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ABSTRACT 

Plants are being increasingly used in dermatological formulations, since their collateral effects 

are lower than those caused by synthetic products. Hydrogels represent efficient formulations to 

incorporate plant extracts, providing good percutaneous absorption, non-greasy texture and easy 

application. Bryonia dioica Jacq. (white-bryony), Tamus communis L. (black-bryony) and 

Lonicera periclymenum L. (honeysuckle) fruits have important applications as topical homemade 

remedies. The phenolic extracts of B. dioica, T. communis and L. periclymenum were 

characterized by HPLC-DAD-ESI/MS, and further incorporated into hydrosoluble gels in order 

to evaluate their antioxidant potential. The hydrogels were prepared with each fruit extract at the 

EC50 value (obtained herein for each ethanolic extract). The antioxidant activity of extracts and 

hydrogels was evaluated following different chemical and biochemical assays. Eighteen 

compounds were identified in honeysuckle (7 flavonols, 7 hydroxycinnamoyl derivatives and 4 

anthocyanins), fourteen in white-bryony (9 flavonols and 5 flavones) and twelve in black-bryony 

(7 flavonols and 5 flavones). Honeysuckle showed the highest concentrations of phenolic 

compounds, but the antioxidant activity was similar among the three assayed species. The 

obtained formulations revealed antioxidant activity close to 50% for reducing power, scavenging 

activity and β-carotene/linoleate assays. The studied fruits might be considered as good source of 

phenolic compounds that can be used in formulations for topical application, benefiting their 

antioxidant effects. 

 

Keywords: Wild fruits; Phenolic profiles; HPLC-DAD-ESI/MS; Hydrogels; Topical medicines; 

Antioxidant activity. 
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1. Introduction 

The topical use of plant preparations is among the most common practices in traditional 

healthcare (Marc et al., 2008). In recent ethnobotanical surveys conducted in Portugal and Spain 

(Neves et al., 2009; Benitez et al., 2010; Carvalho, 2010; González et al., 2010) several plant 

materials were reported as having interesting application as topical homemade remedies. Bryonia 

dioica Jacq. (white-bryony), Tamus communis L. (black-bryony) and Lonicera periclymenum L. 

(honeysuckle) are among the most cited (Carvalho, 2010). Their fruits are generally and 

popularly considered toxic to humans (Carvalho, 2010), mainly due to triterpene glucosides and 

calcium oxalate crystals (Castroviejo et al., 2001). Therefore, they are used as topical remedies 

being applied directly or macerated in water, alcohol or brandy to achieve anti-inflammatory 

effects (Rafael et al., 2011). The phytochemical screening of white-bryony roots showed the 

presence of polyphenols, sterols and triterpenes, alkaloids, flavonoid C-heterosides, 

carbohydrates and saponins. However, condensed and hydrolyzable tannins, anthocyanins, 

coumarins, anthraquinones and flavonoid O-heterosides were not detected (Benarba et al., 2012). 

Recently, our research group reported the phenolic profiles of white-bryony and black-bryony 

shoots, identifying five flavones (glycosylated derivatives of luteolin and apigenin) and one 

flavonol (kaempferol 3,7-di-O-rhamnoside) in the first one, and mainly flavonols (glycosylated 

kaempferol and quercetin compounds) and a hydroxycinnamoyl derivative (chlorogenic acid) in 

the second one (Barros et al., 2011). 

As far as we know, the phenolic profile of Lonicera periclymenum has not been yet studied in 

any of its botanical parts, but other related Lonicera species, for instance Lonicera japonica 

Thunb. are known for their high content in hydroxycinnamic acids (Zhang et al., 2008; Seo et al., 

2012).  

The methanolic extracts obtained from immature and ripened fruits of these three species 

revealed interesting antioxidant properties, being the highest activity detected in the extracts 
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from ripened fruits of black-bryony (Rafael et al., 2011). Considering the involvement of 

oxidative stress in inflammation, topical antioxidants might bring health benefits for the 

treatment and prevention of oxidative stress-mediated inflammatory diseases (Casagrande et al., 

2006). The topical application of formulations containing compounds with free radical 

scavenging properties protects tissues from oxidative damage (Meenakshi et al., 2006). 

Medicinal plants are being progressively employed in dermatological and cosmetic products, 

mainly due to the lower collateral effects when compared with the effects caused by synthetic 

products (Rang et al., 2003).  

Often, the antioxidant potential of either plant extracts with active compounds or the pure 

isolated compounds is evaluated, but very few reports are available on the antioxidant properties 

of final formulations. Gels are becoming popular due to their easy application, better 

percutaneous absorption (when compared with other semisolid preparations) and resistance to 

the physiological stress caused by skin flexion, blinking and mucociliary movement, adopting 

the shape of applied area (Haneefa et al., 2010).  

In the present study, the phenolic profiles of white-bryony, black-bryony and honeysuckle fruits 

were analyzed by high performance liquid chromatography and mass spectrometry. Further, their 

ethanolic extracts, rich in phenolic compounds, were incorporated into hydrosoluble gels, which 

are easily dispersed, non-oily and can carry hydrosoluble active principles, for antioxidant 

potential assessment.  

 

2. Material and methods 

2.1. Samples 

Ripened fruits (fleshy and soft red fruits in late autumn) of Bryonia dioica Jacq. (white-bryony), 

Tamus communis L. (black-bryony) and Lonicera periclymenum L. (honeysuckle) were gathered 

in Bragança, Trás-os-Montes, north-eastern Portugal. The samples for analysis were collected 



 
 
 

5 

and prepared according to the main medicinal topical applications as described by informants 

from this Portuguese region (Carvalho, 2010). The vegetal material was gathered haphazardly 

from several plants inside a selected area.  

