riva, Kenneth D. Mandl, Do Hoon Oh, Daniel J. Nigrin, Atul Butte, Peter
Szolovits, Isaac S. Kohane. The personal internetworked notary and guardian. Inter-
national Journal of Medical Informatics 62, pages 27–40, 2001.

[88] M. Evered and S. Bögeholz. A case study in access control requirements for a Health
Information System. Proceedings of the second workshop on Australasian information
security, Data Mining and Web Intelligence, and Software Internationalisation-Volume
32, pages 53–61, 2004.

[89] B.P. Lim, O. Zakaria, and M.K.M. Nor. Role-based Access Control in Kidney Dialysis
Information System. Malaysian Journal of Computer Science, 14(2):20–25, 2001.

[90] J. Reid, I. Cheong, M. Henricksen, and J. Smith. A Novel Use of RBAC to Protect
Privacy in Distributed Health Care Information Systems. Proceedings of the Eighth
Australasian Conference on Information Security and Privacy (ACISP 2003), LNCS,
2727:403–415, 2003.

134

[91] José Magalhães Cruz Sara Araújo, João Pascoal Faria. Propostas de melhoria da segu-
rança dos sistemas de informação cĺınica em portugal. 6th International Conference on
the Quality of Information and Communications Technology - QUATIC 2007 -, 2007.

[92] B. Aboba, D. Harrington, and J. Arkko. Introduction to accounting management. IETF,
RFC 2975, 2000, October.

[93] Y. Niu. Soa governance and accounting control. In Future Computer and Commu-
nication (ICFCC), 2010 2nd International Conference on, volume 3, pages V3–699.
IEEE.

[94] D.W.L. Searcy and J.B. Woodroof. Continuous auditing: leveraging technology. The
CPA Journal, 75(5):46–48, 2003.

[95] H. Ye, S. Chen, F. Gao, Y. He, Q. Li, SY Chen, and A. Xu. Soa-based conceptual
model for continuous auditing: A discussion. In WSEAS International Conference.
Proceedings. Mathematics and Computers in Science and Engineering. World Scientific
and Engineering Academy and Society, 2008.

[96] W. Stallings. Network security essentials: applications and standards. William Stallings
books on computer and data communications technology. Prentice Hall, 2007.

[97] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of applied cryptography.
CRC, 1997.

[98] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer, 2002.

[99] B. Preneel. A survey of recent developments in cryptographic algorithms for smart
cards. Computer Networks, 51(9):2223–2233, 2007.

[100] M.J.B. Robshaw. Stream ciphers. RSA Laboratories, a division of RSA Data Security,
Inc, 1995.

[101] R. Weis and S. Lucks. Cryptographic hash functions. Recent Results on Cryptanalysis
and their Implications on System Security. In: SANE, 2006.

[102] P. Gauravaram, A. McCullagh, and E. Dawson. Collision attacks on md5 and sha-1:
Is this the sword of damocles for electronic commerce. Information Security Institue
(ISI), Queensland University of Technology (QUT), Australia, 2006.

[103] FIPS PUB 180-3. Secure hash standard (shs) - final. Technical report, Technical
report, National Institute of Standards and Technology (NIST), http://csrc.nist.
gov/publications/fips/fips180-3/fips180-3_final.pdf, 2008.

[104] W. Diffie and M. Hellman. New directions in cryptography. Information Theory, IEEE
Transactions on, 22(6):644–654, 1976.

[105] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[106] J. Weise. Public key infrastructure overview. Sun BluePrints OnLine, August, 2001.

135

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

[107] Sam Heard, Thomas Beale, Gerard Freriks, Angelo Rossi Mori, and Ognian
Pishev. Templates and archetypes: how do we know what we are talking
about? Available from http://www.openehr.org/wiki/download/attachments/

196620/Templates+and+Archetypes.pdf, February 2003.

[108] R.L. Jones and A. Rastogi. Secure coding: building security into the software develop-
ment life cycle. Information Systems Security, 13(5):29–39, 2004.

[109] Erkuden Rios, Per H̊akon Meland, Shanai Ardi, Alessandra Bagnato, Jostein Jensen,
Wissam Mallouli, Fabio Raiteri, Txus Sanchez, Inger Anne Tøndel, and Bachar Wehbi.
A qualitative evaluation of model-based security activities for software development. In
European Workshop on Security in Model Driven Architecture 2009 (SEC- MDA 2009),
2009.

