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Abstract

The present work describes and compares several approaches applied to compute the inverse
kinematics of a ten degrees of freedom hyper-redundant robot. The proposed approaches are
based on an exhaustive method and several error-optimization algorithms. The algorithms’ per-
formance was evaluated based on two criteria: computational processing time and final actuator
positioning error.

The results obtained show that for a small number of modules (less or equal to four), the ex-
haustive method provides the best problem solution: acceptable computational processing time
as well as minimum error. However, for larger number of modules, the error-optimization ap-
proach has far better performance regarding the error to processing time ratio.

The mentioned hyper-redundant robot was projected to be used in biomedical applications.

Keywords: Inverse Kinematics. Hyper-Redundant Robots. Error-Optimization. Exhaus-

tive.
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Resumo

O presente trabalho descreve e compara diferentes abordagens para a obtencdo da cinematica
inversa de um robot hiper-redundante com dez graus de liberdade. As abordagens propostas
sdo baseadas nos métodos exaustivo e da optimizacdo do erro cometido. O desempenho dos
algoritmos foi avaliado segundo os critérios de velocidade de processamento e erro de posi¢cdo e
orientacdo do actuador final.

Os resultados obtidos mostram que para um nimero pequeno de médulos (igual ou menor
que quatro) o método exaustivo fornece a melhor solucdo: tempo de processamento computa-
cional aceitdavel e erro minimo. No entanto, para um ndimero maior de médulos, a abordagem
de optimiza¢do do erro tem um melhor desempenho com respeito a relagdo entre o tempo de
processamento e o erro final.

O robot hiper-redundante mencionado esta projectado para aplicacdes biomédicas.

Palavras Chave: Cinematica Inversa. Robot hiper-redundante. Optimizac¢do do Erro. Ex-

austivo.






Resumen

El presente trabajo describe y compara distintos abordajes aplicados para calcular la cineméa-
tica inversa de un robot hiper-redundante con diez grados de libertad. Los abordajes propuestos
estdn basados en los métodos exhaustivo y de optimizacion del error. El desempefio de los al-
goritmos fue evaluado basdndose en los criterios de velocidad de procesamiento y error tanto de
posiciéon como de orientacion del actuador final.

Los resultados obtenidos muestran que para un nimero pequefio de modulos (igual o0 menor
que cuatro) el método exhaustivo provee la mejor solucion: tiempo de procesamiento computa-
cional aceptable y error minimo. Sin embargo, para un nimero mayor de médulos, el abordage
de optimizacion del error tiene un mucho mejor desempeiio con respecto a la relaciéon de tiempo
de procesamiento y el error final.

El robot hiper-redundante mencionado esta proyectado para aplicaciones biomédicas.

Keywords: Cinematica inversa. Robot hiper-redundante. Optimizacion del error. Exhaus-

tivo.
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Chapter 1

Introduction

1.1 Motivation

The present work is a continuation of the study presented by [21] on 2011. As such, it
is part of the project owned by Centro de Automatizacion, Robdtica, Tecnologias de la Infor-
macion y Fabricacion (CARTIF) in cooperation with Universidad de Valladolid, Spain for a
hyper-redundant robotic endoscope.

The main motivation for the development of the project lies down on the fact that around
250 000 people die of cancer each year just in the United States, according to the World Health
Organization. Some notion of what types of cancer are the most deadly are provided by the

American Cancer Institute, as shown on Figure 1.1.
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Figure 1.1: Cancer statistics for the United States



Chapter 1. Introduction

The number of deceased can be lowered significantly if routine screening was to be imple-
mented as part of public health programs. Fortunately many countries in Europe have taken this
into consideration, but in order to perform these screenings health professionals need tools that
allow them to get medical images of high quality.

Despite the big advances science has made in the medical imaging field, it has always been a
big challenge to be able to “look” inside the human body causing none —or at least minimum—
damage to the patient. Therefore, endoscopy was born out of the necessity of physicians to
look and explore inside of the patients’ body with real-life images (non virtual), in real-time and
causing the least possible injuries/discomfort to the patient.

Endoscopy (from Greek -endos ‘inside’ and -scopia ‘vision’) is the diagnosing technique that
uses an instrument (endoscope) to capture images from interiors of humans, animals or other
inanimate objects. In the medical field, this allows the physicians to use minimally invasive
methods for screening, diagnosing and sometimes even treatment of certain health threats.

The first instrument used as a somewhat endoscope was a rectal speculum during the time
of Hippocrates in ancient Greece. Open tubes were later used to look inside big human cavities
(namely, through the mouth and rectum) and it was not until the beginning of the XIX century
that the artificially lighten endoscope was introduced by Phillipe Bozzini [9, 2, 14].

Although his diagnosing instrument cannot be considered as an endoscope according to to-
day’s standards, it was a revolutionary screening tool at the time. The possibility to look inside a
human’s body gave room for new diagnosis methods and surgical techniques such as laparoscopy.

According to [24]: “The rapid acceptance of the technique of laparoscopic surgery by the
general population is unparalleled in surgical history. It has changed the field of general surgery
more drastically and more rapidly than any other surgical milestone.”

Because of the possible benefits that both the physicians as well as the patients can obtain
through the help of endoscopy, it is of high interest to enhance its accessible capabilities, optical
and image quality and to develop new materials and methods to continue improving it.

Therefore, one of the areas of interest is the use of autonomous and semi-autonomous endo-

scopes. These could bring major benefits due to their ability to move along the cavity towards
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Chapter 1. Introduction

a desired point for a more detailed observation, and could also reduce patient discomfort by
minimizing the contact with the tissues and allowing a better instrument guidance.

This thesis, ideally, is proposed to be part of a larger project to develop a future hyper-
redundant endoscope prototype that could deliver a new platform for health professionals to work

with and, even more importantly, that could be translated into health benefits for the patients.

1.2 Objectives

The main objective of this work was to create a hyper-redundant robot simulation for both for-
ward and inverse kinematics and to compare the results obtained for the inverse kinematics be-
tween the exhaustive and the error-optimization methods.

In order to achieve this, it was first necessary to write a code for a modular and variable-
size hyper-redundant robot simulation; and then compare the inverse kinematics results based on

computational processing time and position/orientation error criteria.

1.3 Project Structure

Regarding the present study, the projected hyper-redundant robot is described on chapter 2.
Its geometrical and actuators’ characteristics are also detailed in the subsequent sections.

The forward kinematics, which allow the hyper-redundant robot simulation to reach a certain
end-point in space —according to the modules’ configurations given by the user— are discussed
on chapter 3. Some demonstrative results of the custom-developed algorithm are shown on
section 3.3.

Several approaches to the inverse kinematics (exhaustive and error-optimization methods) are
described on chapter 4. Moreover, the results of these methods are compared and discussed on
chapter 5.

Finally, conclusions about the different inverse kinematic approaches, their performance and

future work are presented on chapter 6.






Chapter 2

Hyper-redundant Robot Description

Hyper-redundant robots are based on the design principle of more-than-necessary degrees of
freedom (DOF) to perform a particular task. The number of “necessary” DOFs needed in a robot
depends on the task it was originally designed for. For example, in a three-dimensional envi-
ronment, a 6DOF robot (Figure 2.1) is required to reach a given point with a certain orientation,
while a 6DOF+ robot (Figure 2.2, [30]) would be able not only to reach the same point with
the same orientation, but could also have the ability to do it redundantly —that is, having the

possibility to do it in more than just one way.

Figure 2.1: Typical 6DOF robot manipulator

The hyper-redundant characteristic of this type of robots also provides an advantage for dis-
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Chapter 2. Hyper-redundant Robot Description

placement and obstacle avoidance on irregular environments over the common wheeled, tracked

or legged robots [17].

Figure 2.2: Hyper-redundant manipulator robot

The hyper-redundant manipulators (HRMs) can be used for many tasks like servicing under-
ground tanks [23] —since it is easier for the snake-like robots to inspect/repair any damaged
components in this closed underground scenario— or nuclear core reactors [5], again, due to its
flexibility to operate in space-constrained environments. Other applications of HRMs include
surgical snake-like robots [28] and aeronautical and space exploration [27, 26].

