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ABSTRACT 

Mushroom extracts or isolated compounds may be useful in the search of new potent 

antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) 

glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds 

identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and 

demelanizing activities were evaluated and compared to the parent acids and G. lucidum 

extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide 

derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even 

better than the one showed by commercial standards. Despite the variation in the order 

of parent acids and the protected glucuronide derivatives, their antimicrobial activity 

was always higher than the one revealed by the extract. Nevertheless, the extract was 

the only one with demelanizing activity against A. niger. The acetylated glucuronide 

derivatives could be deprotected to obtain glucuronide metabolites, which circulate in 

the human organism as products of the metabolism of the parent compounds.  

 

Keywords: Ganoderma lucidum; p-hydroxybenzoic acid; cinnamic acid; Acetylated 

glucuronides; Chemical synthesis; Antimicrobial activity.  
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1. Introduction 

Nature has been a source of medicinal agents for thousands of years. During the last 

three decades the problem of antibiotic resistance has emerged. Bacterial and fungal 

pathogens have evolved numerous defense mechanisms against antimicrobial agents, 

and nowadays, the need to discover new and more potent of these agents as accessories 

or alternatives to antibiotic therapy is stronger. Currently, natural compounds are on the 

focus of some biotechnological companies that are looking for new antimicrobial drugs 

(Butler, 2004; Lam, 2007). Mushrooms are rich sources of bioactive compounds with an 

enormous variety of chemical structures. In this respect, mushrooms isolated 

compounds could be useful in the search of new potent antimicrobial agents (Alves et 

al., 2012).  

There are available in literature some studies reporting antimicrobial activity of 

different extracts of Ganoderma lucidum (Curtis) P. Karst from India (Sheena et al., 

2003; Quereshi et al., 2010) and China (Gao et al., 2005). This species is one of the 

most famous traditional medicinal mushrooms, being used as functional food and in 

preventive medicines, mostly in the form of extracts with an annual global market value 

of over $1.5 billion (Sullivan et al., 2006; Pala and Wani, 2011).  

Otherwise, the antimicrobial activity of some phenolic compounds has been described 

(Lou et al., 2012; Orhan et al., 2010; Alves et al., 2013). p-Hydroxybenzoic acid was 

the most abundant phenolic acid found in wild G. lucidum from Portugal, as well as 

cinnamic acid (0.58 and 0.28 mg/100 g dry weight, respectively; Heleno et al., 2012). 

Furthermore, these compounds are present in several other mushrooms species (Barros 

et al., 2009).  

Dietary phenolic compounds are widely considered to contribute to health benefits in 

humans. However, little is known about their bioactive forms in vivo and the 
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mechanisms by which they may contribute toward disease prevention. Moreover, many 

studies on the biological effects of phenolic compounds have ignored the question of 

their achievable concentrations in the circulation after ingestion as well as the 

possibility of metabolism (Rechner et al., 2002). There is accumulating evidence 

suggesting that phenolic compounds are rapidly metabolized in the human organism. 

Glucuronidation appears as one of the most prevalent metabolic pathways for phenolic 

compounds in humans (Rechner et al., 2002). Despite the large data concerning the 

antimicrobial effects of phenolic acids (Lou et al., 2012; Orhan et al., 2010; Alves et al., 

2013), studies dealing with the antimicrobial properties of their metabolites or 

derivatives are scarce due to the fact that most of these compounds are not 

commercially available. 

The present work aims at contributing to the knowledge of the mechanisms involved in 

the antimicrobial properties of phenolic compounds, namely phenolic acids and 

precursors, usually present in mushrooms. With that goal, the antimicrobial activity of 

G. lucidum extract, p-hydroxybenzoic and cinnamic acids and their acetylated 

glucuronide derivatives (protected glucuronides), prepared by chemical synthesis, was 

evaluated and compared. 

 

 
2. Materials and methods 

2.1. Wild mushroom 

Samples of Ganoderma lucidum (Curtis) P. Karst. were collected in Bragança 

(Northeast Portugal) in July 2011. After taxonomic identification of the sporocarps 

(Phillips, 1981; Hall et al., 2003; Oria de Rueda, 2007), specimens were deposited at the 

herbarium of Escola Superior Agrária of Instituto Politécnico de Bragança under the 

number  BRESA-gl01-2011. Fruiting bodies were further separated from spores using a 
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scalpel, lyophilised (FreeZone 4.5 model 7750031, Labconco, Kansas, USA), and 

reduced to a fine dried powder (20 mesh). 

