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Abstract

In this work attention has been focused on the effects of papermaking beating, web forming and sizing
operations on the physical/chemical surface properties of bleached Eucalyptus globulus kraft fibres. Inverse
gas chromatography (IGC) was used to determine the dispersive component of surface tension (cs

d) as well
as the acidic/basic character (according to the Lewis concept) of the solid surfaces (pulp fibres and pulp
handsheets). The results have shown that the main effect of beating is to increase the fibre’s Lewis acidic
character. Web forming caused a strong decrease in cs

d and significant increments in the adhesion works of
both acidic and basic probes, lowering the ratio between the two. Nevertheless, the surface of handsheets
still exhibited a dominant acidic character. The sizing operation did not change the dispersive component of
the surface tension significantly but decreased the difference between the adhesion works of the acidic and
basic probes, rendering the handsheet surface less Lewis acidic and more Lewis basic. Thus, although
internal sizing is expected to strongly influence liquid spreading at the paper surface and liquid penetration
of the fibre’s network, it is concluded that beating and web forming lead to important changes in the surface
energetic properties of the Eucalyptus globulus kraft fibres.

Abbreviations: A – molecular surface area of the probes used in the IGC study; Acet – acetone; AN* –
Gutmann’s modified acceptor number; CHCl3 – trichloromethane; DCM – dichloromethane; DN – Gut-
mann’s donor number; EtAcet – ethyl acetate; F – carrier gas flow rate (measured with a digital flow meter);
GC – gas chromatography; IGC – inverse gas chromatography; J – correction factor for gas compress-
ibility; Ka – surface Lewis acidity; Kb – surface Lewis basicity; N – Avogadro’s constant; R – ideal gas law
constant; T – temperature in Kelvin; t0 – retention time of the non-interacting molecule; tr – retention time
of the probe molecule; THF – tetrahydrofuran; Vn – net retention volume; DG – free energy of adsorption
of the probe on the stationary phase surface; DGd – dispersive component of the free energy of adsorption;
DGs – specific component of the free energy of adsorption; DHs – enthalpy of adsorption; DSs – entropy of
adsorption; cl

d – dispersive component of the surface free energy of the liquid; cs
d – dispersive component of

the surface free energy of the solid; cs
p – polar component of the surface free energy of the solid; Wa

s –
specific component of the adhesion work between the polar probes and the stationary phase
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Introduction

Eucalypt fibres are being used worldwide to pro-
duce the highest quality printing and writing paper
grades. This is due, firstly, to the characteristics of
the eucalypt fibre itself. Compared to the most
commonly used hardwood fibres, in general euca-
lypt fibres exhibit lower fibre length and width but
similar wall thickness, which leads to a higher
number of fibres per unit mass and a unique
combination of stiffness and conformability
capacity upon beating. These features provide the
paper with high opacity, high bulk, excellent for-
mation, excellent surface smoothness and enough
strength, for good runability and superior end
usage performance. However, it is well known that
the specific conditions of pulp production (cooking
and bleaching) affect the internal and the surface
chemical composition of the fibres, which is of
consequence to the surface, structural, optical and
strength properties of the papersheet. Further-
more, the papermaking operations of beating, web
forming and sizing play an important role in the
final quality of the paper. The beating operation (a
mechanical process in which fibres undergo high
shear and compression forces in the presence of
water) aims at improving bonding properties,
which decreases the pulp drainability, the paper
porosity and optical properties and increases the
paper mechanical resistance. Furthermore, in or-
der to enhance paper resistance to liquid penetra-
tion, chemical sizers like AKD (alkyl ketene
dimer) are added to the stock.

Among other factors, differences in the surface
energy determine changes in the surface adhesive
properties and spreading of liquids (like inks) as
well as changes in their penetration into the fibres
network. Since the fibre surface properties can
influence the final product quality, it is not sur-
prising that a large amount of research work is
being carried out on the study of the surface
energetic characteristics of papermaking cellulose
fibres and the interaction of these surfaces with
other systems, such as printing inks (Banerjee
1991; Santos et al. 2001). Adhesion between these
systems is directly related to their capability to
interact by means of dispersive and acid–base in-
termolecular interactions. Therefore, the charac-
terisation of these phenomena is of major
importance.

