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Abstract. We consider the problem of finding all the global (and some local) minimizers of a given nonlinear optimization
function (a class of problems also known as multi-local programming problems), using a novel approach based on Parallel
Computing. The approach, named Parallel Stretched Simulated Annealing (PSSA), combines simulated annealing with
stretching function technique, in a parallel execution environment. Our PSSA software allows to increase the resolution of the
search domains (thus facilitating the discovery of new solutions) while keeping the search time bounded. The software was
tested with a set of well known problems and some numerical results are presented.
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INTRODUCTION

A multi-local programming problem aims to find all the global (and some local) solutions of the minimization problem

min
x∈X

f (x), (1)

where f : IRn → IR is a given multimodal objective function and X is a compact set defined by X = {x ∈ IRn : ai ≤
xi ≤ bi, i = 1, ...,n}.

So, the purpose is to find all global points x∗ ∈ X such that

∀x ∈ X , f (x∗)≤ f (x), (2)

and some local solutions, x̃, that satisfy

| f (x∗)− f (x̃)| ≤ δ (3)

for a positive value δ .
These problems appear in practical situations like ride comfort optimization [2], Chemical Engineering (process

synthesis, design and control [3]), and reduction methods for solving semi-infinite programming problems [8, 14].
The most common methods for solving multi-local optimization problems are based on evolutionary algorithms,

such as genetic [1] and particle swarm [10] algorithms. Additional contributions may be found in [7, 16, 18, 19].
Stretched Simulated Annealing (SSA) was also proposed [11, 12, 13] as a method to solve multi-local program-

ming problems. SSA combines simulated annealing with stretching function technique in order identify the global
minimizers and, if possible, some local solutions.

In this paper we introduce Parallel Stretched Simulated Annealing (PSSA) as a parallel version of the SSA method
to compute all global (and some local) solutions of the minimization problem (1). PSSA was implemented in the C
programming language [6], on top of an MPI (Message Passing Interface) [17] library. The implementation is able
to explore the parallelism of modern multi-core systems, whether isolated or interconnected in a cluster configuration
[15]. Basically, PSSA allows to increase the resolution of the search domains, while keeping the search time bounded.

The remaining of the paper is organized as follows. The section 2 describes the original SSA method and the new
parallel approach to its application (PSSA), the Section 3 provides some numerical results produced by PSSA and the
last section presents some conclusions and directions for future work.
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PARALLEL STRETCHED SIMULATED ANNEALING

Sequential Stretched Simulated Annealing

The Stretched Simulated Annealing (SSA) method solves a sequence of global optimization problems in order
to compute, in sequence, the local solutions of the minimization problem (1) that satisfy conditions (2) or (3). The
objective function of each global optimization problem is obtained by applying a stretching function technique [9].

Let x∗j be a particular solution. The mathematical formulation of the global optimization problem is as follows:

min
lx≤x≤ux

Φl(x)≡

{
φ̂(x) if x ∈Vε j(x∗j), j ∈ {1, . . . ,N}
φ(x) otherwise

(4)

where φ̂(x) is defined as

φ̂(x) = φ̄(x)+
δ2[sgn(φ(x)−φ(x∗j))+1]

2tanh(κ(φ̄(x)− φ̄(x∗j))
(5)

and

φ̄(x) = φ(x)+
δ1

2
‖x− x∗j‖[sgn(φ(x)−φ(x∗j))+1] (6)

where δ1, δ2 and κ are positive constants, "sgn" is the well-known sign function and N is the number of minimizers
already detected.

Parallel Approach

SSA searches for problem solutions in a certain given domain by following a stochastic strategy. In the original
SSA implementation, this strategy is applied in l consecutive runs, where l is a parameter of the implementation. As l
increases, the probability of finding new solutions also increases, as well as the computational time consumed.

Our approach to the parallelization of the SSA method is as follows: the search domain is subdivided in several
subdomains (with the same amplitude) and the SSA method is individually applied to each subdomain; SSA can be
applied to several subdomains at the same time, provided enough processors are assigned to work on the problem.

This parallelization strategy is not expected to translate into a smaller search time than the search in a single-domain
and, in fact, it may considerable increase that time. The explanation is simple: although the subdomains are smaller
than the original domain, each subdomain must still be stochastically processed in l consecutive runs (and although
each subdomain is smaller, that may not be enough to counter-balance the need for l runs).

Thus, with PSSA we are primarily concerned in deepening the analysis of the original search domain by placing
the same kind of computational effort into the analysis of each subdomain, and not to increase performance. However,
with the right choice of the number of working processors (for a certain overall number of subdomains), we are at least
able to ensure predictable (bounded) computational times, as we will show in the next section.

The parallel algorithm follows the well known master-slave pattern, with a static work division: a master process
launches several slave processes; each slave is able to autonomously select an exclusive set of subdomains; these will
be processed in order at each slave, and all slaves will work in parallel. We choose a static work division instead of a
dynamic one because the number of subdomains may be potentially large (mainly for problems with a higher number
of dimensions); this way, we prevent each slave of overloading the master with work requests (a subdomain would
represent a work unit); the slaves communicate with the master only after having processed all of their subdomains;
the master is responsible to process the byproducts of the slaves and to produce the final report of the computation.

This simple but highly efficient strategy was possible because of the "embarrassingly parallel" nature of the problem.