 

2.2. Preparation of the extract 

The lyophilized G. lucidum sample (~10 g) was extracted with methanol (250 mL) at     

-20 °C for 6 h. The extract was sonificated for 15 min, centrifuged at 4000g for 10 min 

and filtered through Whatman No.4 paper. The residue was then re-extracted with three 

additional 150 mL portions of methanol. The combined extracts were evaporated (rotary 

evaporator Büchi R-210; Flawil, Switzerland) at 40 °C to dryness. 

 
 
2.3. Compounds identified in Ganoderma lucidum 

p-Hydroxybenzoic and cinnamic acids are two of the compounds identified in G. 

lucidum (Heleno et al., 2012). For the antimicrobial assays, these compounds were 

purchased from Sigma (St. Louis, MO, USA).  

 

2.4. Synthesis of acetylated glucuronide derivatives (protected forms of p-

hydroxybenzoic and cinnamic acids glucuronides)  

 

2.4.1. 2,3,4-tri-O-acetyl-1-p-hydroxybenzoyl-D-glucuronic acid methyl ester (HAGP).  

p-Hydroxybenzoic acid (0.100 g, 0.724 mmol), acetobromo-α-D-glucuronic acid methyl 

ester (0.574 g, 1.44 mmol) and potassium carbonate (0.100 g, 0.724 mmol) were 

dissolved in 10 mL of DMSO under argon and the mixture was stirred for 24h. The 

reaction mixture was diluted with 50 mL of ethyl acetate and then washed with water 

(7×10 mL). The organic layer was dried over MgSO4 and the solvent was evaporated. 

The product obtained was purified by a column chromatography using silica gel 60A 

(60-200 micron) and a mixture of ether/petroleum ether (60/40, v/v) as eluent. The 
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product was isolated as a white solid (0.123 g, 38%). m.p.=125.9-126.2 ºC. 1H NMR 

(300 MHz, CDCl3): δ= 2.00 (s, 3H), 2.06 (s, 3H), 2.07 (s, 3H), 3.73 (s, 3H), 4.30 (d, J = 

9.6 Hz, 1H), 5.29 (t, J = 9.2Hz, 1H), 5.34 (dd, J = 9.2 and 7.6 Hz, 1H), 5.42 (t, J = 

9.2Hz, 1H), 5.94 (d, J = 7.6 Hz, 1H), 6.80 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H) 

(*). 13C NMR (75.4 MHz, CDCl3): 20.47 (OAc), 20.53 (OAc), 20.58 (OAc), 53.19 

(OMe), 69.11 (CH), 69.94 (CH), 71.58 (CH), 72.77 (CH), 91.63 (CH), 115.41 (2×CH), 

119.95 (C), 132.58 (2×CH), 161.28 (C), 163.99 (C=O), 167.53 (C=O), 169.45 (C=O), 

169.56 (C=O), 169.91 (C=O). HRMS (ESI-TOF) calcd. for C20H22O12 (M++Na) 

477.1004, found 477.0995. 

(*) The proton of the OH group was not detected in the proton nmr spectrum. 

 

2.4.2. 2,3,4-tri-O-acetyl-1-cinnamoyl-D-glucuronic acid methyl ester (CAGP). 

Cinnamic acid (0.100 g, 0.675 mmol), acetobromo-α-D-glucuronic acid methyl ester 

(0.268 g, 0.675 mmol) and potassium carbonate (0.140 g, 1.01 mmol) were dissolved in 

10 mL of DMSO under argon and the mixture was stirred for 24h. The reaction mixture 

was diluted with 50 mL of ethyl acetate and then washed with water (7×10 mL). The 

organic layer was dried over MgSO4 and the solvent was evaporated. The product 

obtained was purified by a column chromatography using silica gel 60A (60-200 

micron) and a mixture of ether/petroleum ether (50/50, v/v) as eluent. The product was 

isolated as a white solid (0.100 g, 32%). m.p= 169.8-170.2ºC. 1H NMR (300 MHz, 

CDCl3): δ= 2.04 (s, 3H), 2.060 (s, 3H), 2.063 (s, 3H), 3.75 (s, 3H), 4.25 (d, J= 9.6Hz, 