In what concerns eucalypt fibres, studies have
been undertaken to investigate the effects of
cooking and bleaching conditions on the surface
and strength properties of the corresponding kraft
pulps (Shen and Parker 1999; Aquino et al. 2002).
The study of Aquino et al. (2002) on Eucalyptus
globulus kraft fibres has revealed that these prop-
erties are highly dependent on the history of the
cooking and bleaching processes. For instance,
high cooking temperatures strongly decrease the
fibre surface free energy and the introduction of an
oxygen delignification stage prior to bleaching
enhances the Lewis acidic character of the fibres.
However, the effect of subsequent papermaking
operations, like beating and web forming, on the
fibre’s surface energy properties is not yet well
known.With regard to the effects of AKD sizing,
the work of Shen et al. (1998) and that of Lee and
Luner (1989) are worth mentioning.

The purpose of the present study is to examine
changes in the surface energy of fibres due to
beating and sizing operations. Comparisons are
also made between fibre surface free energy of pulp
and of handsheets in order to investigate the effects
of fibre bonding and collapse, and migration of
fines that occur at the web formation stage. The
present work is part of a more extensive work
whose main objective is to study the relationship
between chemical and physical properties of fibres
and fibre networks and the functional properties of
the paper, in order to assess the contribution of
these relationships to the printing performance
of office papers.

The growing awareness of the importance of
solid surfaces, interfaces and interphases in deter-
mining the useful properties of polymeric systems,
has led to the development of inverse gas chro-
matography (IGC) as a useful technique in eval-
uating the potential for interaction of different
components of polymer blends, composites, and
multicomponent polymeric systems in general. The
first papers on IGC go back 32 years. Since then,
and in particular since 1990, the number of pub-
lications per year has increased exponentially.
Data obtained from IGC experiments may, in
favourable cases, correlate directly with observed
performance criteria, such as colour development,
gloss, rheological properties, adhesion and
mechanical properties (Lee 1991; Mukhopadhyay
and Schreiber 1993; Schultz and Lavielle 1989).
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Moreover, IGC has been increasingly used to
characterize the surface thermodynamic properties
of many inorganic and organic materials, like
polymers, pigments, coatings, wood meal, wood
pulp, paper, etc. (Al Saigh 1994; Papirer and Ba-
lard 1999; Santos et al. 2001; 2002a,b). More
information on theoretical and practical aspects of
this technique can be found in reviews such as that
of Papirer and Balard (1999) and that of Al Saigh
(1994).

The IGC technique enables the evaluation of
several surface energy related parameters, namely
the dispersive component of the surface tension,
arising from London and Van-der-Waals forces,
and the acid/base character according to the Lewis
concept (i.e., ability to accept and donate elec-
trons). IGC is very similar to conventional gas
chromatography (GC), the main difference being
the fact that the material under study is the sta-
tionary phase introduced into the chromato-
graphic column, whereas the compounds injected
(probes) have well-known properties. As men-
tioned above, in this work, the packed materials
under investigation are pulp and pulp handsheets.

Materials and methods

Sample preparation

Eucalyptus globulus pulp was produced in a 7 l
laboratory MK digester (model 409 MII from M/
K Systems, Inc.) by the kraft process. The cooking
conditions were 160 �C cooking temperature dur-
ing 45 min, 1 �C/min heating rate, a liquor to
wood ratio of 4, 16% active alkali charge, as
Na2O, and 30% sulphidity, resulting in a kappa
number of 14.8. The pulp was then bleached by
applying a DEDED sequence to achieve a
brightness of 90% ISO (sample A). In order to
analyse the changes on the surface free energy due
to the beating process, a portion of the bleached

pulp was beaten in a laboratory PFI mill to
achieve 30 Schopper Riegler (sample B). To study
the influence of sheet formation and sizing on the
surface characteristics of fibres, handsheets were
made (according to ISO 5269/1-1979) using the
beaten pulp with and without the sizing agent
AKD, samples D and C, respectively. The sizing
agent emulsion (with 13.5% active component
supplied by RAISIO Chemicals Ltd.) was added to
the pulp suspension after addition of sodium
hydrogen carbonate (0.1%), which is the reaction
catalyst. After strong mixing, laboratory round
sheets were formed and subjected to drying (for
AKD curing) during 10 min at 80 �C. The AKD
amount was adjusted to obtain 180 s HST (Her-
cules Sizing Test) level. Table 1 summarises the
characteristics of the several samples tested.