Therefore, it is of great interest to continue studying and developing new methods and ap-
plications for these type of robots, since the advantages of moving on irregular environments
and extreme maneuverability are appealing, among others, for the biomedical field and more
specifically, for endoscopy.

One of the first attempts to incorporate both snake-like robots and endoscopic applications
was presented by [25], who proposed a somewhat successful robotic colonoscope: an earthworm-
like robot was built and validated on a lubricated and flexible urethane tube as a model for
human intestines. However, the rigidity of this tube was far larger than the one shown on the
pigs’ intestines on the animal trial phase, making the colonoscope unable to move towards the

digestive tube as desired.
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More recently a sensor-based guidance control of a continuum robot for a semi-autonomous
colonoscope was also proposed [4]; which, again, had somewhat success: it was only tested on
tubes and as of 2012 is still lacking of animal/human validation. Nevertheless, these two cases
are great examples of both the level of interest and how difficult it is to implement endoscopic
functions into autonomous or semi-autonomous HRMs.

According to [27]: “Proposed tasks for future robotic systems, ranging from space explo-
ration to medical devices, will require robotic devices and components that are simple, robust,
lightweight, inexpensive, and easy to control. Hyper-redundant binary systems have been pro-
posed to meet this need.”

Trying to meet the characteristics mentioned in the paragraph above, an electromagnetically-
controlled 10DOF modular hyper-redundant robot simulation (HRRS) was designed and devel-
oped. The proposed hyper-redundant robot was conceived taking into consideration these pri-

marily characteristics:

e The HRM must be modular, so adding or subtracting modules would be a relatively easy
task, allowing the robot to be scalable. This feature also provides the ability to achieve

desired length.

e The simulated model must be able to operate with different module sizes and minimum

between-modules-distance parameters.

e Four electromagnetic couplings were going to be used as actuators for the HRM, since
they are a cost-effective solution for the energy delivery and conservation problem. These

would also be used in order to allow ten possible combinational orientations per module.

These characteristics, as well as some other descriptive aspects will be fully detailed over the

next sections.



Chapter 2. Hyper-redundant Robot Description

2.1 Modular Configuration

Being modular is one of the main characteristics of the referred hyper-redundant robot simu-
lation because simplifies the design, modeling and construction of the HRM.

It not only allows the HRM to be as long as required without needing to develop new software
for each type of length, but also makes the HRM more “flexible” (as each module is considered
an independent stage), thus making it possible to follow complex worm-like configurations.

A demonstration of what can be achieved with this modular characteristic can be seen on
Figure 2.3, where a simulation was run with 10 and 50 modules with different position configu-

rations.

Spine & Modules

Z(m]

% [m]

(a) 10-Module HRRS (b) 50-Module HRRS

Figure 2.3: Various modular HRRSs

It is important to notice there is no sensible difference in processing time nor in extra calcu-
lations for the 50-module HRRS than for the 10-module one as far as forward kinematics (Chap-
ter 3) is concerned. This due to the fact that increasing the number of modules only increases the
number of iterations the code will do, and since the loop in the script (see ‘Forward Kinematics’
in Appendix) does not include high time-consuming calculations, their time difference is not

perceptible for the end-user.
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2.2 Geometric Description

One of the most important objectives of the HRM project was to be able to simulate both for-

ward and inverse kinematics for variable size robots. The mentioned ‘variable size’ is determined

by two parameters:
1. The minimum distance between the center point of two adjacent modules, denominated h.
2. The length of each squared module, denoted by variable L.

A graphical description of both A and L is shown on Figure 2.4.

Spine & Modules
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Figure 2.4: Variables h and L for the simulated HRM

These two parameters can be modified by the user for every simulation, providing a great
amount of flexibility to the HRRS: it is possible to simulate any size of robot as long as equa-

tion (2.1) is satisfied. If not, solutions containing complex numbers may appear that cannot be

interpreted in a regular 3D environment.

<1 2.1)



Chapter 2. Hyper-redundant Robot Description

Both h and L parameters are important for the HRRS because they have a direct relationship
on how the twist angle for each module is described. In other words, the larger the h to L ratio,
the more ‘stiff” the robot is. Figure 2.5 shows a graphical “stiffness” comparison.

Spine & M.ndules Spine & Madules

0.015 =+

0.0~

E E

~ =
0005 oo T
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. 7 OW5 0gam g gar ooos 0 0O
3 v » 10
x 10 % [m] [rn] ‘] ¥ [m]
(a) h=1mm, L=5mm (b) h=1mm, L=20mm

Figure 2.5: Different h to L ratios

The module’s length (L) is equal for both height and width because the modules are squared.
In case of an eventual change in this configuration, minimal corrections to the code must be
performed, but just for a specific function file (see ‘Conversor’ in Appendix). The reason for
this minimal change is because the whole code was designed from the beginning in separate files

in order to maximize the possibility to make future changes, as well as upgrades and/or new

inclusions.
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Chapter 2. Hyper-redundant Robot Description

2.3 Electromagnetic Actuators

As mentioned at the beginning of Chapter 2, electromagnetic actuators (EMAs) were to be
used for the present undergoing project. One of the main reasons for using them was because of
the energy conservation and delivery problem.

Delivering energy to the electromagnets should be an easy task considering the HRM mod-
ularity and its EMAs’ geographical configuration: by placing the four of them on each corner
a central empty area can be used to pass all the wiring necessary to supply current through it,
working as a power rail along the robot’s longitudinal axis.

An analogy can be made with the human spinal cord, which runs along the same longitudinal
axis delivering all electrical impulses —commands sent by the brain— to the other parts of the
body. In this analogy the brain would be the central computer, the spinal cord would be the
power/control wiring and the limbs the actuators.

Regarding energy conservation, EMAs have a special characteristic intrinsic to their ferro-
magnetic nature. Citing [22]: “Ferromagnetic materials, under the influence of an applied (mag-
netizing) field change their path of magnetization depending on whether the field is increasing or

decreasing, and hence they exhibit hysteresis” (see Figure 2.6, [10]).

SATURATION
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Figure 2.6: Hysteresis’ curve
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Hysteresis (see [3, 20, 13]) then plays an important role in energy conservation: it allows the
materials to have a remanent magnetization. It then becomes clear that one of the main reasons
for deciding to use electromagnets in the first place was because of hysteresis and due to the
energy savings this would incur while the EMAs are retaining their repulsion/attraction states.

As part of the preliminary efforts to develop a fully-operational HRM prototype, an electro-
magnets’ test bench was built at Centro de Automatizacion, Robdtica, Tecnologias de la Infor-
maciony Fabricacion (CARTIF) in partnership with Universidad de Valladolid (UVa). An image

of the EMAs working in repulsion and attraction can be seen on Figure 2.7.

(a) Electromagnets in repulsion (b) Electromagnets in attraction

Figure 2.7: Electromagnets: repulsion and attraction

Moreover, since the HRM was to be modular and driven by four electromagnetic actuators,
it was naturally necessary to select the geographical distribution and designation of each one of
them over the square-shaped area of the modules. As mentioned before, these electromagnets
were located one on each corner; with numeration starting in the upper-right corner and going
counterclockwise —just like the quadrants on a Cartesian plane (see Figure 2.8).

Having this particular spacial configuration for the electromagnets allowed ten possible geo-

metrical module combinations depending whether the EMAs were acting in repulsion or attrac-

12



Chapter 2. Hyper-redundant Robot Description

tion. A more detailed explanation of the HRRS response according to the actuators’ specified

state is discussed on Chapter 3.

[EMagnets] - - - — —-[EMagnetl]
I I
I I
I I
I I
I I
I I

[EMagneti] - — — — —[EMagnetd]

Figure 2.8: Electromagnets’ positions on each module

2.4 Workspace

Another characteristic met by HRMs is the almost-continuous workspace they create (see Fig-
ure 2.9). This feature becomes handy when dealing with obstacles, moving through constrained

spaces or having to reach difficult points.