1H), 5.27 (dd, J= 9.2  and 7.6 Hz, 1H), 5.31 (t, J= 9.2 Hz, 1H), 5.38 (t, J= 9.2 Hz, 1H), 

5.92 (d, J= 8.0 Hz, 1H), 6.42 (d, J= 16.0 Hz, 1H), 7.41-7.43 (m, 3H), 7.53-7.56 (m, 2H), 

7.78 (d, J= 16.0 Hz, 1H). 13C NMR (75.4 MHz, CDCl3): 20.48 (OAc), 20.55 (OAc), 

20.58 (OAc), 53.02 (OMe), 69.05 (CH), 70.12 (CH), 71.82 (CH), 73.06 (CH), 91.57 
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(CH), 116.08 (CH), 128.43 (2×CH), 129.00 (2×CH), 130.99 (CH), 133.82 (C), 147.66 

(CH), 164.51 (C=O), 166.80 (C=O), 169.25 (C=O), 169.42 (C=O), 169.90 (C=O). 

HRMS (ESI-TOF) calcd. for C22H24O11 (M++Na) 487.1211, found 487.1212. 

 

2.5. Antimicrobial activity 

2.5.1. Antibacterial activity. The Gram-positive bacteria Staphylococcus aureus (ATCC 

6538), Bacillus cereus (clinical isolate), Listeria monocytogenes (NCTC 7973), and 

Micrococcus flavus (ATCC 10240), and the Gram-negative bacteria Pseudomonas 

aeruginosa (ATCC 27853), Escherichia coli (ATCC 35210), Salmonella typhimurium 

(ATCC 13311), and Enterobacter cloacae (human isolate), were used. The organisms 

were obtained from the Mycological Laboratory, Department of Plant Physiology, 

Institute for Biological Research "Siniša Stanković", Belgrade, Serbia. The antibacterial 

assay was carried out by a microdilution method (CSLI, 2006; Tsukatani et al., 2012) in 

order to determine the antibacterial activity of extract/compounds tested against the 

human pathogenic bacteria. The bacterial suspensions were adjusted with sterile saline 

to a concentration of 1.0×105 CFU/mL. Dilutions of the inocula were cultured on solid 

medium to verify the absence of contamination and to check the validity of the 

inoculum.  

The minimum inhibitory and bactericidal concentrations (MICs and MBCs) were 

determined using 96-well microtitre plates by microdilution test. The bacterial 

suspension was adjusted with sterile saline to a concentration of 1.0×105 CFU/mL. 

Mushroom extract/compounds were dissolved in 5% DMSO solution containing 0.1% 

Tween 80 (v/v) (10 mg/mL) and added in Tryptic Soy broth (TSB) medium (100 µL) 

with bacterial inoculum (1.0×104 CFU per well) to achieve the wanted concentrations 

(0.005-3 mg/mL for extract and 0.003-0.25 mg/mL for compounds). The lowest 



 8 

concentrations without visible growth (at the binocular microscope) were defined as 

concentrations that completely inhibited bacterial growth (MICs). The MICs obtained 

from the susceptibility testing of various bacteria to tested extracts were determined also 

by a colorimetric microbial viability assay based on reduction of a INT color and 

compared with positive control for each bacterial strains (CSLI, 2006; Tsukatani et al., 

2012). The MBCs were determined by serial sub-cultivation of 2 µL into microtitre 

plates containing 100 µL of broth per well and further incubation for 24 h. The lowest 

concentration with no visible growth was defined as the MBC, indicating 99.5% killing 

of the original inoculum. The optical density of each well was measured at a wavelength 

of 655 nm by Microplate manager 4.0 (Bio-Rad Laboratories) and compared with a 

blank and the positive control. Streptomycin (Sigma P 7794) and Ampicillin (Panfarma, 

Belgrade, Serbia) were used as positive controls (1 mg/mL in sterile physiological 

saline). Five percent DMSO was used as a negative control.  