Inverse gas chromatography

A Perkin Elmer 8410 gas chromatograph equipped
with a hydrogen flame ionization detector (FID)
was used for IGC data collection. The instrument
was connected to a Kompensograph Siemens
integrator. Stainless steel columns, 0.5 m long and
0.4 mm ID, were degreased, washed and dried
before packing. In order to reduce the particles
size, samples A and B were milled and samples C
and D were cut into small pieces (about
2 mm·2 mm). On average, approximately 1.3 g of
milled pulp and 2 g of handsheet pieces were
packed into the GC columns using a vacuum
pump. The packed columns were conditioned
overnight at 105 �C under a helium flow before
any measurements were made. This procedure
aims to remove any volatiles, including water
molecules, that may be adsorbed at the stationary
phase surface and that, consequently, could affect
the retention of the probe molecules. As all the
columns are subject to the same pre-treatment
conditions, this procedure is not expected to

Table 1. Summary of sample characteristics.

Sample A Sample B Sample C Sample D

Sample type Pulp Pulp Handsheet Handsheet

PFI rpm to 30 SR 1200 1200 1200

Grammage (g/m2) 80 80

Sizing (mg AKD/10 g of pulp) 75
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contribute to the observed differences in the sur-
face energy of the samples analysed.

Experiments were carried out at column tem-
peratures between 40 and 60 �C, at 5 �C intervals,
in order to evaluate the variation of cs

d with
temperature as well as the enthalpies of adsorption
for the polar probes. The injector and detector
were kept at 180 and 200 �C, respectively. Helium
was used as carrier gas and its flow was selected to
ensure that neither absorption nor diffusion of the
probes would occur inside the column stationary
phase. Minute quantities of probe vapour (<1ll)
were injected into the carrier gas flow to ensure
that the experiments took place at infinite dilution.
The probes were of chromatographic grade and
used as received (Sigma–Aldrich Ltd.). Their re-
levant properties are listed in Table 2. The results
reported for the work of adhesion of acidic and
basic probes were estimated from the retention
times obtained for tetrahydrofuran (basic probe)
and chloroform (acidic probe). Replicated mea-
surements were performed with two columns pre-
pared in the same way. Retention times were the
average of at least five injections. Reproducibility
between runs was always better than 2%. The
retention times were determined graphically
according to the Conder and Young method
(Kamdem and Riedl 1992).

Natural gas with 83.7% methane was used to
determine the dead retention volume. It was en-
sured that no extraneous peaks were obtained due
to the use of natural gas, the methane peak being
clearly identified, and peaks relating to other
components being not significant (as expected, as
the runs were carried out under infinite dilution
conditions).

IGC data analysis

IGC data processing was carried out according to
customary methods, well described in the literature

(see for instance Chtourou et al. (1995)). In IGC, an
inert carrier gas elutes a minute quantity of a probe
molecule through a column packed with the mate-
rial under study. Due to the interactions between
the two phases, the probemolecules are retained for
a certain time, tr, which is used to calculate the net
retention volume, Vn, according to Eq. (1):

Vn ¼ ðtr � t0ÞF � J: ð1Þ

Here t0 is the dead retention time of the marker
probe, F is the carrier gas flow rate (measured with
a digital flow meter) and J is the correction factor
for gas compressibility (Belgacem et al. 1995).

Determination of the dispersive component
of surface tension

Assuming that experiments take place at infinite
dilution, the free energy of adsorption of the probe
on the stationary phase surface per mole, DG, can
be determined from the retention volume, Vn,
according to

DG ¼ �RT lnðVnÞ þ C1: ð2Þ

Here R is the ideal gas constant, T is the absolute
column temperature and C1 is a constant that
depends upon the chromatographic column and the
reference state (Dorris and Gray 1980). Consider-
ing that the dispersive and specific components,
respectivelyDGd andDGs, are additive, as suggested
by Fowkes (1987), Eq. (2) can be rewritten as

DGd þ DGs ¼ �RT lnðVnÞ þ C1: ð3Þ

On the other hand, the free energy of adsorption
can be related to adhesion work, Wa (Dorris and
Gray 1980), according to

�DG ¼ N � A �Wa: ð4Þ

Here N is Avogadro’s number and A the cross-
sectional area of the probe to be tested (Table 2).
If non-polar components (such as n-alkanes) are

Table 2. Characteristics of IGC probes (Kamdem et al. 1993; Santos et al. 2001).

Polar probes A (Å2) cl
d (mJ/m2) ANa (kJ/mol) DN (kJ/mol) Alkanes A (Å2) cl

d (mJ/m2)

CHCl3
a 44.0 25.0 22.6 – C6H14 51.4 18.4

DCMa 31.5 27.6 16.3 – C7H16 57.0 20.3

THFa 45.0 22.5 2.1 84.2 C8H18 62.8 21.3

EtAceta 48.0 19.6 6.3 71.7 C9H20 68.9 22.7

C10H22 75.0 23.9

aPlease consult the list of abbreviations.
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used, only dispersive interactions occur and the
adhesion work is given by

Wa ¼ 2ðcds cdl Þ
1=2
: ð5Þ

Here cs
d and cl

d are the dispersive components of
the surface tension of the solid (stationary phase)
and of the liquid, respectively.