Warkspace

Figure 2.9: Workspace created by 4000 random end-points of a 10-module HRRS
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For the specific HRRS proposed in this project, the workspace has a cupule-like form because
of the applications it has been designed for: endoscopy. The cupule shape is because one of the
extremities of the HRM would be fixed to a certain point (for the simulations this point is the
origin: [0,0,0]) and the other one will be the “moving” extremity with an end-actuator, which
could be a lamp, a camera or any other surgical/endoscopic device as needed.

The almost-continuous workspace and the hyper-redundant nature of HRMs allow them to
reach points and/or sort obstacles in space in an easier manner —or at least in more than just
one way— than DOF-constrained robots. Nevertheless, this also implies that forward kinematics
(Chapter 3), as well as inverse kinematics (Chapter 4), are more complicated to calculate and

involves a trade off in computational processing time.

14



Chapter 3

Forward Kinematics

As a fundamental part of this work, it was necessary to first develop a forward kinematic
algorithm to describe the position the robot would acquire when the modules’ configuration is
either set by the user or used by the inverse kinematics scripts.

According to [11] “The forward kinematics problem is concerned with the relationship be-
tween the individual joints of the robot manipulator and the position and orientation of the tool or
end-effector. Stated more formally, the forward kinematics problem is to determine the position
and orientation of the end-effector, given the values for the joint variables of the robot.”

Therefore, the first step regarding forward kinematics for the HRRS consisted in looking at
the physical considerations. Since the robot —as mentioned in Section 2.3— was to be driven by
four electromagnets (each one on each corner of each module), the combinational possibilities
had to be analyzed and characterized. These configurations can be seen on Table 3.1.

It is important to advert that despite having 16 possible electromagnet configurations for each
module, not all of them are valid for the purposes of this project.

Considering a logic ‘1’ as the electromagnet acting in attraction and a logical ‘0’ acting in
repulsion, it turns rather obvious three-electromagnet asserted configurations (that is, all three
set as logical ‘1’s) can be approximated by just one magnet, thus saving power and simplifying
the simulation by eliminating redundancy.

Therefore, combinations with decimal code 7, 11, 13 and 14 where excluded as possible
electromagnet configurations, since the same effect can be produced with decimal codes 2, 1, 8

and 4 respectively.

15



Chapter 3. Forward Kinematics

Table 3.1: Possible EMAs’ configurations

Decimal Code Magnet4 Magnet3 Magnet2 Magnetl Binary Code

0 0 0 0 0 0000
1 0 0 0 1 0001
2 0 0 1 0 0010
3 0 0 1 1 0011
4 0 1 0 0 0100
5 0 1 0 1 0101
6 0 1 1 0 0110
7 0 1 1 1 0111
8 1 0 0 0 1000
9 1 0 0 1 1001
10 1 0 1 0 1010
11 1 0 1 1 1011
12 1 1 0 0 1100
13 1 1 0 1 1101
14 1 1 1 0 1110
15 1 1 1 1 1111

Combinations with decimal code 5 and 10 were also excluded, since those configurations
reflect a scenario where the electromagnets over the diagonal are acting in attraction, causing a
similar (but unstable) effect like when using decimal configuration 15. The final possible and
allowed electromagnet configurations can be seen on Table 3.2.

Eliminating the redundant combinations (decimal codes 5, 7, 11, 13 and 14) the 4 electro-
magnetic actuators would operate geographically and numerically according to Figure 3.1.

This final configuration eventually led to a code (see ‘Forward Kinematics’ in Appendix) that
allowed any of these configurations to follow each other in a sequence of modules like vertebrae
in a spine, thus creating a smooth and snake-like form robot simulation.

As described on section 2.2, one of the characteristic of the HRRS was it had to be able
to work with different types of values of L (module length) and A (minimum space between
modules). This limitation had no sensible effect in the development of the forward kinematic’s
script, since the code was made to treat these two parameters as input variables given by the
end-user. In other words, the result for the forward kinematics is ~ and L dependent, but not the

calculations done by the script themselves.
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Chapter 3. Forward Kinematics

Table 3.2: Allowed EMAs’ configurations

Decimal Code Magnet4 Magnet3 Magnet2 Magnetl Binary Code

0 0 0 0 0 0000
1 0 0 0 1 0001
2 0 0 1 0 0010
3 0 0 1 1 0011
4 0 1 0 0 0100
6 0 1 1 0 0110
8 1 0 0 0 1000
9 1 0 0 1 1001
12 1 1 0 0 1100
15 1 1 1 1 1111

In order to generate valid forward kinematics results, it was important to first determine
the ‘operating angles’ —named « and f— as well as the height (H) the modules were to have

according to each module configuration (MC).

[00 1 0]-———- (001 1]-———- [0 0 0 1]

I I

I I

I I

| [0 00 0] |
[0110]-——- R [1 00 1]

| [1 11 1] |

I I

I I

I I
[0 10 0]--——-- [1100]--——-- [1 00 0]

Figure 3.1: Geographical distribution of MCs
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Chapter 3. Forward Kinematics

3.1 Internal Variables Description
3.1.1 Alpha Angle

This angle describes the rotation along the perpendicular axis to the immediately-before-
module’s normal vector. In other words, is the angle each next module configuration turns rela-

tive to the module immediately before (see Figure 3.2).

Figure 3.2: Alpha angle

As seen on Figure 3.2, o can be determined by simple equation:

o = arcsin (%) (3.1

Where h is the minimum distance between two adjacent modules’ center points and L is the
already known module’s length (described on Section 2.2). Further description of the distance

between modules will be treated on Section 3.1.2.

3.1.2 Theta Angle

This angle is a code specific to each one of the allowed MCs. It describes how many radians
it takes to twist a module along the ZZ axis (see Figure 3.3) in order to get the “gradient line”

pointing towards the direction of the Y~ axis.
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Chapter 3. Forward Kinematics

Figure 3.3: Theta angle

The ‘gradient line’ is also unique for each MC —except for MC = 0 and M C = 15, which
is the same. It is the line, projected onto the XY plane, that describes the direction of the module’s
inclination respect to the immediately adjacent previous one.

For example, if MC' = 2, then the gradient line passes through points [0, 0] and [—1, —1].
Therefore, it is necessary to twist —along the ZZ axis— 6 = 7 + ‘% radians to align it with the
reference axis (¥Y7).

The 6 angle as itself does not have any real-life meaning or interpretation to the user. It is
simply used as an internal middle-step variable to get a full description of the translation/rotation
a module has —according to its MC— to simplify both forward and inverse kinematics calcula-
tions. How all these variables fit in the implemented forward kinematics’ algorithm is explained

on Section 3.2.

3.1.3 Height

This parameter has actually only two possible values depending if the MC is O or any other
value from the allowed configurations described on Table 3.2. Equation (3.2) demonstrates that
for any allowed MC —that is, M C # 0—, the value of the distance between two modules’ center

points (H) is the input-by-user minimum distance between modules (h).
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H=h (3.2)

On the other hand, when M C' = 0, equation (3.3) describes the behavior of H. For this
case, H has an larger value because all the electromagnets are acting in repulsion, thus creating
a scenario where the height increases. The amount of ‘extra’ height it tightly dependent of user-

defined parameters i and L, as shown on equation (3.3).

sm<ﬂ3%il>] (3.3)

In this last equation, the value added to the minimum value between modules (/) is equal to

=~

H=h+L

the vertical component of L with a angle defined by half the rotation angle «. This particular
H was only used to best describe the hyper-redundant robot simulation, making it possible to
differentiate heights with M C' = 0 and M C = 15.