 

2.5.2. Antifungal activity. Aspergillus fumigatus (human isolate), Aspergillus versicolor 

(ATCC 11730), Aspergillus ochraceus (ATCC 12066), Aspergillus niger (ATCC 6275), 

Trichoderma viride (IAM 5061), Penicillium funiculosum (ATCC 36839), Penicillium 

ochrochloron (ATCC 9112) and Penicillium verrucosum var. cyclopium (food isolate), 

were used. The organisms were obtained from the Mycological Laboratory, Department 

of Plant Physiology, Institute for Biological Research "Siniša Stanković", Belgrade, 

Serbia. The micromycetes were maintained on malt agar and the cultures stored at 4°C 

and sub-cultured once a month. In order to investigate the antifungal activity of 

mushroom extract/compounds, a modified microdilution technique was used (Hanel et 

al., 1988; Espinel-Ingroff, 2001). The fungal spores were washed from the surface of 

agar plates with sterile 0.85% saline containing 0.1% Tween 80 (v/v). The spore 
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suspension was adjusted with sterile saline to a concentration of approximately 1.0×105 

in a final volume of 100 µL per well. Dilutions of the inocula were cultured on solid 

malt agar to verify the absence of contamination and to check the validity of the 

inoculum. Minimum inhibitory concentration (MIC) determinations were performed by 

a serial dilution technique using 96-well microtiter plates. Extract and compounds were 

dissolved in 5% DMSO solution containing 0.1% Tween 80 (v/v) (10 mg/mL) and 

added in broth Malt medium with inoculum (0.005-3 mg/mL for extract and 0.003-0.25 

mg/mL for compounds). The lowest concentrations without visible growth (at the 

binocular microscope) were defined as MICs. The fungicidal concentrations (MFCs) 

were determined by serial subcultivation of a 2 µl of tested compounds dissolved in 

medium and inoculated for 72 h, into microtiter plates containing 100 µL of broth per 

well and further incubation 72 h at 28 °C. The lowest concentration with no visible 

growth was defined as MFC indicating 99.5% killing of the original inoculum. DMSO 

was used as a negative control, and commercial fungicides, bifonazole (Srbolek, 

Belgrade, Serbia) and ketoconazole (Zorkapharma, Šabac, Serbia), were used as 

positive controls (1 - 3000 µg/mL).  

 

2.6. Demelanizing activity using micromycetes  

All microfungi tested for antifungal activity of G. lucidum extract were used to evaluate 

extract/compounds demelanizing activity. The micromycetes were maintained on malt 

agar and the cultures were stored at 4°C; 96-well microtiter plates were used. The 

fungal spores were washed from the surface of agar plates with sterile 0.85% saline 

containing 0.1% Tween 80 (v/v). The spore suspension was adjusted with sterile saline 

to an approximate concentration of 1.0 x 105 in a final volume of 100 µL/well. Dilutions 

of the inocula were cultured on malt agar to verify the absence of contamination and to 
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check the validity of the inoculum. Determination of minimum demelanizing 

concentrations (MDC) was performed by a serial dilution technique. The 

extract/compounds were dissolved in 5% DMSO solution containing 0.1% Tween 80 

(v/v) (10 mg/mL) and added in broth Malt medium with inoculum (0.005-3 mg/mL for 

extract and 0.003-0.25 mg/ml for compounds). The microplates were incubated at 

Rotary shaker (160 rpm) for 72 h at 28° C. A sample of mycelium was taken from the 

periphery of a colony grown on Malt extract medium enriched with different 

concentrations of tested extract. The samples were dried and fixed with lactophenol and 

observed under a light microscope (Mikroskop DMLS Typ 020 518 500. Leica, 

Wetzlar. Neubauer Zählkammer. Eppendorf, Hamburg, Germany) to examine structural 

abnormalities (Heleno et al., 2013). The lowest concentration that provoked 

demelanization of fungal hyphae and conidia was determined as MDC. Samples from 

the control plate without added extracts were also stained and observed. Solution of 5% 

DMSO was used as a negative control.  

 

2.7. Statistical analysis 

All the assays were carried out in triplicate and the results are expressed as mean values 

and standard deviation (SD). The results were analyzed using one-way analysis of 

variance (ANOVA) followed by Tukey’s HSD Test with α = 0.05. This treatment was 

carried out using SPSS v. 18.0 program.  