Morphological key characters from the Flora Iberica (Castroviejo, 2001) were used for plant 

identification. Voucher specimens (ETBO33, ETBO36, and ETBO53) are deposited in the 

herbarium of the Escola Superior Agrária de Bragança (BRESA). Each sample was lyophilized 

(Ly-8-FM-ULE, Snijders, Holland) and stored in the deep-freezer at -20 °C for subsequent 

analyses. 

 

2.2. Standards and reagents 

Imidazolidinyl urea, triethanolamine, 1,2-propanediol and poly(acrylic acid) (carbopol 940) were 

purchase from Sigma (St. Louis, MO, USA); 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 

obtained from Alfa Aesar (Ward Hill, MA, USA). HPLC-grade acetonitrile was obtained from 

Merck KgaA (Darmstadt, Germany). Formic and trifluoroacetic acids were purchased from 

Prolabo (VWR International, France). The phenolic compound standards were from 

Extrasynthese (Genay, France). All other chemicals and solvents were of analytical grade and 

purchased from common sources. Water was treated in a Milli-Q water purification system (TGI 

Pure Water Systems, USA). 

 

2.3. Characterization of phenolic compounds 

 

2.3.1. Non-anthocyanin phenolic compounds 

Each sample (~1 g) was extracted by stirring with 30 mL of methanol:water 80:20 (v/v), at room 

temperature, 150 rpm, for 1 h. The extract was filtered through Whatman no. 4 paper. The 

residue was then re-extracted twice with additional 30 mL portions of methanol:water 80:20 
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(v/v). The combined extracts were evaporated at 35 °C (rotary evaporator Büchi R-210) to 

remove methanol. The aqueous phase was lyophilized and re-dissolved in 20% aqueous 

methanol at 5 mg/mL and filtered through a 0.22-µm disposable LC filter disk for high 

performance liquid chromatography (HPLC-DAD-MS) analysis. The extracts were analysed 

using a Hewlett-Packard 1100 chromatograph (Agilent Technologies) with a quaternary pump 

and a diode array detector (DAD) coupled to an HP Chem Station (rev. A.05.04) data-processing 

station. A Waters Spherisorb S3 ODS-2 C18, 3 µm (4.6 mm × 150 mm) column thermostatted at 

35 °C was used. The solvents used were: (A) 0.1% formic acid in water, (B) acetonitrile. The 

elution gradient established was isocratic 15% for 5 min, 15% B to 20% B over 5 min, 20-25% B 

over 10 min, 25-35% B over 10 min, 35-50% for 10 min, and re-equilibration of the column, 

using a flow rate of 0.5 mL/min. Double online detection was carried out in the DAD using 280 

nm and 370 nm as preferred wavelengths and in a mass spectrometer (MS) connected to HPLC 

system via the DAD cell outlet. 

MS detection was performed in an API 3200 Qtrap (Applied Biosystems, Darmstadt, Germany) 

equipped with an ESI source and a triple quadrupole-ion trap mass analyzer that was controlled 

by the Analyst 5.1 software. Zero grade air served as the nebulizer gas (30 psi) and turbo gas for 

solvent drying (400 ºC, 40 psi). Nitrogen served as the curtain (20 psi) and collision gas 

(medium). The quadrupols were set at unit resolution. The ion spray voltage was set at -4500V in 

the negative mode. The MS detector was programmed to perform a series of two consecutive 

modes: enhanced MS (EMS) and enhanced product ion (EPI) analysis. EMS was employed to 

record full scan spectra to obtain an overview of all of the ions in sample. Settings used were: 

declustering potential (DP) -450 V, entrance potential (EP) -6 V, collision energy (CE) -10V. 

Spectra were recorded in negative ion mode between m/z 100 and 1000. Analysis in EPI mode 

was further performed in order to obtain the fragmentation pattern of the parent ion(s) detected in 
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the previous experiment using the following parameters: DP -50 V, EP -6 V, CE -25V, and 

collision energy spread (CES) 0 V. 

The phenolic compounds present in the samples were characterized according to their UV and 

mass spectra and retention times compared with commercial standards when available. For the 

quantitative analysis of phenolic compounds, a calibration curve was obtained by injection of 

known concentrations (1-100 µg/mL) of different standards compounds: luteolin-6-C-glucoside 

(y = 508.54ϰ - 152.82; R2 = 0.997); apigenin-7-O-glucoside (y = 159.62ϰ + 7.5025; R2 = 0.999); 

quercetin-3-O-rutinoside (y = 281.98ϰ - 0.3459; R2 = 1.000); quercetin-3-O-glucoside (y = 

253.52ϰ - 11.615; R2 = 0.999); kaempferol-3-O-rutinoside (y = 239.16ϰ + 10.587; R2 = 1.000); 

kaempferol-3-O-glucoside (y = 288.55ϰ - 4.0503; R2 = 1.000); chlorogenic acid (y = 313.03ϰ - 

58.2; R2 = 0.999); caffeic acid (y = 611.9ϰ -4.5733; R2 = 0.999).  