Finally, after considering «, 6 and H, a table (see table 3.3) resuming all the gathered infor-

mation for each MC is presented:

Table 3.3: Angles for each possible MC

Decimal Code o 0 H
0 0 0 h+LFm(Wﬂﬂwﬂ
1 arcsin (&) 7w+7% h
2 arcsin (%) T+ ?jf h
3 arcsin (%) T+ 5 h
4 arcsin (%) 2+ 7 h
6 arcsin (%) 2m h
8 arcsin (%) 2 + %T” h
9 arcsin (%) s h
12 arcsin (%) 2 + 5 h
15 0 0 h
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3.2 Implemented Algorithm

The script developed to simulate the forward kinematics was based on a simple algorithm
shown on Figure 3.4.

First, the values of A and L must be input by the user. Then a small check is performed in
order to determine if the user wants to introduce all the modules’ configuration or if he wants it
to be done randomly.

Then, if the user decides to manually input the MC sequence, the code is transformed into
binary (in case it was input as decimal code) and then it is checked for errors. If no errors are
found, a “go flag” is raised and the program is allowed to continue.

The script then searches in every MC of the sequence for their corresponding «, 6 and H.
The pairing can be seen in Table 3.3.

After getting the corresponding values, a loop (‘Calculate NOAP MSE’ function file) is run

for every MC the sequence has. The steps followed in the loop are:

—

. Rotate plane along the ZZ axis 6 degrees.

2. Rotate over the XX axis 5 degrees.

3. Translate H up the ZZ axis.

4. Rotate the remaining $ over the XX axis.

5. Rotate plane along the ZZ axis —6 degrees.

6. Obtain partial results for position and orientation (see [1])

7. If loop count is less than the number of modules, use the partial result as initial point for

the next loop run.

Finally, the last partial result from the loop is transformed into a final position (P_MSE) and

orientation (N_MSE, O_MSE and A_MSE) vectors.
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Figure 3.4: Forward kinematics flowchart
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3.3 Demonstrative Results

Table 3.4 shows some examples of obtained results using different MCs for the HRRS (see
Figure 3.5).

In these figures, the final position point (P_MSE) is the center of the last module representa-
tion. The final orientation vector (A_MSE) is the one normal to that plane, while the O_MSE and

N_MSE describe the rest of the plane’s orientation.

Table 3.4: Parameters for the Foward Kinematics’ Simulations

Figure h L MC Sequence

Figure 3.5(a) 1 mm 3 mm [9]

Figure 3.5(b) I mm 3 mm [29]

Figure 3.5(c) I mm 3 mm [0 64]

Figure 3.5(d) Imm 3 mm [4002]

Figure 3.5(¢) I mm 3 mm [24162]

Figure 3.5(f) Imm 3 mm [12194150]
Figure 3.5(g) 1mm 3mm [192481215]
Figure 3.5(h) Imm 3mm [92911221 3]
Figure 3.5(1) 1mm 3mm [2643964128]
Figure 3.5G) 1mm 3mm [29936004912]
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Figure 3.5: Forward Kinematic’s examples: HRRSs
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Inverse Kinematics

According to [5]: “To date, hyper-redundant manipulators have remained largely a laboratory

curiosity. There are a number of reasons for this:

1. Standard kinematic techniques have not been particularly efficient or well suited to the

needs of hyper-redundant robot task modeling.

2. The mechanical design and implementation of hyper-redundant robots has been perceived

as unnecessarily complex.

3. Hyper-redundant robots are not anthropomorphic, and pose difficult programming prob-

lems.”

Adding one more difficulty to the mentioned problems of HRMs is that their hyper-redundant

characteristic also makes the inverse kinematic calculations quite costly, as described by [23]:

A rigorous mathematical analysis of inverse kinematics for hyper-redundant ma-
nipulators was performed by Chirikjian [8, 7, 6, 15]. Chirikjian used techniques
from differential geometry to describe robotic kinematics as fitting curves in space,
and proposed a novel type of hyper-redundant robot known as a variable geometry
truss (VGT) structure. The differential geometry approach describes a curve in space
as a series of moving frames originating at the base of the manipulator, progressing

along the length and ending at the end-effector. The curves used are taken from a

25
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basis set which tend to form S-shaped curves. Once a set of curves is determined to
approximate a desired configuration, then the manipulator is fitted to the curve set.
Chirikjian et al. have attempted to use the Frenet-Serret formulation for curves
in space, but have found it to be too computationally expensive to use in real-time
for calculating inverse kinematics. Related advanced techniques by Gravagne [12]
use other formulations for these curves (such as wavelet functions), but require
many simplifying assumptions about the manipulator design (such as equal segment
lengths, or homogeneous bend of the backbone material), and these techniques have

only been applied to 2-D (planar) robots . ..

As a result of high processing times, the author of [23] proposed a genetic combinational
algorithm for the inverse kinematics of HRMs; and a similar approach, based on an error-
optimization method as well, was conducted by [16].

Although the work presented on [23, 16] is considerably old, some of the latest publications
(2011) continue to deal with the same issues. According to [29]: “In the case of hyper redundant
manipulators with high degrees of freedom, the computational burden of pseudoinverse Jaco-
bian becomes prohibitive despite proposed improvements. Furthermore, most of the proposed
schemes handle the inverse kinematic problem at the velocity level only. Therefore, among these
many schemes, the geometrical method for path planning is preferred because of its simplicity,
power saving and reduced computations compared to others.” Nevertheless, it fails to deliver a
definitive, error-minimized and a processing time cost-effective solution.

This computational problem is still persistent for obtaining a valid solution for inverse kine-
matics. According to the results to be presented in this chapter, the processing time for inverse
kinematic calculation undergoing an exhaustive method can go up to one year for a 10-module
robot (Section 4.1). The present project tries to introduce new error-optimization alternatives as
other possible solutions to minimize both processing time and position/orientation error; as well
as a base study by comparing them with a regular exhaustive-search method.

Since the approaches to be discussed and compared —exhaustive and error-optimization

algorithms— are based on both position and orientation error, the first step was to identify an
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expression capable of describing the error itself.

Equation (4.1) shows how the final plate position error ep was calculated by a simple Eu-
clidean distance, where Pu stands for the ‘user-defined’ final position vector and Pc is the ‘cal-
culated’ final position vector. P,, P, and P, stand for the x, y and z component value of both the

user-defined and calculated position vectors.

€p = \/(Pum — Pcy)? + (Puy — Pey)? + (Pu, — Pc.)? @1

This way of calculating the position error was selected because it has a very light computa-
tional cost and is also a practical way of weighting the error in function of the distance to the
target. The closer the calculated final point is to the user-defined position, the lower the ep and,
consequently, the final error expression.

The same methodology was used to compute the final orientation error €4 (equation (4.2)).
A is a vector indicating the orientation of the HRRS last plane’s normal vector. The only dif-
ference between the position error is that both vectors A, (user-specified) and A. (calculted) are

unitarian, thus making €4 to vary between limited parameters, as shown in equation (4.3).

ea = \/(duy — Acs)? + (Au, — Acy)? + (Au, — Ac)? 4.2)

0<es <2 4.3)

Finally, as mentioned at the beginning of this chapter, a complete and final error equation was
needed to compare all methods, which was achieved by applying equation (4.4). A is chosen to
emphasize the priority of the type of error the user wants to reduce and 3 is a constant to create
a physically coherent expression, since €p is measured in length units and €4 is a transform of a

unitarian directional vector. For the comparative purposes of this project, A = 4 and 5 = 1 were
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used, since they provides a good scalar parameter to relate position error with orientation error

in equal manners.

4.4)

This particular function was chosen as a result of a study between many different possible

error functions (see ‘calc_error2’ in the Appendix) and then choosing the one with least final

actuator position/orientation difference.

In Figure 4.1 an example of a typical error distribution over different possible module com-

binations can be seen. Although it is not a complete graphic of all possible modules, it is a fairly

good representation on how the error function should look like. This figure also provides more

information: the error function which the error-optimization methods (Section 4.2) will be trying

to minimize is far from being smooth and easy to work with.