 
3. Results and Discussion 

3.1. Synthesis of acetylated glucuronide derivatives  

p-Hydroxybenzoic acid (HA) was reacted with acetobromo-α-D-glucuronic acid methyl 

ester (2 equiv.) affording the corresponding 2,3,4-tri-O-acetyl-1-p-hydroxybenzoyl-D-

glucuronic acid  methyl ester (HAGP, Figure 1) in 38% yield after purification. 
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Cinnamic acid (CA) was also reacted with acetobromo-α-D-glucuronic acid methyl ester 

(1 equiv.) to give the corresponding 2,3,4-tri-O-acetyl-1-cinnamoyl-D-glucuronic acid 

methyl ester (CAGP, Figure 1) in 32% yield after purification. The need of more 

equivalents of the starting glucuronic acid methyl ester in the case of HA is related with 

the improvement in the reaction yield; with 2 equivalents of the starting reagent we 

were able to double the yield of the reaction from 16% (with 1 equivalent of the starting 

reagent) to 38%, but we also detected traces of the di-acetylated compound.  

As far as we know, this is the first report on the synthesis of protected glucuronide 

derivatives of p-hydroxybenzoic and cinnamic acids, despite the existent report on the 

synthesis of a protected glucuronide derivative of ethyl-4-hydroxybenzoate (Zhang et 

al., 2012). Despite some studies describing the synthesis of glucuronide derivatives of 

flavonoids (Needs	
  and Kroon, 2006; Kajjout and Rolando, 2011), we could only find 

one paper reporting the synthesis of ferulic acid protected glucuronide and its acyl 

glucuronide, with 25% yield (Piazzon et al., 2012). 

The yields obtained in the present study are quite good considering that glucuronidation 

reactions occur in animal metabolism, which involves the participation of specific 

enzymes allowing the natural occurrence of these compounds in the organism. 

 

3.2. Antibacterial activity  

The protected glucuronides prepared (HAGP and CAGP) were submitted to 

antimicrobial activity evaluation in order to compare the results with the parent acids 

and the mushroom extract in which they were identified. The results of antibacterial 

activity were presented in Table 1. G. lucidum methanolic extract was active against all 

the tested bacteria with minimal inhibitory concentrations of 0.0125-0.75 mg/mL and 

bactericidal concentrations of 0.035-1.5 mg/mL. S. aureus and B. cereus were the most 
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susceptible bacteria to G. lucidum extract, while P. aeruginosa was the most resistant. 

The extract showed higher activity against S. aureus and B.cereus than the antibiotics 

amplicillin and streptomycin. These results were better than the ones reported by 

Quereshi et al. (2010) and Sheena et al. (2003) that described the antibacterial activity 

of G. lucidum methanolic extract against S. aureus and B. cereus moderate and poor, 

respectively. The results against P. aeruginosa and E. cloacae were similar to the ones 

showed by ampicillin.  

HA was active against all the tested bacteria with MICs of 0.003-0.03 mg/mL and 

MBCs of 0.007-0.06 mg/mL. The majority of the tested bacteria were susceptible to 

HA; E. coli and L. monocytogenes were the most resistant one. HAGP also revealed a 

good antibacterial activity against all the tested bacteria with MICs of 0.007-0.03 

mg/mL and MBCs of 0.015-0.06 mg/mL. S. typhimurium was the most susceptible to 

HAGP, while M. flavus, L. monocytogenes and E. coli were the most resistant bacteria 

to this glucuronide derivative. The antibacterial activity of HAGP decreased in 

comparison with the activity of its parent compound, unless for L. monocytogenes and 

E. coli, in which the activity was maintained. HAGP and the parent compound HA 

showed better activity than the extract and, even, than the standards. 

CA also revealed antibacterial activity against all the tested bacteria with MICs of 

0.0007-0.015 mg/mL and MBCs of 0.0015-0.06 mg/mL. It revealed an excellent 

activity against P. aeruginosa, much better than the extract, HA, HAGP and even better 

than the two standards tested. Curiously, P. aeruginosa was the most resistant bacteria 

to G. lucidum extract, but it was the most susceptible to cinnamic acid. The most 

resistant bacteria to the latter compound were M. flavus, L. monocytogenes and E. coli. 