[110] S. Barnum and A. Sethi. Attack patterns as a knowledge resource for building secure
software. In OMG Software Assurance Workshop: Cigital, 2007.

[111] B. Lawlor and L. Vu. A survey of techniques for security architecture analysis. Technical
report, DTIC Document, 2003.

[112] ESI, SINTEF, LIU, and TXT. Shields - detecting known security vulnerabilities from
within design and development tools. Available from: http://www.shields-project.
eu/, August 2012 (accessed August, 27, 2012).

[113] P.H. Meland, D.G. Spampinato, E. Hagen, ET Baadshaug, KM Krister, and KS Velle.
Seamonster: Providing tool support for security modeling. Norsk informasjonssikker-
hetskonferanse, NISK, 2008.

[114] A. Al Hasib and A.A.M.M. Haque. A comparative study of the performance and security
issues of aes and rsa cryptography. In Convergence and Hybrid Information Technology,
2008. ICCIT’08. Third International Conference on, volume 2, pages 505–510. IEEE,
2008.

[115] Li Zhao, R. Iyer, S. Makineni, and L. Bhuyan. Anatomy and performance of ssl pro-
cessing. In Performance Analysis of Systems and Software, 2005. ISPASS 2005. IEEE
International Symposium on, pages 197 –206, march 2005.

[116] J.K.T. Chang, S. Liu, J.L. Gaudiot, and C. Liu. The performance analysis and hardware
acceleration of crypto-computations for enhanced security. In Dependable Computing
(PRDC), 2010 IEEE 16th Pacific Rim International Symposium on, pages 249–250.
IEEE, 2010.

[117] K. Jang, S. Han, S. Han, S. Moon, and K.S. Park. Sslshader: cheap ssl acceleration
with commodity processors. In Proceedings of the 8th USENIX conference on Networked
systems design and implementation, pages 1–1. USENIX Association, 2011.

[118] V. Gupta, S. Gupta, S. Chang, and D. Stebila. Performance analysis of elliptic curve
cryptography for ssl. In Proceedings of the 1st ACM workshop on Wireless security,
pages 87–94. ACM, 2002.

136

http://www.openehr.org/wiki/download/attachments/196620/Templates+and+Archetypes.pdf
http://www.openehr.org/wiki/download/attachments/196620/Templates+and+Archetypes.pdf
http://www.shields-project.eu/
http://www.shields-project.eu/

[119] O.M. Creado, X. Wu, Y. Wang, and P.D. Le. Probabilistic encryption–a comparative
analysis against rsa and ecc. In Computer Sciences and Convergence Information Tech-
nology, 2009. ICCIT’09. Fourth International Conference on, pages 1123–1129. IEEE,
2009.

[120] BK Alese, ED Philemon, and SO Falaki. Comparative analysis of public-key encryption
schemes. International Journal of Engineering and Technology, 2(9), 2012.

137

138

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Motivation and Challenges
	Problem statement
	Contributions
	Thesis Outline

	State of the Art
	Record Types
	Electronic Medical Record
	Electronic Health Record
	Integrated Care EHR
	Electronic Health Record Systems
	Personal Health Record
	Discussion

	Standards
	CEN TC 215 Health Informatics and CEN ENV/EN 13606 EHRcom
	HL7/CDA
	OpenEHR
	DICOM Structured Reporting
	Integrating the Healthcare Enterprise - IHE
	Discussion

	Integration
	Security Requirements
	Regulating Access to Health Records
	Authentication
	Authorization
	Accounting
	Cryptography

	Summary

	Enabling Secure Collaboration
	Hybrid Electronic Health Records
	Document Format
	Collaboration between Actors
	Managing Collaboration

	Architecture
	Virtual Health Card Service
	Broker
	Indexer
	Repository
	Accounter
	Summary

	Common Operations
	New Patient
	New Provider
	Managing Access Policies
	Storage
	Retrieval
	Revoking Credentials
	Digital Signature Validation
	New Services Integration
	Availability

	Summary

	Discussion
	Coping with Requirements
	Security Analysis Methodologies
	Security Analysis
	Summary

	Conclusions and Future Work
	Main Results
	Future Work

	Bibliography