Typicall error function

01 02 03 0.4 0s 06 o7 0.8 09
Modules' configuration

Figure 4.1: Error function for a 4-module 10DOF HRRS
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4.1 Exhaustive Method

As its name suggests, this method works by examining every single combinational possibility
of all robot’s modules, and then selects the one with least error and displays it as a final answer.

For this algorithm to run it is first necessary to define some user-input variables:

e Minimum distance between two adjacent modules’ center points, denoted by h

Length of each square module: L

The number of modules: Nmodules

Final position point: P final_user

Final orientation vector: A final_user

After getting these parameters, the script compares all the end position and orientation vectors
obtained by calculating the forward kinematics of each possible MC sequence —the sequence is
as long as Nmodules— and the final position and orientation vectors either given by the user
or randomly selected (see the complete flowchart on Figure 4.2). The mentioned comparison is
made using the error equation (equation (4.4)).

As shown in Figure 4.2, there is a side operation working along the main algorithm. This is
because one attempt to downsize the computational processing time (CPT) was done by selecting
the first module’s orientation and thus reducing by 90% the computational burden.

The procedure to calculate the first module starts by projecting the user’s final position vector
over the XY plane. Then the first module’s MC is chosen according to the sector the projected
point lands.

The mentioned sectors were created by a £22.5° angle between every major axis (X and Y)
and every 45° axis (at 45° and —45°). A graphical representation can be seen in Figure 4.3.

The arrows shown of Figure 4.3 describe the +22.5° angle for each axis. The corresponding

MC according to the location of the final projected point can be seen in Table 4.1.

29



Chapter 4. Inverse Kinematics

Performing the first module calculation becomes handy for reducing CPT, but sometimes in
a trade-off for exactitude in the solution. Some demonstrative results for the Exhaustive Method

are shown over the next section.

h, L, Mrmodules

M_original=

create_mod_robot2 (M modules) Pfinal, Afinal

Uszer_input_Point?

y

Finalint=
calodlate_NOAPRM_original)

v
o ) ) -~ primmod=
afinal, Pfinal=MNOAP _wects(Final_int) > dir_calc2(Pfinal_user)
A 4 W v
out_grror2= out_errorl=
calc_error{i,Pfinal_user, Afinal_user,Mrmodules,h,L) calc_error{i,Pfinal_user, Afinal_user, M modules, h,L)
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MC=rninfout_error2) MC=minfout_srrarl}
y v

Figure 4.2: Exhaustive Method’s flowchart
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Figure 4.3: 45° sections over XY plane

Table 4.1: MCs for first module calculation

Between colors Axis Quadrants Considered degrees MC

Blue & Green X LIV 0° 12
Green & Cyan 45° I 45° 8
Blue & Yellow Y ILII 90° 9
Yellow & Blue — —45° 1I 135° 1
Blue & Green X 11, 11T 180° 3
Green & Cyan 45° 111 225° 2
Cyan & Yellow Y I, IV 270° 6
Yellow & Blue  —45° v 315° 4

4.1.1 Demonstrative results

All the examples in this section were performed with 4 = 1 mm and L = 5 mm parameters.
The final position and orientation vectors were given by randomly selecting a valid answer. In
other words, for the purpose of this demonstration the ‘Calculate NOAP’ function was run with
a random MC sequence. The final point and orientation of that sequence was then given to the
‘Exhaustive’ script as the user-input values.

It is possible to notice that Figures 4.4(a), 4.4(b) and 4.4(d) are very similar. The main
difference is with Figure 4.4(c), where the solution with the first module calculation is not the

same as the one without it, although it is still a good solution.
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Figure 4.4: Inverse Kinematic’s examples: HRRSs for Exhaustive Method

For all the figures —with exception of Figure 4.4(c)— it is clear that both the position and

orientation error are equal to zero, thus achieving a perfect solution: the HRRS goes to the final

point and orientation specified by the user.
It becomes clear then, that despite having a big improvement in computational processing

time (CPT), the first module calculation procedure does not guarantee the best answer, as the

complete normal Exhaustive Method does.
A further discussion on this method, as well as the error-optimization approach is to be found

on Chapter 5.
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4.2 Error-optimization Method

There have been proposed some inverse kinematics techniques for HRMs, and many authors
have worked with them along the years, but an exclusively error-optimization approach to this
problem is still yet to be published.

Therefore, a comparative study between the most common global-optimization algorithms
[18]: Patternsearch, Genetic Algorithm, Globalsearch, Multistart: fminunc, Multistart: lsqnon-
lin and Simulannelbnd (available by default in MATLAB(©R2010a [19]) was performed using
equation (4.4) as the target function to minimize. The main characteristics of the used global-
optimization algorithms can be seen in Table 4.2.

As with the Exhaustive Method, error-optimization algorithms (EQAs) also needs some user-
input variables, which continue to be: h, L and Nmodules. Once these parameters are obtained,
the selected EOA can find a solution for the particularities of the problem proposed. The solution
is going to be closely dependent on the geometric characteristics of the HRM, as described in
Section 2.2.

The methodology to get the results from the Error-optimization Method starts by requesting
the user the physical (geometric) conditions for the HRM. The user has the choice to either input
the final position and orientation vectors or to choose them to be randomly —again, from an
already obtained valid forward kinematic solution.

Furthermore, the ‘Optimization’ script then calculates the first module, just as with the Ex-
haustive Method. The fist module calculation is not intended to reduce computational time itself,
but to give the EOAs a first searching point for them to find the global minimum.

In other words, the EOAs require an initial point to start looking for the solution. This point
could be chosen randomly, but the nearer it is from the solution, the easier —faster and possibly
less errors as per going to local minima— it gets for the algorithms to find the global minimum.

After the first module calculation, the user can choose between the error-optimization algo-
rithms mentioned at the beginning of this section and some other local solvers. These have no
real application for the scope of this project since they look for local minima and not the global

minimum, which is the desired task. There fore, they should be considered only for comparative
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Table 4.2: Main global optimization algorithms’ characteristics

EOA

Description

Patternsearch

Searches through several basins and looks at a number of
neighboring points before accepting one of them. This
method is a little less meticulous, but it is robust and, logi-
cally, is more efficient than local solvers.

Genetic Algorithm

Genetic algorithms are based on natural evolutive methods.
This means the new generation of “sons” would have a bet-
ter fitness (less error) than their “parents”, which will con-
tinue to “reproduce” until certain stop criteria have been
met.

Globalsearch

It is quite similar to Patternsearch, as it takes a number
of starting points (larger for GlobalSearch than for Pat-
ternsearch) and then uses a local solver to find local minima
to compare at the end. The difference between these two is
the amount of basins explored and, therefore, GlobalSearch
arriving —at least, theoretically— to a better solution.

Multistart: fminunc

Uses 500 randomly selected points —this number could
vary since it is user-dependent, but the default amount is
500 point— between the lower and upper boundaries (also
specified by the user) and then uses a local optimization
algorithm (for this case, ‘fminunc’) to find local minima.
Later it compares the minima in order to give the user the
most ‘fitted’ answer: the global minimum.

Multistart: Isqnonlin

Almost the same as Multistart: fminunc. The only differ-
ence is the local optimization algorithm: while the former
uses ‘fminunc’, the latter uses ‘Isqnonlin’.

Simulannelbnd

It performs a random search. Generally, simulannealbnd
accepts a point if it is better than the previous point. It oc-
casionally accepts a worse point in order to reach a different
basin. It is usually the slowest solver

34



Chapter 4. Inverse Kinematics

purposes and not as another valid solution method. The Error-optimization Method’s flowchart
can be see on Figure 4.5.

After running the user-chosen algorithms, the result will be a MC sequence that, ideally,
should be the global minimum, and thus corresponding to the modules’ configuration to achieve
the desired final destination and orientation.

The computational processing time, as well as a the position and orientation error for the

EOAs are to be compared and discussed over Chapter 5.