CAGP was also active against all the tested bacteria with MICs of 0.007-0.03 mg/mL 

and MBCs of 0.01-0.06 mg/mL. B. cereus, S. typhimurium and E. cloacae were the 
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most susceptible bacteria against CAGP, while S. aureus, M. flavus, L. monocytogenes 

and E. coli were the most resistant. Once more, the antibacterial activity of CAGP 

decreased in relation to the parent compound (cinnamic acid), but was better than the 

extract and the two standards tested.  

It should be noticed that Alves et al. (2013) could not find antibacterial activity of HA 

and CA at 1 mg/mL against some of the herein tested bacteria: E. coli, S. aureus and L. 

monocytogenes, probably due to the different method used to screen the antimicrobial 

activity. 

 

3.3. Antifungal activity 

The antifungal activity of G. lucidum extract, prepared protected glucuronides and their 

parent acids was presented in Table 2. 

The extract showed antifungal activity against all the tested fungi with MICs of 0.005-

1.5 mg/mL and MFCs of 0.1-4.5 mg/mL. T. viride was the most susceptible fungi to the 

extract while A. fumigatus, A. niger and P. verucosum var. cyclopium were the most 

resistant. In the case of T. viride, the extract activity was better than the one of the 

standards, bifonazole and ketoconazole. 

HA was active against all the fungi, showing MICs of 0.003-0.12 mg/mL and MFCs of 

0.015-0.25 mg/mL. A. versicolor and T. viride were the most susceptible fungi to this 

phenolic acid, while A. fumigatus was the most resistant. HA showed higher activity 

than the extract and the two standards, for all the tested fungi.  

HAGP also showed activity against all the fungi with MICs of 0.007-0.12 mg/mL and 

MFCs of 0.015-0.25 mg/mL. This compound gave a strong activity against A. 

ochraceus, P. funiculosum and P. ochrochloron, being A. fumigatus the most resistant 
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fungi. HAGP showed higher activity than the standards, the extract and even than the 

parent HA.  

CA also has activity against all the tested fungi with MICs of 0.007-0.03 mg/mL and 

MFCs of 0.015-0.06 mg/mL. A. fumigatus was the most susceptible fungi, while A. 

niger and P. ochrochloron were the most resistant. This acid also gave better results 

than the extract and the standards, and in some cases, better than HA and HAGP.  

CAGP showed antifungal activity against all the fungi with MICs of 0.007-0.06 mg/mL 

and MFCs of 0.015-0.25 mg/mL. A. ochraceus and P. funiculosum were the most 

susceptible fungi, while A. fumigatus and P. verrucosum var. cyclopium were the most 

resistant. Compared with its parent CA, the protected glucuronide maintained the 

activity, with the exception of A. niger and P. ochrochloron, in which the activity 

increased. Its antifungal activity was higher than the one revealed by the extract and the 

standards.  

Other compounds present in G. lucidum have also been reported as antifungal, such is 

the case of ganodermim. Ganodermim is an antifungal protein isolated from G. lucidum 

with activity against phytopathogenic fungi such as Botrytis cinerea (IC50=15.2 µM), 

Fusarium oxysporum (IC50=12.4 µM) and Physalospora paricola (IC50=18.1 µM) 

(Wang and Ng, 2006). Nevertheless, as far as we know this is the first report on 

antifungal activity of protected glucuronide derivatives of HA and CA. 

 

3.4. Demelanizing activity 

In order to investigate the demelanizing activity of G. lucidum extract and compounds 

as an important factor in fungal virulence, eight microfungi were used. Demelanizing 

activity was obtained only for G. lucidum extract toward A. niger. 



 15 

The results were expressed as minimum demelanizing concentrations (MDC), which 

were defined as sublethal and subinhibitory concentration necessary to provoke 

demelanization in fungus during 72 h. The subinhibitory concentration was achieved at 

0.75 mg/mL, while sublethal concentration was observed at 0.1 mg/mL of G. lucidum 

extract (Figure 2a-f). The colored conidiophores of some Aspergillus and Penicillium 

species contains pigments belonging to the group of melanins: a green colored 

chromoprotein and a black insoluble pigment (Eisenman and Casadevall, 2012). 