Replacing Eqs. (4) and (5) in Eq. (2) leads to

2Nðcds Þ
1=2

Aðcdl Þ
1=2 þ C ¼ RT lnðVnÞ: ð6Þ

The slope of the straight line, referred to as the
reference line, obtained by plotting RTln(Vn) vs.
2N(cl

d)1/2A, for a homologous n-alkane series
(Figure 1(a)), leads to the determination of cs

d for
a given temperature.

Determination of the surface acid–base properties

Acid–base characteristics of fibre surface are
determined by analysing the interaction of the
polar probes with the solid surface and quantifying
the deviation from the reference line, leading to the
estimation of the specific free energy, DGs, as

�DGs ¼ RT lnðVnÞ � RT lnðVn;refÞ: ð7Þ

Here Vn,ref is the retention volume established by
the n-alkanes reference line (Eq. (1)), Vn being now
the retention volume of the polar probes. This
calculation is also illustrated in Figure 1(a).

The adhesion work between the polar probes
tested and the fibres, Wa

s, can be evaluated from
the specific free energy, given by Eq. (7), as

Ws
a ¼

RT

N � A ln

�
Vn

Vn;ref

�
: ð8Þ

By carrying out experiments at different tem-
peratures, it is possible to determine the enthalpy
and entropy of adsorption, respectively DHs and
DSs, from the plots of DGs=T vs. 1/T, according to
the following equation:

DGs

T
¼ DHs

T
� DSs: ð9Þ

The acidic and basic constants, Ka and Kb,
respectively, are calculated using Eq. (10) from the
linear relationship DHs/AN* vs. DN/AN* for the
series of polar probes tested, characterized by
different AN* (modified acceptor) and DN (donor)
numbers (Table 2). The procedure is illustrated in
Figure 1(b).

ð�DHsÞ
AN�

¼ Ka

DN

AN�
þ Kb: ð10Þ

The retention times obtained from the IGC
experiments are converted in net retention vol-
umes, according to Eq. (1). For subsequent data
reduction the net retention volume can be nor-
malized by using the stationary phase surface area
or mass (the latter being the rule). In any case, and
bearing in mind the data reduction mathematical
procedures, it should be noted that the normali-
zation of the net retention volume, using either the
stationary phase mass or surface area, does not
influence the values of cs

d or its variation with
temperature (dcs

d/dT), nor the values of Wa
s, DHs,

Ka and Kb.
The limitations of the IGC are well described

in the literature, and have actually been the
subject of discussion in a paper published by one
of the authors (Santos et al. 2002a). The best

Figure 1. Determination of (a) cs
d (Eq. (6)) and DGs (Eq. (7)) for the basic probe THF, and (b) acidic and basic constants (Eq. (10)) for

sample C.
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approach to assess the surface energetic proper-
ties (surface tension, surface Lewis acidic/basic
properties) of a material by IGC is the side-by-
side analysis of the energy of adsorption,
enthalpy of adsorption and surface Lewis acidity
and basicity constants. This procedure allows for
a coherent and systematic interpretation of the
IGC results, leading to a more complete analysis
than the sole analysis of the semi-empirical val-
ues of Ka and Kb. This was the procedure
adopted in the present paper.

BET surface area determination

The BET specific surface area of the IGC column
stationary phases was determined by nitrogen
adsorption in a Micromeritics ASAP 2000 unit.

SEM imaging

SEM images of the IGC column stationary phases
were obtained in a JEOL JSM-5310 unit, using an
accelerating voltage of 10 kV.

FTIR analysis

FTIR spectra of the IGC column stationary pha-
ses was carried out in a Nicolet Magma IR TM750
unit (ATR MKII Golden Gate).

Contact angle measurement

An OCA20 Dataphysics unit was used for the
determination of static contact angles relating to
the handsheets. The liquids used were water,
formamide, diodomethane, ethylene glycol and
propylene glycol. The values of contact angle were
processed according to the Owens, Wendt, Rabel
and Kaelble approach (OWRK method).

Results and discussion

BET surface area determination

In Table 3 are summarised the results concerning
the determination of the specific surface area of the
IGC column stationary phases.