 

2.3.2. Anthocyanins  

Each sample (~1 g) was extracted with 30 mL of methanol containing 0.5% TFA, and filtered 

through a Whatman nº 4 paper. The residue was then re-extracted twice with additional 30 mL 

portions of 0.5% TFA in methanol. The combined extracts were evaporated at 35 ºC to remove 

the methanol, and re-dissolved in water. For purification, the extract solution was deposited onto 

a C-18 SepPak® Vac 3 cc cartridge (Phenomenex), previously activated with methanol followed 

by water; sugars and more polar substances were removed by passing through 15 mL of water 

and anthocyanin pigments were further eluted with 5 mL of methanol/water (80:20, v/v) 

containing 0.1% TFA. The methanolic extract was concentrated under vacuum, lyophilized, re-

dissolved in 1 mL of 20% aqueous methanol and filtered through a 0.22-µm disposable LC filter 

disk for HPLC analysis. 

The extracts were analysed in the HPLC system indicated above using the conditions described 

elsewhere (García-Marino et al., 2010). Separation was achieved on an AQUA® (Phenomenex) 
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reverse phase C18 column (5 µm, 150 mm × 4.6 mm i.d) thermostatted at 35 ºC. The solvents 

used were: (A) 0.1% TFA in water, and (B) 100% acetonitrile. The gradient employed was: 

isocratic 10% B for 3 min, from 10 to 15% B for 12 min, isocratic 15% B for 5 min, from 15 to 

18% B for 5 min, from 18 to 30% B for 20 min and from 30 to 35% for 5 min, at a flow rate of 

0.5 mL/min. Double detection was carried out by DAD, using 520 nm as the preferred 

wavelength, and MS using the same equipment described above. Zero grade air served as the 

nebulizer gas (40 psi) and turbo gas (600 ºC) for solvent drying (50 psi). Nitrogen served as the 

curtain (100 psi) and collision gas (high). Both quadrupols were set at unit resolution. The ion 

spray voltage was set at 5000V in the positive ion mode. EMS and ESI methods were used for 

acquisition of full scan spectra and fragmentation patterns of the precursor ions, respectively. 

Setting parameters used for EMS mode were: declustering potential (DP) 41 V, entrance 

potential (EP) 7.5 V, collision energy (CE) 10 V and parameters for EPI mode were: DP 41 V, 

EP 7.5 V, CE 10 V, and collision energy spread (CES) 0 V.  

The anthocyanins present in the samples were characterised according to their UV and mass 

spectra and retention times, and comparison with authentic standards when available. For 

quantitative analysis, a calibration curve was obtained by injection of known concentrations (50-

0.25 µg/mL) of different standards compounds: cyanidin-3-O-glucoside (y = 630276ϰ - 153.83; 

R2 = 1.000) and peonidin-3-O-glucoside (y = 537017ϰ - 71.469; R2 = 1.000).  

 

2.4. Preparation of ethanolic extracts and incorporation in hydrosoluble gels  

For the extracts preparation, a fine dried powder (20 mesh; ~0.5 g) was stirred with 30 mL of 

ethanol at 25 °C and 150 rpm for 1 h, and filtered through Whatman No. 4 paper. The obtained 

residue was re-extracted under the same conditions. The combined extracts were evaporated at 

35 °C under reduced pressure, re-dissolved in ethanol at 10 mg/mL, and stored (4 °C) for further 

evaluation of antioxidant activity or incorporation in gels. 
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For the gels preparation, a semi-solid base was prepared by adding 0.5 g Carbopol 940 to 20 mL 

of deionised water. The gel base was allowed to stand for 1 h after which 1 mL of 

triethanolamine and an exact volume of each fruits extract, corresponding to a final 

concentration equal to the average EC50 obtained for each species in the antioxidant activity 

assays (section 2.5.). Subsequently, citric acid (0.45 g), disodium EDTA (0.005 g), 

imidazolidinyl urea (0.1 g) and propylene glycol (7.5 g) were added for gel preparation. The 

final product was adjusted to 50 g by the addition of deionised water, and further submitted to 

evaluation of antioxidant potential. A blank formulation (negative control) was also prepared in 

the same conditions but without incorporation of the extract.  

 

2.5. Evaluation of antioxidant activity 

 

2.5.1. DPPH radical-scavenging activity 

This methodology was performed using an ELX800 microplate reader (Bio-Tek Instruments, 

Inc). The reaction mixture in each one of the 96-wells consisted of one of the different 

concentrations of the extracts or gels (30 µL) and methanolic solution (270 µL) containing DPPH 

radicals (6×10-5 mol/L). The mixture was left to stand for 30 min in the dark. The reduction of 

the DPPH radical was determined by measuring the absorption at 515 nm. The radical 

scavenging activity (RSA) was calculated as a percentage of DPPH discolouration using the 

equation: % RSA = [(ADPPH-AS)/ADPPH] × 100, where AS is the absorbance of the solution when 

the sample extract/gel has been added at a particular level, and ADPPH is the absorbance of the 

DPPH solution. The concentration providing 50% of radicals scavenging activity (EC50) was 

calculated from the graph of RSA percentage against extract concentration. 

 

2.5.2. Reducing power 
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This methodology was performed using the microplate reader described above. The different 

concentrations of the extracts or gels (0.5 mL) were mixed with sodium phosphate buffer (200 

mmol/L, pH 6.6, 0.5 mL) and potassium ferricyanide (1% w/v, 0.5 mL). The mixture was 

incubated at 50 ºC for 20 min, and trichloroacetic acid (10% w/v, 0.5 mL) was added. The 

mixture (0.8 mL) was poured in the 48-wells, as also deionised water (0.8 mL) and ferric 

chloride (0.1% w/v, 0.16 mL), and the absorbance was measured at 690 nm. The concentration 

providing 0.5 of absorbance (EC50) was calculated from the graph of absorbance at 690 nm 

against extract concentration.  