Melanin production by fungi contributes to the virulence of pathogens of humans as 

well as those of food crops (Rosa et al., 2010). It was shown that this pigment has an 

important role in the protection of the fungus against immune effector cells; it is able to 

scavenge reactive oxygen species generated by alveolar macrophages and neutrophils of 

the host (Brakhage and Liebmann, 2005). Morphological changes in melanization of A. 

niger are obvious from Figure 2 and showed depigmentation; samples were treated 

with G. lucidum extracts at MDC (0.75 and 0.1 mg/mL). Observing morphological 

changes of conidiphores it was determined that demelanized cultures of tested fungi 

interestingly possessed unusually small number of heads (Figure 2a, 2b) in comparison 

to those in untreated culture (Figure 2c). The reduction of head numbers and 

demelanization of A. niger spores is also recorded under light microscope (Figure 2d 

and 2e) in compurgation with untreated control (Figure 2f). Thus, we may presume that 

the extracts of G. lucidum might directly be involved in the inhibition or modification of 

the mechanism of demelanization. The results for demelanizing activity are important, 

since MDC is sublethal to fungus being needed smaller doses of extract, in comparison 

to inhibitory and fungicidal doses. 
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Overall, HA, CA and their protected glucuronide derivatives (HAGP and CAGP) 

revealed high antimicrobial (antibacterial and antifungal) activity, even better than the 

one showed by commercial standards. Despite the variation in the order of parent acids 

and the protected glucuronide derivatives, their antimicrobial activity was always higher 

than the one revealed by the extract. Nevertheless, the extract was the only one with 

demelanizing activity against A. niger, which is certainly related to other compounds 

besides the ones mentioned in the present study. It should be highlighted that HA and 

CA are also present in other mushroom species and even in other matrices, which 

increases the general impact of the results reported herein. The synthesized acetylated 

glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which 

circulate in the human organism as products of the metabolism of the parent 

compounds.  
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Figure 1. Glucuronidation of p-hydroxybenzoic and cinnamic acids. HA- p-
hydroxybenzoic acid; HAGP- p-hydroxybenzoic acid glucuronide protected form; CA- 
cinnamic acid; CAGP- cinnamic acid glucuronide protected form.  
 
Figure 2. (a) Demelanized mycelium of A.niger treated with Ganoderma lucidum 
extract at 1 mg/mL; (b) Mycelium of A.niger treated with G. lucidum extract at 0.75 
mg/mL; (c) Normal mycelium of A. niger without treatment; (d) Culture of A. niger 
with few amount of heads, treated with G. lucidum extract at 0.1 mg/mL; (e) Culture of 
A. niger with smaller amount of heads treated with G. lucidum extract at 0.75 mg/mL 
recorded under light microscope; (f) Typical culture of A. niger with numerous heads, 
recorded under light microscope (d-f). 
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Table 1. Antibacterial activity (MIC and MBC, mg/mL) of Ganoderma lucidum extract, 

p-hydroxybenzoic and cinnamic acids, and their synthesized acetylated glucuronide 

derivatives. 

 HA- p-hydroxybenzoic acid; HAGP- p-hydroxybenzoic acid glucuronide protected form; 

CA- cinnamic acid; CAGP- cinnamic acid glucuronide protected form. 

 

 

Bacteria 
 
 