In Table 3 it can be observed that the beating
process applied to pulp A (production of sample
B) increases the specific surface area due to the
more open structure and the production of fibrils
along the fibre’s surface. Moreover, the specific
surface area of the handsheet stationary phases
(samples C and D) is lower than that of the pulp
samples (A and B), as expected. The stationary
phase corresponding to the sized handsheet (sam-
ple D) has a lower specific surface area than that of
the non-sized handsheet (sample C). This may be
due to reduction in porosity caused by covalent
bonding between the AKD molecules and the
fibres and fines surface.

SEM imaging

SEM images of the IGC columns stationary pha-
ses are presented in Figures 2–5, concerning sam-
ples A, B, C and D, respectively.

As mentioned, samples A and B consist of
milled pulp. The milling operation aimed at
reducing the size of pulp flocks so that the IGC
column stationary phase could be packed. It can
be observed in Figures 2 and 3 that the effects of
this procedure do not dominate over the effect of
the PFI beating process (which results in a more
open structure and the production of fibrils along
the fibre’s surface). This is further supported by
the fact that even after the milling procedure
sample B has a greater surface area than sample
A (Table 3). The consequences of the pulp mill-
ing, if this operation had been extended, would
be increased exposure of the cross sectional sur-
face and lumen surface in addition to the
detachment of fibre wall fragments. Conse-
quently, the thermodynamic properties (cs

d, dcs
d/

dT, Wa(THF), Wa(CHCl3), Ka and Kb) would
reflect this varied composition and not that of the
original pulp because the milled pulp surface is
expected to be richer in cellulose and hemicellu-
lose. Nevertheless, the above phenomena did not

Table 3. BET surface area (m2/g) of the IGC columns sta-

tionary phases.

Sample A Sample B Sample C Sample D

1.621±0.014 1.961±0.036 1.388±0.016 0.991±0.029
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occur in the studied samples because of the gentle
milling.

In addition, morphological differences are
observed between sample B (beaten and milled
pulp) and samples C and D (paper sheets made
from beaten pulp), in particular the collapse of

the surface fibre’s and the presence of fines and
colloidal material at the fibre’s surface, due to
the web-forming operation. The effects of
these phenomena on the surface energetic
properties will be discussed in detail further in
this article.

Figure 4. SEM images of the IGC stationary phase relating to sample C, at magnification levels of 750 · (on the left) and 3500 · (on

the right).

Figure 3. SEM images of the IGC stationary phase relating to sample B, at magnification levels of 750 · (on the left) and 3500 · (on

the right).

Figure 2. SEM images of the IGC stationary phase relating to sample A, at magnification levels of 750 · (on the left) and 3500 · (on

the right).
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Inverse gas chromatography

The elution peaks obtained were generally sym-
metrical. For probe molecules that adsorb strongly
on the stationary phase, such as THF, a tail was
detected in the elution peak that did not influence
the symmetry of the peak significantly as the
magnitude of the tail was prominently lower than
that of the elution peak. The presence of an
asymmetrical peak would be due to the existence
of dead volumes inside the IGC column or to
significant surface energetic heterogeneity. In that
situation, in order to account for the distribution
of acidic/basic sites of various strengths, IGC un-
der finite dilution conditions would be necessary.
The Gaussian peaks observed indicate that the
energetic heterogeneity is not significant, for any
of the samples studied, under the operation con-
ditions used for the IGC study. It should be
mentioned that IGC carried out under infinite
dilution conditions is more sensitive to the higher
energy sites. IR spectroscopy was used in order to
detect any contamination of the samples. No
extraneous peaks, related with contaminants, were
detected.

The retention times were not extrapolated to
peaks of zero area as the volume of molecular
probe injected in the IGC columns was residual
and the IGC unit was set to the limit of probe

detection by the FID detector. Typically, the syr-
inge was filled with 1ll of gaseous probe, flushed
with air about 10 times, in order to ensure the
creation of a Henry’s infinite dilution region, and
injected manually.

Determination of the dispersive component
of the surface tension

The dispersive component of the surface tension,
cs
d at 40 �C, determined according to Eq. (6), and

its variation with temperature (dcs
d/dT), are pre-

sented in Table 4. Figure 6 illustrates the depen-
dence of cs

d on temperature, for all the samples
analysed.

Although the modifications to which pulp A was
subjected (beating, handsheet formation and siz-
ing) greatly affect the sample surface energetic
properties, all the values obtained for cs

d are
consistent with those published in the literature for
this type of materials (Belgacem 2000). A Whil-
elmy balance was used in an attempt to determine
the contact angles for the fibres, but, due to their
small length, it was not possible to prepare sam-
ples such that reliable results could be obtained.
With regard to the handsheets, the sessile droplet
method was used but the size of the pores,
roughness and hydrophilicity of the surface did
not allow for accurate results to be obtained in the

Figure 5. SEM images of the IGC stationary phase relating to sample D, at magnification levels of 750 · (on the left) and 3500 · (on

the right).