 

2.5.3. Inhibition of β-carotene bleaching 

A solution of β-carotene was prepared by dissolving β-carotene (2 mg) in chloroform (10 mL). 

Two millilitres of this solution were pipetted into a round-bottom flask. The chloroform was 

removed at 40 ºC under vacuum and linoleic acid (40 mg), Tween 80 emulsifier (400 mg), and 

distilled water (100 mL) were added to the flask with vigorous shaking. Aliquots (4.8 mL) of this 

emulsion were transferred into test tubes containing solutions extract or gel with different 

concentrations (0.2 mL). The tubes were shaken and incubated at 50 ºC in a water bath. As soon 

as the emulsion was added to each tube, the zero time absorbance was measured at 470 nm 

(AnalytikJena 200-2004 spectrophotometer). β-Carotene bleaching inhibition was calculated 

using the following equation: (β-carotene content after 2h of assay/initial β-carotene content) × 

100. The concentration providing 50% antioxidant activity (EC50) was calculated by 

interpolation from the graph of β-carotene bleaching inhibition percentage against extract 

concentration.  

 

2.6. Statistical analysis 
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For each sample three independent experiments were performed, and each of them was analysed 

in triplicate (spectrophotometry) or duplicate (chromatography). The results were expressed as 

mean values ± standard deviation (SD). The statistical differences represented by letters were 

obtained through one-way analysis of variance (ANOVA) followed by Tukey’s honestly 

significant difference post hoc test (homoscedastic distributions) or Tamhane’s T2 test 

(heteroscedastic distributions) with α = 0.05, coupled with Welch’s statistic. All statistical tests 

were performed with the SPSS v.18.0 software. The normality within groups and homogeneity 

of variances and of variance-covariance matrices, were checked using the Kolmogorov-Smirnov 

with Lilliefors correction, the Levene and M-Box tests, respectively.  

 

3. Results and discussion 

 

3.1. Characterization of phenolic compounds 

The characterization of the phenolic compounds present in the fruits was performed by HPLC-

DAD-MS analysis, and data of the retention time, λmax, pseudomolecular ion, main fragment ions 

in MS2, tentative identification and concentration of phenolic acid derivatives, flavonoids and 

anthocyanins are presented in Tables 1 and 2. The HPLC phenolic profiles of white-bryony (A), 

black-bryony (B) and honeysuckle (C), which was injected in a concentration 4 times lower than 

the other samples can be observed in Figure 1.  

UV and mass spectra of the studied samples obtained by HPLC-DAD-ESI/MS analysis showed 

that the phenolic composition of white and black bryony was characterized by the presence of 

flavonoids, whereas flavonoids and hydroxycinnamoyl derivatives were present in the sample of 

honeysuckle. The analysis of the MS2 fragments revealed that both O- and C-glycosides of 

flavonoids were present derived respectively from two flavonols (quercetin and kaempferol) and 
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two flavones (luteolin and apigenin). Sugar substituents consisted of hexoside, deoxyhexosides 

and pentosides, as deduced from the losses of 162 Da, 146 Da and 132 Da, respectively.  

 

3.1.1. Flavonols  

Peaks 7, 8, 9 and 10 in honeysuckle were respectively identified as quercetin 3-O-rutinoside, 

quercetin 3-O-glucoside, kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside, according to 

their retention, mass and UV-Vis characteristics by comparison with commercial standards. Peak 

13 in white-bryony (10 in black-bryony) was identified as kaempferol-3,4’-O-dirhamnoside 

according to its pseudomolecular ion and fragmentation pattern as previously reported by Barros 

et al. (2011) and fully characterised by Shaheen et al. (2009) using NMR. Tentative 

identification of the remaining flavonols was made based on their molecular ions and 

fragmentation patterns according to the principles established by Cuyckens et al. (2001) and Ma 

et al. (2001) for the fragmentation of flavonoid O-glycosides. 

Assignment of O-neohesperidosides and O-rutinosides was made assuming that greater 

abundance of the Y0 ion (aglycone) than Y1 ion (produced from the breakdown of the 

interglycosidic linkage) should be expected in the case of 1,2 disaccharides, while Y1 should be 

more abundant than Y0 in the case of a 1,6 linkage (Cuyckens et al., 2001). Thus, peak 5 in 

white-bryony (same as peaks 6 in black-bryony and honeysuckle) was tentatively assigned to 

quercetin 3-O-neohesperidose, once the signal corresponding to the Y0 ion (m/z at 301) was 

greater than that of the Y1 ion (m/z at 463). Peak 7 in white-bryony might be assigned as a 

quercetin O-rhamnosyl-pentoside owing to the lack of a fragment at m/z 433 (-146 u), which 

suggests that it corresponds to a disaccharide where the pentose was the terminal unit.  

Peaks 9, 11 and 12 in white-bryony could be interpreted as kaempferol O-diglycosides in which 

each of the sugar moieties were located at different positions on the aglycone, owing to the 

observation of fragments derived from the loss of each sugar residue. However, they might also 



 
 
 

13 

be rationalised as kaempferol O-disaccharides, in which an irregular fragment ion is produced by 

an internal rearrangement in the sugar moieties following the loss of the internal dehydrated 

glucose/pentose and further linkage of the terminal rhamnose to the aglycone, as observed by Ma 

et al. (2001). Thus, peak 9 (7 in black-bryony) might correspond to kaempferol 3-O-

neohesperidose, and peaks 11 and 12 (9 in black-bryony) could be interpreted as possible 

kaempferol O-pentosyl-rhamnosides with 1,6 and 1,2 interglycosydic linkages, respectively. 