Extract 
MIC 
MBC 

HA 
MIC 
MBC 

HAGP 
MIC 
MBC 

 CA 
MIC 
MBC 

CAGP 
MIC 
MBC 

Streptomycin 
MIC 
MBC 

Ampicillin 
MIC 
MBC 

Staphylococcus 
aureus  

0.025 
0.035 

0.003 
0.007 

0.015 
0.03 

0.0015 
0.003 

0.03 
0.06 

0.04 
0.09 

0.25 
0.37 

Bacillus 
 cereus  

0.0125 
0.035 

0.003 
0.007 

0.015 
0.02 

0.0015 
0.003 

0.007 
0.015 

0.09 
0.17 

0.25 
0.37 

Micrococcus  
flavus 

0.5 
0.75 

0.015 
0.03 

0.03 
0.06 

0.015 
0.03 

0.03 
0.06 

0.17 
0.34 

0.25 
0.37 

Listeria 
monocytogenes  

0.3 
0.75 

0.03 
0.06 

0.03 
0.06 

0.007 
0.06 

0.03 
0.06 

0.17 
0.34 

0.37 
0.49 

Pseudomonas 
aeruginosa 

0.75 
1.5 

0.003 
0.007 

0.015 
0.03 

0.0007 
0.0015 

0.007 
0.03 

0.17 
0.34 

0.74 
1.24 

Salmonella 
typhimurium 

0.35 
0.75 

0.003 
0.007 

0.007 
0.015 

0.0015 
0.003 

0.007 
0.015 

0.17 
0.34 

0.37 
0.49 

Escherichia  
coli    

0.35 
0.75 

0.03 
0.06 

0.03 
0.06 

0.007 
0.06 

0.03 
0.06 

0.17 
0.34 

0.25 
0.49 

Enterobacter 
cloacae 

0.35 
0.75 

0.006 
0.007 

0.015 
0.03 

0.0015 
0.003 

0.007 
0.01 

0.26 
0.52 

0.37 
0.74 
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Table 2. Antifungal activity (MIC and MFC, mg/mL) of Ganoderma lucidum extract, p-

hydroxybenzoic and cinnamic acids, and their acetylated glucuronide derivatives. 

 

 
HA- p-hydroxybenzoic acid; HAGP- p-hydroxybenzoic acid glucuronide protected form; 

CA- cinnamic acid; CAGP- cinnamic acid glucuronide protected form. 

 
 
 
 
 
 
 
 
 
 

Fungi 
 
 

Extract 
MIC 
MFC 

HA 
MIC 
MFC 

HAGP 
MIC 
MFC 

 CA 
MIC 
MFC 

CAGP 
MIC 
MFC 

Bifonazole 
MIC 
MFC 

Ketoconazole 
MIC 
MFC 

Aspergillus 
fumigatus 

1.5 
3.0 

0.12 
0.25 

0.12 
0.25 

0.007 
0.015 

0.03 
0.25 

0.15 
0.20 

0.20 
0.50 

Aspergillus 
versicolor 

0.1 
4.5 

0.003 
0.03 

0.06 
0.25 

0.007 
0.06 

0.015 
0.03 

0.10 
0.20 

0.20 
0.50 

Aspergillus   
ochraceus 

0.75 
1.5 

0.015 
0.07 

0.007 
0.015 

0.007 
0.03 

0.007 
0.015 

0.15 
0.20 

1.50 
2.0 

Aspergillus  
niger 

1.5 
3.0 

0.03 
0.07 

0.015 
0.03 

0.03 
0.06 

0.015 
0.03 

0.15 
0.20 

0.20 
0.50 

Trichoderma  
viride 

0.005 
0.1 

0.007 
0.015 

0.007 
0.03 

0.015 
0.03 

0.015 
0.06 

0.15 
0.20 

1.0 
1.0 

Penicillium 
funiculosum  

0.09 
1.5 

0.03 
0.07 

0.007 
0.015 

0.015 
0.06 

0.007 
0.015 

0.20 
0.25 

0.20 
0.50 

Penicillium 
ochrochloron 

0.35 
0.7 

0.06 
0.07 

0.007 
0.015 

0.03 
0.06 

0.015 
0.03 

0.20 
0.25 

2.5 
3.5 

Penicillium 
verrucosum 

1.5 
3.0 

0.06 
0.07 

0.03 
0.06 

0.007 
0.03 

0.06 
0.12 

0.10 
0.20 

0.20 
0.30 
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Figure 1. Glucuronidation of p-hydroxybenzoic and cinnamic acids. HA- p-
hydroxybenzoic acid; HAGP- p-hydroxybenzoic acid glucuronide protected form; CA- 
cinnamic acid; CAGP- cinnamic acid glucuronide protected form.  
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Figure 2. (a) Demelanized mycelium of A. niger treated with Ganoderma lucidum 
extract at 1 mg/mL; (b) Mycelium of A.niger treated with G. lucidum extract at 0.75 
mg/mL; (c) Normal mycelium of A. niger without treatment; (d) Culture of A. niger 
with few amount of heads, treated with G. lucidum extract at 0.1 mg/mL; (e) Culture of 
A. niger with smaller amount of heads treated with G. lucidum extract at 0.75 mg/mL 
recorded under light microscope; (f) Typical culture of A. niger with numerous heads, 
recorded under light microscope (d-f). 
 