Table 4. Dispersive component of surface tension, cs
d, and its variation with temperature for all the samples tested.

Sample A Sample B Sample C Sample D

cs
d (mJ/m2), 40 �C 45.0±0.38, r2 = 0.995 48.2±0.48, r2 = 0.998 31.3±0.02, r2 = 1.000 33.4±0.04, r2 = 0.999

dcs
d/dT (mJ/m2K) �1.06 �1.28 �0.61 �0.57
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case of samples A, B and C. For sample D a value
of 33.9 mJ/m2 for cs

d and of 0.3 mJ/m2 for cs
p

were determined. Thus, the values of cs
d for sample

D, obtained using IGC and the sessile droplet
method, are in good agreement.

The increased exposed surface area, due to the
production of fibrils and to the more open struc-
ture formed upon beating of the pulp (samples A
and B), is thought to result in increments in the
amount of hydroxyl and carboxyl groups accessi-
ble at the surface and, thus, of bonding sites
available for interaction with the IGC molecular
probes. Consequently, the surface ability to
establish dispersive interactions increases (higher
cs
d). The dependence of cs

d on temperature
(Figure 6) also increases for pulp B, denoting a
higher entropic contribution to the surface free
energy, a consequence of the greater mobility of
molecular segments, namely fibrils, in the case of
sample B.

The effect of web forming can be examined by
comparing sample B (milled pulp) and sample C
(pieces of handsheet). The latter shows a much
lower value of the dispersive component of surface
tension and of its temperature dependence (about
half). This is most probably due to the enrichment
of fines and colloidal material at the surface of the
handsheets. Although the milling procedure,
adopted in the case of samples A and B, could
influence the surface properties of the pulp, as
discussed earlier (it would contribute, for example,
to the higher values of cs

d observed for samples A
and B in comparison with those observed for
samples C and D), the web-forming operation is

thought to be the major cause of the differences
observed upon this operation, based on the SEM
images (Figures 3–5) and on the IGC results
(Figure 7 and Table 5). In Figures 4 and 5, it can
be clearly seen that in samples C and D the pres-
ence of fines and colloidal material at the fibre’s
surface is very significant and, thus, these compo-
nents are expected to influence very significantly
the handsheet surface thermodynamic properties.
Conversely, at the surface of the beaten pulp
(sample B, Figure 3) no colloidal material can be
identified (only the existence of fibrils originated
from the beating process).

The differences in fines and extractives concen-
trations between the pulp and the handsheet fibres
surface have been the subject of several studies.
Three types of fines have been identified: primary
fines, associated with the virgin pulp, secondary
fines, produced during pulp processing prior to the
forming operation, and tertiary fines, produced
during the flow of non-retained stock around the
paper machine white water system (Truong et al.
2003). Shen et al. (1998) and Truong et al. (2003)
state that residual lignin and extractives of the
fines fraction are present in a higher concentration
(at the surface as well as in the bulk) than they are
in the fibres fraction. Furthermore, the concen-
trations of lignin and residual extractives on the
surface of the fibres are not the same as those in
the bulk of the fibres, due to migration, resorption
and reprecipitation phenomena (Shen and Parker
1999), during the cooking (Suurnakki et al. 1996)
and the washing processes (Shen et al. 1998). Shen
et al. (1998) have determined that the dispersive

Figure 7. Specific component of the adhesion works for the

basic (THF) and the acidic (CHCl3) probes on the surfaces of

samples A, B, C and D, at 40 �C.

Figure 6. Variation of the dispersive component of surface

tension with temperature for the various samples.
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component of the surface tension of the eucalypt
fines is lower than that of the whole pulp (34.7 and
38.4 mJ/m2, respectively). In another study, Shen
and Parker (1999) found the values of 56.6 and
48.2 mJ/m2 for cellulose and lignin, respectively.
Other researchers have also found that lignin has a
lower cs

d than cellulose (Belgacem 2000, Belgacem
et al. 1995). Thus, it is concluded that the decrease
observed in cs

d when the pulp is converted to
handsheets is due to reprecipitation/migration of
fines and colloidal material to the surface of the
handsheet. This phenomenon would be caused by
water flow during the web-forming process.