Similarly, peak 10 in white-bryony (8 in black-bryony) could correspond either to a quercetin O-

rhamnoside-O-rhamnoside (sugar moieties at different positions) or a quercetin O-rhamnosyl-

rhamnoside (in which the two sugars constitute a disaccharide).  

Peak 5 ([M-H]- at m/z 755) in honeysuckle was coherent with a quercetin bearing two rhamnosyl 

and one hexosyl residues. The loss of a fragment of 146 u to yield the ion at m/z 609 suggested 

different location on the aglycone of one of the rhamnosyl moieties in relation to the other two 

sugars; furthermore, its fragmentation pattern closer to peak 7 (quercetin-3-O-rutinoside) than to 

peak 8 (quercetin-3-O-neohesperidoside) might allow assigning it as quercetin-3-O-rutinoside-

O-rhamnosyl. Similarly, peak 8 ([M-H]- at m/z 739) in white-bryony could be a kaempferol-O-

rhamnosyl-hexoside-O-rhamnoside, according to its pseudomolecular ion and MS2 fragment ions 

at m/z 593 ([M-146]-, loss of a rhamnose moiety) and m/z 431 ([M-308]-, loss of a rhamnosyl-

hexoside moiety), although no fragment ion corresponding to kaempferol aglycone (m/z 285) 

was detected. The suggested presence of kaempferol-3-O-neohesperidoside (peak 9) in relevant 

amounts in this extract might point out that peak 8 could be a kaempferol-3-O-neohesperidoside-

O-rhamnoside, although there are differences in their fragmentation patterns that might be 

possibly explained by the very low amounts of peak 8. Finally, peaks 14 in white-bryony and 

honeysuckle, and peak 12 in black-bryony would be different quercetin O-hexosides. 

 

3.1.2. Flavones 
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Flavones were only identified in white- and black-bryony as C-glycosylated derivatives. This 

type of compounds is characterized by the loss of characteristics fragments from the cleavage of 

the sugar pyrano ring, namely -120 u and 90 u in the case hexosides (Ferreres et al., 2003). 

Taking it into account, five peaks in white-bryony (1, 2, 3, 4 and 6) were assigned to different C-

glycosyl flavones. Peak 6 ([M-H]- at m/z 431) in white-bryony showed characteristic fragment 

ions at m/z 341 ([M-90]-), 311 ([M-120]-), and 281 ([M-150]-). The fragment at m/z 281 would 

correspond to the cleavage of bonds 0 and 1 [0,1X]- in the sugar moiety (Ma et al., 1997). This 

compound was positively identified as apigenin-6-C-glucoside by comparison with an authentic 

standard. Peaks 1-4 presented the same pseudomolecular ion [M-H]- at m/z 593, but differed in 

their MS2 fragmentation. Majority peak 2 showed characteristic fragment ions at m/z 503 (-90 u), 

473 (-120 u), 383 (-120-90 u) and 353 (-120-120 u). The ion at m/z 353 has been associated to 

apigenin aglycone bearing some sugar residues (270 + 83 u) that remained attached to it 

(Ferreres et al., 2003; 2004). Although the identity of the hexoside moieties cannot be 

established, they might be well associated as being glucose. According to these characteristics, 

peak 2 was tentatively identified as apigenin-6-C-glucoside-8-C-glucoside.  

Peak 1 also showed the ions at m/z 503 (-90 u) and 473 (-120 u), but also other two minority 

ones at m/z 431 (-162 u) and 311 (-120-162 u). In this case the observation of the complete loss 

of a hexosyl moiety (-162 u) could be interpreted as one of the hexosides being O-linked, so that 

the compound might be assigned to an apigenin-C-hexoside-O-hexoside. The ions at m/z 431 and 

311 were also observed in the case of peak 3, as well as a minor one at m/z 341, that can be 

explained from the loss of 90 u from the fragment at m/z 431, supporting also the identity of the 

compound as an apigenin-C-hexoside-O-hexoside, namely apigenin 6-C-glucoside-7-O-

glucoside (saponarin) as previously identified by our group in white-bryony shoots (Barros et al., 

2011). Peak 4 presented a fragmentation pattern similar to peak 3, suggesting that it could also 

be an apigenin-C-hexoside-O-hexoside. 



 
 
 

15 

According to their pseudomolecular ion and retention times, peaks 2-5 in black-bryony would 

correspond to peaks 1-4 in white-bryony, although they showed some differences in their MS2 

fragmentation and UV spectra. In addition, peak 1 in black-bryony ([M-H]- at m/z 609) can also 

be associated to a C-glycosyl flavone derived from luteolin, showing characteristic loss of 120 u 

(fragment at m/z 489), and two fragments at m/z 399 and 369, that might correspond to the 

luteolin aglycone plus the residues of the sugars that remained linked to it (luteolin + 113) and 

(luteolin + 83), respectively. Similar fragmentation pattern was described by Ferreres et al. 

(2003) for luteolin 6-C-glucoside-8-C-glucoside, so that it was assigned that identity. The same 

compound was also previously reported by our group in samples of Tuberaria lignosa (sweet) 

(Pinela et al., 2012). 

 

3.1.3. Hydroxycinnamoyl derivatives 

These compounds were only detected in the sample of honeysuckle and mostly correspond to 

chlorogenic acids (i.e., caffeoylquinic acids) containing one or two caffeic acid moieties (peaks 

1, 3, 11, 12 and 13 in Table 1). Peak assignments were made using the hierarchical keys 

previously developed (Clifford et al., 2003; 2005) and according to the recommended IUPAC 

numbering system (IUPAC, 1976). Peak 1 was distinguished from the other two isomers by its 

base peak at m/z 173 [quinic acid-H-H2O]-, accompanied by a secondary fragment ion at m/z 179 

with approximately 78% of the abundance of the base peak, which allowed its identification as 

4-O-caffeoylquinic acid according to the fragmentation pattern described by Clifford et al. 