35



Chapter 4. Inverse Kinematics
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Figure 4.5: Error-optimization Method’s flowchart
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4.2.1 Demonstrative results

For the error-optimization algorithms —as with the Exhaustive Method—, the parameters
used for the demonstration were h = 1 mm, L = 5 mm and the final position and orientation
vector were also given randomly —the same for all EOAs. The main difference with the demon-
strative results of the Exhaustive Method is that for all the examples a value of Nmodules = 10
was used. The obtained results are in Figure 4.6.

Figure 4.6 shows how a flawless solution is not obtained by neither of the EOAs, causing
a final position and orientation error, which varies from algorithm to algorithm. Position and
orientation errors, as well as the computational processing time required to obtain these results

are to be discussed over the next chapter.
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Comparative Study

In order to gather data for the comparative study, a statistically significant number of it-
erations —twenty runs per algorithm for each method— had to be computed, with modules
ranging from one through four for the exhaustive method and from one through ten for the error-
optimization method. The simulations were performed with 4~ = 1 mm (minimum distance
between modules) and L = 3 mm (length of each squared module).

The error-optimization algorithms try to reach the user-input final position and orientation
point by optimizing the error function (equation (4.4)), while the exhaustive method goes through
every single possible combination. Since it is quite difficult to reach the exact point with the exact
orientation for the error-optimization algorithms, a final position error (Section 5.1) and a final
orientation error (Section 5.2) are obtained.

The reason that there is no position/orientation error for the Exhaustive Method is because
—when using the full exhaustive search without the first module calculation— it will always find
the best possible answer, while not necessarily so for the error-optimization algorithms.

As mentioned at the beginning of Chapter 4, a good approximation of how the complete error
function for 4+ modules looks like can be seen on Figure 4.1. It is also notable that trying to find
the global minimum by minimizing the error is a hard task: it is full of crests and valleys very
close to each other, it is almost non-differentiable and is full of local minima with such a small
error value that many algorithms could interpret these answers as final solutions, thus causing
the position/orientation error.

The most remarkable thing of the results to be presented for the optimization method is
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that despite them having errors (amount depending on each algorithm), they are still very good
approximations. The ratio of acceptable solution versus processing time is very excellent when
compared to the exhaustive method; and perhaps the most important detail is that either the
position or the orientation error could be adjusted depending on the application the HRM is
intended for.

For example, if a lamp is going to be used for laparoscopic applications, the orientation error
(e 4) would be more important than the position one (¢p), and A could be adjusted as such. On the
opposite, for applications where position is key, the same parameter could also be modified to
give priority to the position. The results shown in this chapter were obtained by trying to balance
both errors as equally important, but they do not have to necessarily be always treated as such.

All the information to be presented over the next sections sets a start point for continuing
studying error-optimization approaches to the inverse kinematics of hyper-redundant robots and
also opens a window of opportunity, since the results have demonstrated this is a valid way of

tackling this type of challenges.
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5.1 Position Error

When using the Exhaustive Method for the inverse kinematics the least combined error € (as
described in equation (4.4)) is guaranteed. The position error (ep, equation (4.1)) can also be
minimum if adjusted to be the most important parameter by changing « (increasing it) and (.
Likewise, it is possible to modify the values of these parameters to make the orientation error

(e4) the most significative one over the position error.

Average position error Vs number of modules

1.20

A A
\
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Figure 5.1: Error-optimization Method: Position errors

It can be seen in Figure 5.1 that the position error has a clear tendency to grow as the number
of modules increases. However, as seen in some particular cases, position error could also be less
than the immediately before situation. For example —for Patternsearch— when Nmodules = 6
there is a high position error (the highest among all the EOAs), but when Nmodules = 7 this

error decreases to the point of being one of the lowest (third position).
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As mentioned at the beginning of this chapter, a number of statistically significant runs were
performed in order to ensure the data herein presented is not a result of random events, but a
trustworthy representation of how the EOAs actually behave. Therefore, the position error for
Patternsearch in Figure 5.1 has a tendency to grow as the number of modules is incremented
—this applies for all other error-optimization algorithms—, but that does not necessarily mean

that this error is fully predictable nor will always be the highest among the other EOAs.
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5.2 Orientation Error

Orientation error results for Genetic Algorithm, Globalsearch, Multistart: fminunc, Multi-
start: lsqnonlin and Simulannelbnd are quite similar to the ones for the position error. Nev-
ertheless, Patternsearch shows a very erratic behavior, making it almost impossible to notice a
tendency.

As expected, the EOAs with highest position error —that is, Multistart: fminunc, Multistart:
Isgnonlin and Patternsearch— also had the highest orientation error (see Figure 5.2). On Sec-
tion 5.3 is demonstrated that despite having high ¢p and €4, these EOAs are the ones that most

rapidly converge to a solution.

Average orientation error Vs number of modules
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Figure 5.2: Error-optimization Method: Orientation errors
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Another important feature of the Error-optimization Method is that, as seen on Figure 5.1 and
Figure 5.2, the values of both the position and orientation errors are low in absolute terms. For
example, the highest position error was given by Patternsearch when Nmodules = 6, resulting
in an error of 1.1 mm, which is approximately the minimum distance between modules. The
highest orientation error was also for Patternsearch with a 20° error.

When €p is high, €4 is usually low and vice versa due to the weight given to both position and
orientation error in accordance with equation (4.4). If the parameters « and /3 were to be changed
this could no longer apply, since the EOAs would now try to minimize the function according to

the new weight described by the user.
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5.3 Processing Time

Computational processing time is perhaps the biggest criteria used to choose any method for
the inverse kinematic problem of hyper-redundant manipulators.

It is important to notice that the processing time for all methods was calculated only as the
time the algorithm took to get to the solution, without taking into consideration other small
time-consuming related calculations. This was done to provide more realistic and uniformed
comparative times with all the different methods detailed in this section.

As mentioned at the beginning of this chapter, the exhaustive method is based on a full
search throughout all the possible modules’ combinations. Exhaustive method runs were only
performed for up to 4 modules because interpolation —with a 99.9% accuracy— was then used

to calculate the time it would take for more modules to converge to the optimal solution.

Average processing time Vs number of modules
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As shown in Figure 5.3, processing time is the main constraint for this particular method.
Because of the exponential growth of possible combinations, something as little as adding one
module to the system can make the processing time to increase around ten times.

Due to the high computational processing time (CPT), it is clear that although the exhaustive
method guarantees the best possible solution, it is also restricted to be used with only a few
modules. Because of the small number of modules it can handle, exhaustive method has limited
and practically none real-life applications. This same conclusion was also reached by [16].

Processing time for the exhaustive method could be speed-up to only 10% of its value if
a first-module calculation was to be made. Nevertheless, doing this first calculation does not
guarantee the optimal configuration, as it does the normal exhaustive way. Furthermore, the
remaining 10% could still be a large problem because of the exponential nature of all the possible
module combinations.

This idea, as discussed in Chapter 4, is not entirely useless, since the same principle was
used for giving the error-optimization algorithms (Patternsearch, Multistart, Globalsearch and

Simulannealbnd) their first starting point.

Table 5.1: Average CPT for all methods

. Number of modules
Algorithm

1 2 3 4 5 6 7 8 9 10

Patternsearch 0.086 0.078 0.092  0.115 0302 0322 0381 0451  0.653  0.765
Genetic Algorithm 1.060 1.357 1701 2106 2771 3.186 3.496 3.856  4.580  4.925
Globalsearch 3.060 3773 4479 5126 6501 7.077 7753 8.361 9.784  10.624
Multistart: fminunc 0967 0971 1.007  1.044 1273 1290 1354 1408  1.908 1.802
Multistart: Isqnonlin ~ 1.015  1.031  1.070 1.105 1417 1545 1575 1.611 1.944 1.993
Simulannelbnd 0.640 0947 1488 2061 4.638 5498 5894 6843 14719 13.801
Exhaustive 0.013 0.119 1452 18328 -

By comparing the results obtained in Table 5.1, it is noticeable that each inverse kinematic

method has its own particular field of operation: Exhaustive method is a very powerful tool for
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Processing time Vs number of modules
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Figure 5.4: Inverse kinematics: Processing times for all methods

small number of modules (less or equal to 4), since it gives the optimal minimum position and
orientation error in a fairly good time (less than 18 s), while EOAs provide good solutions in
much less time for a higher number of modules.