Regarding the influence of sizing, expressed by
the differences between the results obtained for
samples C and D, no significant change was de-
tected for the surface free energy, despite other
authors having reported a decrease in this
parameter with sizing (Shen et al. 1998; Belgacem
2000). Possible explanations for this lack of liter-
ature agreement are the differences in both the
type of sizing agent and procedure and the fact
that, in this work, the effect of sizing was evaluated
in handsheets instead of pulp fibres. Thus, the ef-
fect of sizing could be masked by the effect of web
forming.

Acid–base characteristics

Although the discussion that follows is mainly
based on the results obtained for THF (as a model
basic probe) and CHCl3 (as a model acidic probe),
the acidic/basic character of the samples was
evaluated using all the polar probes referred to in
Table 2, the results being consistent.

In Figure 7 are presented the values obtained
for the specific component of the adhesion works
of THF and of CHCl3 on the surface of all the
samples analysed (derived from Eq. (8)). The val-
ues obtained for the specific component of the
enthalpy of adsorption of THF and of CHCl3
(derived from Eq. (9)), and the values obtained for

Ka and Kb (calculated from Eq. (10)) are coherent
with the tendencies observed in Figure 7. The rel-
ative values found for the specific component of
the adhesion works and of the enthalpy of
adsorption of THF and of CHCl3, as well as the
relative values found for the acidic and basic
constants (Ka and Kb, respectively) are presented
in Table 5.

From the results presented in Table 5, namely
the ratio Ka/Kb, it can be concluded that, excluding
sample D, all the samples have a predominant
acidic character which decreases in the following
order:

sample B > sample A > sample C > sample D.

This tendency is corroborated by the values of the
Wa

s(THF)/Wa
s(CHCl3) and DHs (THF)/

DHs(CHCl3) ratios, revealing a good qualitative
correlation between the three approaches.

From IGC experiments Shen et al. (1998) have
shown that eucalypt pulp fibres are Lewis
amphoteric with a strong acidic character. Our
results are, thus, in agreement with expectation
bearing in mind reports in literature and also the
nature of cellulosic materials (extensive presence of
OH and COOH functional groups).

As far as the beating effect is concerned, the
increased OH and COOH groups concentration at
the fibre’s surface in the case of sample B (a con-
sequence of the beating action as discussed above)
results in increased works of adhesion with the
polar probes, namely with the basic probe (thus
reflecting a significant increase in the Lewis acidic
character), Figure 7. The latter effect is also clear
in Table 5. Here it can be observed that the pres-
ence of acidic sites relative to that of basic sites
increases upon the beating operation.

As mentioned previously, the differences in
surface energy upon web forming are thought to
be due mainly to the increase in surface fines and
colloidal material concentration. The primary fines
have been shown to have a strong basic character,

Table 5. Ratios between the adhesion works (Wa
s) and enthalpies of adsorption (DHs) of tetrahydrofuran and chloroform, and

between the acidic and basic constants (Ka and Kb, respectively), relating to samples A, B, C and D.

Sample A Sample B Sample C Sample D

Wa
s(THF)/Wa

s(CHCl3), 40 �C 8.7 11.4 5.4 2.0

DHs(THF)/DHs(CHCl3) 17.5 21.6 4.1 2.7

Ka/Kb 2.0 3.1 1.8 1.0
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in an order of magnitude similar to that of cellu-
lose (Shen and Parker 1999; Shen et al. 1998). On
the other hand, lignin has a lower acidity than
cellulose. In addition, Shen and Parker (1999) and
Belgacem et al. (1995), showed that extraction of
eucalypt fibres causes an increase of the works of
adhesion with both acidic and basic probes. Our
results (Figure 7, samples B and C), however,
show that web forming increases the works of
adhesion of both acidic and basic probes despite
decreasing the relative acidity of the surface (Ta-
ble 5). The greater concentration of fines observed
in sample C (when compared to sample B) con-
tributes indeed to the increase of the work of
adhesion of the acidic probe (and to the decrease
of the surface relative acidity). The discrepancy
related to the basic probe may be justified by (1)
the fact that lignin and extractives are not the only
constituents of fines and colloidal material that
also comprises carbohydrates, (2) the greater
density of COOH and OH groups in the case of
the fines and (3) the preferential orientation of
these groups at the handsheet surface due to the
web-forming operation conditions (towards the
cellulosic surface used to absorb the water and to
form the paper handsheet).