(2003; 2005). Peak 4 was positively identified as trans-5-O-caffeoylquinic acid by comparison 

with an authentic standard, and also based on its MS fragmentation pattern. Peak 3 was assigned 

as the corresponding cis isomer of 5-O-caffeoylquinic acid, taking into account that 

hydroxycinnamoyl cis derivatives are expected to elute before the corresponding trans 

derivatives. This assumption was supported after UV irradiation (366 nm, 24 h) by the 
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observation of an increase in peak 3 (cis isomer) with respect to peak 4 (trans isomer) suggesting 

trans/cis inter-conversion. Following the same reasoning, peaks 11 and 12 were tentatively 

assigned as cis- and trans-3,5-O-dicaffeoylquinic acid ([M-H]- at m/z 515), respectively. Peak 13 

([M-H]- at m/z 515) could be assigned as 4,5-O-dicaffeoylquinic acid according to its 

fragmentation pattern and relative abundances fragment ions as described by Clifford et al. 

(2003; 2005). Finally, peak 2 should correspond to caffeic acid bearing a hexosyl residue, 

compound previously reported by Barros et al. (2012) in tomato. 

 

3.1.4. Anthocyanins 

In coherence with the presented pigmentations, anthocyanins were detected only in honeysuckle. 

The analytical characteristics, identities and concentrations of the four detected compounds are 

presented in Table 2. All of them were positively identified by comparison with standards.  

 

3.2. Antioxidant activity of ethanolic extracts and derived hydrogels 

The antioxidant activity of the fruits of white-bryony, black-bryony and honeysuckle had been 

previously assayed in methanolic extracts (Rafael et al., 2011). However, the toxicity of 

methanol makes it unsuitable to be included in topical formulations with dermocosmetic 

applications. Hence, the extracts used in this work were prepared using ethanol. The results 

obtained for the antioxidant activity assays (Table 3) were very similar to those obtained for 

methanolic extracts (Rafael et al., 2011), except for β-carotene bleaching inhibition effect, which 

was higher in the latter. The activity was not the same for all assays. This might be explained by 

the differences in reaction mechanisms in each assay: DPPH is based on the premise that a 

hydrogen donor is an antioxidant (Moon and Shibamoto, 2009), which can convert the radical to 

2,2-diphenyl-1-picrylhydrazine (or an analogue substituted hydrazine) (Ferreira et al., 2007). The 

FRAP (ferric reducing antioxidant power) assay is characterized by the reduction of Fe3+ to 

depending on the available reducing species (Antolovich et al., 2002), but not all reducing agents 
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with the ability to reduce Fe3+ are antioxidants; in fact any substance able to donate electrons 

with a lower redox potential than Fe3+/Fe2+ might contribute to FRAP value (Karadag et al., 

2009). β-carotene in turn may suffer rapid discolouration in the presence of a linoleate radical. 

During oxidation, an H atom is removed from the active bis-allylic methylene group on C11. The 

formed pentadienyl radical attacks β-carotene to reacquire H atoms, causing its discoloration 

(Amarowicz et al., 2004). In this case, the extracts of honeysuckle and black-bryony behave as 

the best DPPH scavengers, whereas honeysuckle showed the highest reducing power, and black-

bryony and white-bryony were greater inhibitors of β-carotene bleaching. To verify if the 

antioxidant activity of the extracts was maintained after being incorporated in the corresponding 

hydrosoluble gel, three independent assay gels were prepared for each extract. The color of gels 

varied from light green (black- and white-bryony) to pale pink (honeysuckle), showing all of 

them a non-greasy texture and fast skin absorption. Imidazolidinyl urea was added as 

antimicrobial agent, since parabens are nowadays looked at as potentially harmful compounds. 

Carbopol 940 was added at 1% concentration, previously determined as allowing an adequate 

consistency (Barreira et al., 2013). To check gel stability, pH was measured (at room 

temperature, employing a digital pH meter, Hanna Instruments) monthly during six months 

without significant alterations (pH values ranging between 5.5 and 6.5), indicating the absence of 

hydrolysis or decomposition processes (Queiroz et al., 2009). The extract of each plant species 

was incorporated in a concentration close to that providing the mean EC50 value in the three 

performed assays for the antioxidant activity, expecting to obtain approximately 50% of activity 

in each assay. To prevent the matrix effect, a blank gel was also prepared. As it can be observed 

in Table 3, the results obtained for all antioxidant activity assays are in the expected range, i.e. 

close to 50%, indicating that the incorporated fruit extracts maintained their antioxidant 

potential, with the additional advantage of being a formulation designed for topical application 

which present interesting physical characteristics, regarding its absorption dynamics and 
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stability. However, future development of the suggested formulations should include viscosity, 

extrudability and spreadability assays, followed by the evaluation of potential irritancy by 

different instrumental techniques like erythema measurement, Hen's egg test-chorioallantoic 

membrane assay or transepidermal water loss. 

 

4. Conclusions 

Among the assayed species, Lonicera periclymenum (honeysuckle) showed the highest content 

in phenolic compounds, mainly due to the high amount of hydroxycinnamoyl derivatives, 

particularly cis-5-O-caffeoylquinic and trans-3,5-O-dicaffeolyquinic acids. Neither Bryonia 

dioica (white-bryony) nor Tamus communis (black-bryony) presented phenolic acids derivatives. 