Figure 5.4 shows the CPTs for all methods. It can be seen why Error-optimization Methods
are preferred over the Exhaustive one: times are way smaller and allow the EOAs to be used for
real-time applications. In simple words, it all comes down to a trade-off: position/orientation
error versus CPT.

‘Long-lasting’ results optimization algorithms, such as simulannealbnd, genetic algorithm
and globalsearch do not necessary have lower position and orientation errors. In other words,
it is not possible to determine which algorithm to always use, since it is a problem-specific
dependent situation. Despite of this, it is noticeable why the combinational error-optimization
approaches proposed by the authors mentioned in Chapter 2 were based on the genetic algorithm:

it is the fastest among them three and has a very similar position and orientation errors.
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According to the information so far presented, it has been demonstrated and validated that
Error-optimization Methods deliver a viable and valid solution to the inverse kinematic’s prob-
lem, since they provide error-acceptable solutions in accessible times. The definitions of “error-
acceptable” and “accessible times” depend upon the projected application and, therefore, are ex-
tremely problem-specific. For the scope of this project, the values shown on this section are valid
for presenting a base study, as well as to encourage further research on new error-optimization

approaches for the inverse kinematics of hyper-redundant manipulators.
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Chapter 6

Conclusions and Future Work

In this project several approaches applied to compute the inverse kinematics of a 10 degrees
of freedom hyper-redundant robot were presented and compared: It was observed that the ex-
haustive method is a very powerful tool for small number of modules (less or equal to 4), since it
gives the optimal minimum position and orientation errors in a fairly good time (less than 18 s).
However, due to the small number of modules, it is not suitable for any real-life applications.
Unlike the exhaustive method, the error-optimization algorithms are not so time consuming, but
the trade off for this propriety is the absence of the completely guaranteed optimal solution.

It is also clear that some physical properties of the HRM can have a big impact on the behavior
of the simulations, specially parameters such as the number of modules —the more modules, the
more complex for both exhaustive and error-optimization method— and the ratio between h to
L, since this relationship dictates the “flexibility” of the hyper-redundant manipulator.

Moreover, it is of great interest to develop new methods, applications and prototypes of hyper-
redundant manipulators (HRMs), since the advantages of moving on irregular environments and
extreme maneuverability are appealing for biomedical applications.

Since the presented HRM is still under development and has not reached the prototype stage
yet, better materials for miniaturization could be suggested or incorporated in the future. This
would allow the HRM to access in an easier manner different body cavities and perform its tasks
as an endoscope, ideally providing both better diagnosing/treatment capabilities to the health
care personnel and less procedure injuries/discomfort to the patients.

Keeping the same line of thought, artificial muscles could also be employed in order to re-
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place the electromagnetic actuators. Even though these are still currently under study, the po-
tential uses and applications of artificial muscles is almost infinite, and the medical field would
definitely be very benefited by them.

Also as future work, better performing computers (that is, with better hardware characteris-
tics) could also be used, and since they do not have to be built-in the HRM, they would allow
both quicker solutions and better resources management. Parallel processing could also be im-
plemented in order to speed up the processing time.

A problem-customized global optimization algorithm could deliver a big performance up-
grade to the current project, and could be developed from the beginning to take into consideration
restrictions dependent on the specific application the HRM would be used in.

Multi-variable error-optimization methods —where the objectives would be position error
and orientation error— could be compared with regular error-optimization algorithms. Each
optimization algorithm could be case-study benchmarked in order to determine the disadvantages

and benefits of each one.
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Calc Error

1 function out_error=calc_error(cents ,Pfinal_user , Afinal_user ,Nmodules,h,L)
2 9%Function to describe the general error (Epsilon)
3

4 Y%General transformation from 0<x<l to Matrix
5 M=cents2Mg (cents , Nmodules) ;

6

7 YForward Kinematics for the M specified by ’cents’
8 Final _MSE=NOAP_calc(M,h,L);

9 [~,~,A_vect,P_vect]=NOAP_vects (Final_MSE) ;

10

11 Y%Calculated final P & A

12 Afinal_calc=A_vect(1:3,Nmodules) ;

13 Pfinal_calc=P_vect(1:3,Nmodules);

14

15 YPerror and Aerror

16 ep=norm( Pfinal_calc —Pfinal_user);

17 ea=norm( Afinal_user—Afinal_calc);

18

19 Y%Lambda & Beta parameters

20 lambda=4;

21 beta=1;

22

23 Y%Final Error

24 out_error=ep”2/lambda+ea”2+ep*ea/beta;

25

26 end



Calc Error 2

function out_error=calc_error2 (cents ,Pfinal_user , Afinal_user ,Nmodules ,h,L,
erro)
Y%oFunction to choose which error function should be used as the general one

Y%General transformation from 0<x<I to Matrix
M=cents2Mg (cents , Nmodules) ;

Y%Forward Kinematics for the M specified by ’cents’
Final_MSE=NOAP_calc(M,h,L) ;
[~,~,A_vect,P_vect]=NOAP_vects (Final_MSE) ;

Y%Calculated final P & A
Afinal_calc=A_vect(1:3,Nmodules) ;
Pfinal_calc=P_vect(1:3,Nmodules) ;

Y%Error
ep=norm( Pfinal_calc —Pfinal_user);
ea=norm( Afinal_user—Afinal_calc);

erro=erro (:);
for i=1:1:size(erro)

switch erro(i,1)
case 1
out_error=ep+ea,;
case 2
lambda=sqrt (2) ;
out_error=ep+lambdaxea;
case 3
out_error=ep+(ea/2)xep;
case 4
out_error=ep”*2+ea’?2;
case 5
out_error=(ep”2+ea2)"2;
case 6
out_error=(ep+ea)2;
case 7
out_error=ep”2+ea”2/2;
case 8
out_error=ep+ea+epx*ea;
case 9
Pfinal_calcnorm=Pfinal_calc/norm( Pfinal_calc);
Pfinal_usernorm=Pfinal_user/norm(Pfinal_user);
epl=norm(Pfinal_calcnorm —Pfinal_usernorm);
out_error=epl+ea;
case 10
Pfinal_calcnorm=Pfinal_calc/norm(Pfinal_calc);
Pfinal_usernorm=Pfinal_user/norm( Pfinal_user);
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epl=norm(Pfinal_calcnorm —Pfinal_usernorm);

out_error=epl/2+ea/2;
case 11
out_error=(ep+ea)/(ep+2);
case 12
out_error=epx*ea,;
case 13
out_error=epx(ea/2);
case 14
out_error=ep/(h+L)+ea/2;
case 15
out_error=ep”2+ea’2+epxea;
case 16
out_error=ep”2/4+ea”2;
case 17
out_error=ep”2/8+ea”2;
case 18
out_error=ep”2/16+ea”2;
case 19
out_error=ep”2/16+4xea”?2;
case 20
out_error=ep”2/12+4xea’?2;
case 21
out_error=ep”2/13+4xea”?2;
case 22
out_error=ep”2/14+4xea”?2;
case 23
out_error=ep”2/15+4xea”?2;
case 24

out_error=ep”2/4+ea”2+epxea;

case 25

out_error=ep”2/8+ea”2+epxea;

case 26

out_error=ep”2/16+ea”2+epx*ea;

end

end

end

il
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Calculate NOAP MSE

function Final_MSE=calculate_NOAP_MSE (Mangles)
Y%oFunction to calculate the forward kinematics and to graph the results