The last factor is important in many polymeric
systems, as extensively illustrated by Schreiber
et al. (1993). A good example is that of PMMA
films prepared either by drying in air or by drying
between plaques of different materials. When the
PMMA film is dried in air, the methacrylate
groups are oriented towards the bulk of the film, in
order to minimize the PMMA film surface free
energy (as the PMMA backbone is apolar). When
the PMMA film is formed between two plaques of
greater surface free energy (in this case metallic),
the methacrylate groups are preferentially orien-
tated towards the PMMA film/metallic plaque
interface, thus minimizing the interface surface
free energy. The result is a greater interaction
capability of the PMMA film surface through
specific (Lewis acid/base) forces. In the case of our
samples, the pulp, after being thoroughly washed,
is dried in air. On the other hand, the web-forming
operation consists of placing wet handsheets be-
tween two plaques of high water absorbency pa-
per, followed by application of pressure.
Afterwards, the sheets are dried in air. The fact
that the pulp is dried in air and the handsheet is
formed between two cellulosic substrates would be

expected to lead to differences in functional groups
(hydroxyl and carboxyl groups) orientation at the
surface, and, in particular, to increased Lewis
acidic and basic character in the case of the
handsheet. This reasoning must, nevertheless, be
the subject of further experimental evidence.

The fines have a much larger specific surface
area than the fibres and have been shown to have a
much higher surface charge than the fibres, on a
mass basis (Truong et al. 2003). When fines are
removed, the eucalypt pulps studied by Truong et
al. (2003) lose an average of 50% of their surface
charge. The charge of the kraft pulp fibres and
fines results from ionization mainly of carboxylic
acid groups. The difference in COOH and OH
functional groups per unit mass between the fines
and the fibres can be explained by differences in
size. Bearing in mind the typical dimensions of the
fibres and of the primary fines, the surface charge
of fines (and, thus, the COOH and OH functional
groups concentration), can be estimated to be
around 10 times that of the fibres. A practical
evidence is that a large amount (50–75%) of AKD
sizing agent has been proven to be adsorbed by the
fines in eucalypt pulps (Truong et al. 2003). Thus,
the results obtained for the differences in the Lewis
acid/base properties after web forming are thought
to be due mainly to the higher concentration of
fines (with higher charge density) in the handsheet
surface.

It is clear from Figure 7 that the differences be-
tween the adhesion works of the acidic and the
basic probes decreased from sample C to sample D,
due to sizing (that is, the surface of the sized
handsheet is less Lewis acidic and more Lewis basic
than the unsized sample). In addition, the ratio Ka/
Kb not only decreased but is equal to unity for
sample D, denoting that sizing renders the sample
more evenly bipolar. The loss of acidity and in-
creased basicity with sizing is consistent with other
studies reported elsewhere (Shen et al. 1998), and is
likely to be related to the basic nature of AKD,
which must have formed strong covalent bonds
with the fibre’s surface, decreasing the presence of
acidic sites. It should be noted that the IGC results
obtained in the present study do not indicate that
sizing promotes wetting as (1) the AKD molecules
form bonds with the fibres and, thus, decrease the
sites for interaction with water or other molecules,
and (2) the specific surface area (Table 3) decreases
upon sizing and so does porosity (SEM imaging,
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Figures 4 and 5), thus, decreasing opportunity for
sorption and spreading of liquids.

Conclusions

In this work, inverse gas chromatography was
used to study the influence of beating, web forming
and sizing on surface free energy of bleached
Eucalyptus globulus kraft fibres. Milled pulps or
pieces of handsheets were used as the stationary
phase.

The results have shown that beating, although
increasing only slightly the dispersive component
of the surface tension, greatly enhances the acidic
character of the fibres surface, probably due to a
greater number of hydroxyl and carboxyl func-
tional groups accessible at the fibre’s surface. The
specific surface area has increased as expected.

The process of web-forming decreases the spe-
cific surface area and causes the retention of fines
and colloidal material at the surface of the fibres.
Consequently, this operation greatly decreases the
ability of forming dispersive intermolecular forces
bonds, resulting in significantly lower values for
cs
d. Nevertheless, the specific (acidic/basic) inter-

molecular interactions with the polar probes
greatly increase, probably due to increased hy-
droxyl and carboxyl functional group concentra-
tion and exposure at the papersheet surface (a
consequence of the greater concentration of fines
and colloidal material).

Because of the basicity of AKD and also due to
the strong bonds formed between this sizing agent
and the fibre surface, the availability of electron-
accepting sites, relative to the electron donor sites,
decreases and the surface of the sized handsheet
becomes more Lewis basic.

Although internal sizing plays an important role
in controlling liquid spreading at the paper surface
and liquid penetration on the fibre’s network, it is
concluded that web forming is probably the
papermaking operation that mostly contributes to
the changes of the surface energetic properties of
the cellulose fibres.
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