Honeysuckle was also the species with the highest flavonoid contents, with quercetin-3-O-

glucoside and kaempferol 3-O-glucoside as majority compounds. Kaempferol 3-O-

neohesperidoside was the main flavonol in white-bryony, while quercetin-O-rhamnosyl-O-

rhamnoside and kaempferol-3,4’-di-O-rhamnoside were the most abundant flavonols in black-

bryony. Flavones were only detected in white-bryony and black-bryony, with special relevance 

for apigenin-6-C-glucoside-8-C-glucoside.  

The phenolic compounds found in plants are often related with their bioactivity, mostly resulting 

from the synergistic or additive influence of the different classes of compounds present in the 

extract (Ramful et al., 2008). Therefore, it would have been expectable that the higher phenolic 

contents quantified in honeysuckle were followed by a higher antioxidant activity, both for its 

extracts and for the prepared hydrosoluble gels. However, the antioxidant activity was quite 

similar among the three assayed species, which might be probably explained by the lower purity 

degree of the extracts from L. periclymenum as indicated by the extraction yields (see Table 3). 

Hence, the assayed plants can be considered as important sources of flavonoids, phenolic acids 
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or anthocyanins, proving their potential to be included in new pharmaceutical formulations 

(mainly for topical applications).  
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Table 1. 

Retention time (Rt), wavelengths of maximum absorption (λmax), mass spectral data, relative abundances of fragment ions, tentative identification 

and quantification of the phenolic compounds in the studied extracts.  

 

Peak Rt 
(min) 

λmax 
(nm) 

Pseudomolecular 
ion [M-H]- (m/z) 

MS2 

(m/z) Tentative identification Quantification 
(µg/g of extract) 

Bryonia dioica (white-bryony) 
1 9.1 266/330 593 593(100), 503(18), 473(44), 431(4), 311(7)  Apigenin-C-hexoside-O-hexoside  21±2 
2 11.1 270/336 593 593(100), 503(10), 473(27), 383 (22), 353(45) Apigenin-6-C-glucoside-8-C-glucoside 708±10 
3 14.4 334 593 593(100), 431(32), 341(8), 311(72) Apigenin-6-C-glucoside-7-O-glucoside 194±2 
4 14.7 270/336 593 593(100), 473(8), 431(38), 353(10), 311(53), 297(5) Apigenin-C-hexoside-O-hexoside 360±16 
5 16.7 354 609 609(100), 463(17), 301(27) Quercetin-3-O-neohesperidoside 407±17 
6 18.3 332 431 431(100), 341(11), 311(91), 281(31) Apigenin-6-C-glucoside 20±3 
7 18.4 354 579 579(100), 447(14), 301(24) Quercetin-O-rhamnosyl-pentoside 53±3 
8 18.8 342 739 739(100), 593(55), 431(13) Kaempferol-O-rhamnosyl-hexoside-O-

rhamnoside 17±1 
9 19.3 348 593 593(100), 549(4), 447(57), 431(46), 327(7), 285(51) Kaempferol-3-O-neohesperidoside 629±12 

10 19.9 346 593 593(100), 447(40), 301(34) Quercetin-O-rhamnosyl-rhamnoside 277±23 
11 20.5 348 563 563(100), 431(17),417 (29), 285(22) Kaempferol-O-pentosyl-rhamnoside 149±6 
12 21.2 348 563 563(100), 431(32), 417 (8),285(29) Kaempferol-O-pentosyl-rhamnoside 23±2 
13 23.5 316/342 577 577(100), 431(80), 285(84) Kaempferol-3,4’-di-O-rhamnoside 510±32 
14 27.8 316 463 301(100) Quercetin-O-hexoside 8±1 

     Flavonols 2073±91 
     Flavones 1304±9 
     Total phenolics 3376±82 

Tamus communis(black-bryony) 
1 8.2 272/348 609 609(100), 489(28), 399(23), 369(18) Luteolin-6-C-glucoside-8-C-glucoside 67±5 
2 9.1 270/324 593 593(100), 473(43), 353(2), 341(2), 311(10) Apigenin-C-hexoside-O-hexoside  153±8 
3 11.1 270/336 593 593(100), 473(41), 383(20), 353(38), 311(1) Apigenin-6-C-glucoside-8-C-glucoside 1383±48 
4 14.4 330 593 593(100), 473(6), 431(46), 311(31) Apigenin-6-C-glucoside-7-O-glucoside 208±17 
5 14.7 336 593 593(100), 473(11), 431(97), 353(6), 341(6), 311(46) Apigenin-C-hexoside-O-hexoside 130±1 
6 16.7 354 609 609(100), 463(14), 301(20) Quercetin-3-O-neohesperidoside 453±20 
7 19.3 348 593 593(100), 447(35), 431(53), 285(35) Kaempferol-3-O-neohesperidoside 430.8±0.2 
8 19.9 346 593 593(100), 447(50), 301(37) Quercetin-O-rhamnosyl-rhamnoside 996±28 
9 20.5 350 563 563(100), 431(14), 417(24), 285(19) Kaempferol-O-pentosyl-rhamnoside 178±10 

10 23.5 320/340 577 431(67), 285(100) Kaempferol-3,4'-di-O-rhamnoside 964±76 
11 24.9 348 593 593(100), 431(10), 285(26) Kaempferol-O-rhamnoside-O-hexoside 38±5 
12 25.4 352 463 301(100) Quercetin-O-hexoside 40±3 