NUMERICAL RESULTS

For the computational tests we selected four problems presented in [4], known as Ackley, Branin, Levy and Hartmann.
The coded algorithm terminates when it has not identified new solutions during some successive iterations. A limit on
the number of iterations is also imposed. Other algorithm parameters are δ = 5.0 and l = 100.
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The numerical experiences were conducted in a small commodity cluster of 8 nodes, with a 2.6GHz quad-core
processor (Intel Core2 Quad Q9400) per node. Each problem was studied in a subset of the following cluster
configurations: a) 1 node (4 cores), b) 2 nodes (8 cores), c) 4 nodes (16 cores) and d) 8 nodes (32 cores). For
each problem, and for each number of subdomains (Ns), the cluster configurations were chosen accordingly with the
following criteria: i) try to ensure exactly one core per subdomain (that is, maximize parallelism), while minimizing
the number of cluster nodes used; ii) if not enough cores are available to satisfy criteria i), use all the cluster cores. In
any case, the number of MPI slave processes will always be equal to the number of cluster cores used.

The number of subdomains in each dimension follows an exponential (base 2) sequence that depends on the number
of dimensions. So, for 2-dimensional problems (Ackley and Branin), we have Ns = 22×i, for i= 1, 2, 3; accordingly, we
have only considered the cluster configurations a), c) and d), respectively. For 3-dimensional problems (Hartman and
Levy), we have Ns = 23×i, for i = 1, 2, 3; thus, we have only considered the configurations b), d) and d), respectively.

Details of the numerical experiences are listed in the Table 1, where P refers to the problem name, Ns is the number
of subdomains, Nc is the number of computing cores (or slave processes), Nn is the number of cluster nodes, t(s) is the
(average1) computing or search time (in seconds), f ∗ is the best solutions in all runs, x∗ is the global minimizer and m
is the number of other global, or local, solutions that satisfy the conditions (2) or (3). The results show that PSSA was
able to identify a large number of global minimizers and some other local solutions.

TABLE 1. Numerical results

P Ns Nc Nn t(s) f ∗ x∗ m

Ackley 4 4 1 13.94 8.412870E−11 (+9.747184E−12,−2.810112E−11) 0
16 16 4 14.73 2.633098E−10 (−7.742246E−11,+5.169381E−11) 0
64 32 8 25.92 5.333018E−10 (+1.189199E−11,+1.881754E−10) 3

Branin 4 4 1 7.51 3.978874E−01 (+9.424776E+00,+2.475001E+00) 2
16 16 4 8.89 3.978874E−01 (+9.424778E+00,+2.474999E+00) 2
64 32 8 11.54 3.978874E−01 (−3.141593E+00,+1.227500E+01) 2

Hartmann 8 8 2 4.41 −3.862782E+00 (+1.146695E−01,+5.556533E−01,+8.525475E−01) 2
64 32 8 8.27 −3.862782E+00 (+1.144256E−01,+5.556620E−01,+8.525594E−01) 4

512 32 8 41.53 −3.862782E−01 (+1.145690E−01,+5.556471E−01,+8.525513E−01) 4
Levy 8 8 2 6.18 9.267555E−10 (+1.000026E+00,+1.000012E+00,+9.999634E−01) 1

64 32 8 10.19 2.066059E−10 (+9.999943E−01,+1.000005E−01,+1.000051E−01) 5
512 32 8 93.17 6.101846E−11 (+1.000002E+00,+9.999913E−01,+9.999823E−01) 8

We can verify that the search time of the PSSA implementation is bounded, as the number of subdomains increases.
The stabilization of the search time is shown in Graphics 1.a) and 1.b).

FIGURE 1. PSSA search times for a) 2-dimensional and b) 3-dimensional problems.

In the graphics, Tp is a search time derived from the t time of Table 1 as follows: for cluster configurations where
each core is responsible for a single subdomain, Tp = t; for configurations where each core is responsible for k =Ns/Nc
subdomains (both Hartman and Levy, with 64 and 512 subdomains), we have Tp = t/k; in this case, Tp is not really an

1 To accommodate possible variations of the computing time (due both to the stochastic nature of the algorithms or to transient instabilities of the
cluster execution environment) the computing time is the arithmetic average of 10 executions of the same problem.
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observed time, but a projected time based on the measured time t; the rationale is that if enough cores were available,
each core would process one subdomain, and that would take approximately the same time per each subdomain.

The same graphics may also be used to derive a complementary conclusion: as subdomains get smaller, they tend
to be processed more rapidly (despite each subdomain still taking l runs); this is the fundamental reason that explains
the stabilization (and even a slight decreasing) of the overall search times in the PSSA method.

Finally, we also have studied the time Ts that would take to process all of the subdomains, in sequence, by running
SSA (our previous approach) in a single core of our cluster. This study allowed us to perceive the real gains attained
by PSSA when compared to SSA under the same circumstances. Thus, the previous graphics show that Ts grows
exponentially with the number of subdomains, while Tp remains low and bounded as already observed.

CONCLUSIONS AND FUTURE WORK

In this work, we have introduced PSSA as a Parallel Computing based approach to the SSA stochastic algorithm, to
find all global (and some local) solutions of multimodal objective function problems. The computational experiments
showed that the PSSA algorithm is capable of locating all the global optima and a great number of some local solutions
that satisfied condition (2) or (3). The experiments also demonstrated the scalability of our parallel approach.

In the future, we intend to use PSSA to deepen the study of the problems tackled in this paper and other representa-
tive problems of the literature.
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