     Flavonols 3100±123 
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     Flavones 1941±43 
     Total phenolics 5041±166 

Lonicera periclymenum(honeysuckle)  
1 7.4 330 353 191(45), 179(78), 173(100), 155(9), 135(93) 4-O-caffeoylquinic acid 191±3 
2 7.6 316 341 179(100), 161,(2), 135(87) Caffeoyl-hexoside acid 203±6 
3 8.2 326 353 191(100), 179(8), 161(12), 155(2), 135(4) cis-5-O-Caffeoylquinic acid 7047±48 
4 9.7 308 353 191(100), 179(4), 161(4), 155(1), 135(3) trans-5-O-Caffeoylquinic acid 801±53 
5 15.9 354 755 755(100), 609(2), 301(26) Quercetin-3-O-rutinoside-O-rhamnoside 396±29 
6 16.8 354 609 609(100), 463(27), 447(33), 301(62) Quercetin-3-O-neohesperidoside 353±52 
7 18.4 368 609 301(100) Quercetin-3-O-rutinoside 382±29 
8 19.3 354 463 301(100) Quercetin-3-O-glucoside 2126±96 
9 19.6 346 593 285(100) Kaempferol-3-O-rutinoside 399±43 

10 20.7 340 447 285(100) Kaempferol-3-O-glucoside 1911±55 
11 21.9 328 515 353(100), 335(4), 191(81), 179(43), 173(6), 161(6), 155(1), 135(31) cis-3,5-O-Dicaffeolyquinic acid 225±15 
12 22.4 328 515 353(100), 335(3), 191(99), 179(80), 173(16), 161(8), 155(1), 135(43) trans-3,5-O-Dicaffeolyquinic acid 4316±34 
13 25.2 328 515 353(76), 335(4), 191(31), 179(65), 173(100), 155(6), 135(27) 4,5-Dicaffeolyquinic acid 560±23 
14 25.7 360 463 301(100) Quercetin-O-hexoside 338±27 

     Phenolic acids 13342±8 
     Flavonols 5905±330 
     Total phenolics 19247±323 

 
 



Table 2.  
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), 
mass spectral data, tentative identification and concentration of anthocyanins in 
Lonicera periclymenum (honeysuckle) fruit extracts. 
 

 
 
 

 

Peak Rt 
(min) 

λmax 
(nm) 

Molecular ion 
[M+H]+ (m/z) 

MS2 

(m/z) Tentative identification 
Quantification (µg/g 

of extract) 

1 14.9 516 611 449(36),287(100) Cyanidin-3,5-O-diglucoside 1.278±0.005 
2 19.4 516 625 463(46),301(100) Peonidin-3,5-O-diglucoside 0.1914±0.0004 
3 22.3 516 449 287(100) Cyanidin-3-O-glucoside 0.0422±0.0004 
4 24.9 518 463 - Peonidin-3-O-glucoside 0.0091±0.0001 

     Total anthocyanins 1.52±0.01 
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Table 3.  

Antioxidant activity of the individual ethanolic extracts (EC50 values, mg/mL) and of hydrogels (values in activity 

percentage) incorporating them (mean±SD, n=9). 

 
Extraction 

yield (%)4 

DPPH scavenging 

activity4 

Reducing 

power4 

β-Carotene bleaching  

inhibition4 

Bryonia dioica (white-bryony) extract 17±1 b 1.5±0.1 a 0.9±0.1 a 1.9±0.1 b 

Tamus communis (black-bryony) 

extract 
22±2 b 0.9±0.1 b 0.6±0.2 b 2.3±0.1 a 

Lonicera periclymenum (honeysuckle) 

extract 
56±3 a 1.0±0.1 b 0.8±0.2 a 1.8±0.3 b 

Homocedasticity1 (p-value) 0.146 0.019 <0.001 <0.001 
Normal distribution2 (p-value) 0.048 <0.001 <0.001 0.012 

One-way ANOVA3(p-value) <0.001 <0.001 <0.001 <0.001 
Bryonia dioica (white-bryony) 

hydrogel 

- 

44±6 c 51±4 a 49±1 a 

Tamus communis (black-bryony) 

hydrogel 55±1 a 47±5 ab 51±1 a 

Lonicera periclymenum (honeysuckle) 

hydrogel 49±3 b 44±5 b 47±3 b 

Homocedasticity1 (p-value) <0.001 0.228 <0.001 

Normal distribution2 (p-value) 0.001 0.011 0.003 

One-way ANOVA3 (p-value) <0.001 0.002 <0.001 

 
1Homoscedasticity among samples was tested through the Levene test 
2Normal distribution of the residuals was evaluated using Shpairo-Wilks or Kolmogorov-Smirnov with Lilliefors 
correction test. 
3As p<0.05, the mean value of the evaluated parameter of at least one sample differs from the others and multiple 
comparison could be performed.  
4Extraction yield was calculated by dividing the dry extract mass (g) by the total amount (g) of dry vegetal sample 
used for extraction; the obtained ratio was then multiplying by 100%. 
5Different letters in each column indicate mean values that differ significantly (P <0.001). These differences were 
classified using Tukey’s HSD (homoscedastic distributions) or Tamhane’s T2 (heteroscedastic distributions) tests. 
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Figure 1. HPLC chromatogram of the phenolic compounds of Bryonia dioica (white-bryony) (A), Tamus communis (black-bryony) (B) and Lonicera 

periclymenum (honeysuckle) (C) fruits recorded at 370 nm (A and B) and 280 nm (C). 
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