YoMangles (:,1)=Alpha
YoMangles (:,2)=Theta
YoMangles (:,3)=h
YoMangles (:,4)=L

Nmodules=size (Mangles ,1); %Number of Modules
PO=eye (4);%Initialization for NOAP calculation

figure (1) %lInitialization for Spine Graphic Figure
plot_standard (’Spine Graphic’);

figure (2)%Initialization for Modules Figure
plot_standard (*Modules’);

figure (3)%Initialization for both Spine Graphic and Modules Figure
plot_standard (’Spine & Modules’);

for i=1:1:Nmodules %QVOAP calculation and plotting for each one of the
modules

9NOAP Calculation

PI1=POxhomo_rot_mat_any (Mangles(i,2) ,[0 0 1]);
P2=Plxhomo_trans_mat ([0 0 Mangles(i,3)]);
P3=P2xhomo_rot_mat_any ((Mangles(i,1)/2),[1 0 0]);
P4=P3xhomo_trans_mat ([0 O Mangles(i,4)x*sin(Mangles(i,1)/2)]);
P5=P4xhomo_rot_mat_any (( Mangles(i,1)/2),[1 0 0]);
P6=P5xhomo_rot_mat_any(—(Mangles(i,2)),[0 0 1]);
Punit=unit_vector_mat (P6);

Y%Point Plotting

figure (1)

hold on
plot_point (PO, Punit,’b’);

Y%Plate plotting

figure (2)

hold on

plot_plate (Punit ,Mangles(i,4),’b’);

%Spine & Plate plotting

figure (3)

hold on

plot_point (PO, Punit,’b’);
plot_plate (Punit ,Mangles(i,4),’b’);

v
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end

DVisualization
Final_MSE (i%4—-3:1i%4,i%4—3:i*4)=Punit;

Y%For continuing loop
PO=Punit;

end

hold off



Cents2M

1 function M=cents2M (cents , Nmodules)
2 %IFunction to transform a ’cents’ configuration
3

4 M=zeros (1 ,Nmodules); %Preallocation
5

6 %O0btaining the values of Cents
7 cents=abs(cents);

8 aux=num2str ( cents ) ;

9

10 %Translation from Cents to Modules
11 for j=3:1:size(aux,2)

12 switch aux(1l,j)

13 case 0’

14 M(1,j—-2)=0;

15 case ’'1°

16 M(1,j-2)=12;

17 case 2’

18 M(1,j—-2)=8;

19 case '3’

20 M(1,j—-2)=9;

21 case 4’

22 M(1,j-2)=1;

23 case 5’

24 M(1,j—-2)=3;

25 case '6°

26 M(1,j—-2)=2;

27 case 7’

28 M(1,j—-2)=6;

29 case '8’

30 M(1,j—-2)=4;

31 case '9’

32 M(1,j—-2)=15;

33 end

34 end

35

36 MEM(1,1:Nmodules) ;

37 end

vi
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Cents2M G

function M=cents2Mg (cents , Nmodules)

end

YoFunction as the general version of cents2M

cents=cents (:); %Vector is now transform into a column
cents=abs(cents); %Throw out any values with negatives (because of the
minus sign)

sets=ceil (Nmodules/4) ; %Number of groups of 4
Mparcial=zeros (sets ,4); %Preallocation

for i=1:1:sets
Mparcial (i ,:)=cents2M (cents (i,1) ,4);

end

M=reshape (Mparcial .’ ,1,[]); %Get results
M=M(1,1:Nmodules); %Display correct M
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Conversor

function Mangles=conversor (Mplates ,h,L)

Y%This function converts the binary value of each row of the matrix Mplates
(as described according to the electromagnets) to angles:

YoMangles (:,1)=Alpha

YoMangles (:,2)=Theta

YoMangles (:,3)=H

YoMangles (:,4)=L

YoNote: This is assuming | represents attraction between magnets

Nmodules=size (Mplates ,1) ;%Number of modules

Mangles=zeros (Nmodules ,4) ;%Preallocation

Mangles (: ,1)=asin (h/L);

Mangles (: ,3)=h; %Same minimum space between modules for all of them
Mangles (: ,4)=L; %Same length for all modules

for i=1:1:Nmodules
aux=bi2de (Mplates (i ,:) , left—msb’); %Transform the binary vector
into decimal scalar

switch aux
case 0 %0000b
Mangles (i ,1) =0;
Mangles (i,2) =0;
Mangles (i ,3)=h+Lxsin(asin(h/L)/2);

case 1 %0001b
Mangles (i ,2)=pi/4+pi;

case 2 %0010b
Mangles (i ,2)=(pi/2+pi/4)+pi;

case 3 %0011b
Mangles (i ,2) =(pi/2)+pi;

case 4 %0100b
Mangles (i ,2)=(pi+pi/4)+pi;

case 6 %0110b
Mangles (i ,2)=pi+pi;

case 8 %1000b
Mangles (i ,2)=(3xpi/2+pi/4)+pi;

case 9 %I1001b
Mangles (i ,2)=0+pi;

case 12 %I1010b
Mangles (i ,2)=(3xpi/2)+pi;
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end

end

end

case 15 %I111b
Mangles (i,1) =0;
Mangles (i ,2) =0;
Mangles (i ,3)=h;

X



Create Mod Robot 2

1 function [Mdec]=create_mod_robot2 (Nmodules)

2 9%Function to create a random robot with the valid configurations as
described in the ’valid_configs’ vector.

3

4 Mdec=zeros (1 ,Nmodules); %Preallocation

5

6 valid_configs=[0 1 2 3 4 6 8§ 9 12 15];

7

8 for i=1:1:Nmodules

9 aux=round (rand (1) x10);

10 while aux<l

11 aux=round (rand (1) x10);

12 end

13 Mdec(1,i)=valid_configs (1,aux);

14 end

15

16 end

17

18 %INOTE: If more magnets are to be added 'Mdec’ preallocation will be
different depending on the configuration, as well as the possible
configurations in the ’valid_config’  vector
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Decbin

function [Mplates]=decbin (M)
Y%oFunction to change a decimal matrix M’ for a binary matrix 'Mplates’

Y%hlf M is already a binary matrix, the output ’Mplates

i

is equal to M’

[M_rows,M_cols]=size (M) ;

dec=

end

0;

for i=1:1:M_rows
for j=1:1:M_cols
if M(i,j)>1
dec=1; %It is determined that M’ is a decimal vector
end
end
end

if M_cols ~=4
dec=1;

else
if M_rows==1
dec=1;
end
end

if dec==1 %The input vector was given as decimal numbers
if M_rows==1 %Vector inputted as a row
Mplates=zeros (M_cols ,4) ;%Preallocation
for i=1:1:M_cols
Mplates (i ,:)=de2bi(M(1,1) ,4,  left —msb’);
end

else %Vector inputted as a column
Mplates=zeros (M_rows ,4) ;%Preallocation
for i=1:1:M_rows
Mplates (i ,:)=de2bi M(i,1) ,4,’left—msb’);
end
end

else
Mplates=M;
end

xi



Dir Calc 2

1 function [dire]=dir_calc2 (Al,sens2)
2 9%Function to calculate the MC of the first module according to the final
point projection over the XY plane

3

4 Nmodules=size (Al,2);

5 tangentesd=zeros (1 ,Nmodules) ;

6 dire=ones (1,Nmodules).x15;

7

8 for j=1:1:Nmodules

9

10 tangentesd (1,j)=radtodeg (atan2 (AI(2,j),Al(1,j)));

11

12 if tangentesd(1,j)>=—22.5 && tangentesd (1,j) <22.5

13 dire (1,j)=12;

14 end

15

16 if (AI(l,j)>—sens2 && Al(l,j)<sens2) && (Al(2,j)>—sens2 && Al(2,j)<
sens2) %Precaution for O0—> sens2:Sensibility to be considered
zero

17 dire (1,j)=0;

18 end

19

20 if tangentesd(1,j)>=22.5 && tangentesd(1l,j)<67.5

21 dire (1,j)=8;

22 end

23

24 if tangentesd(1l,j)>=67.5 && tangentesd(1,j)<112.5

25 dire (1,j)=9;

26 end

27

28 if tangentesd(1,j)>=112.5 && tangentesd (1,j)<157.5

29 dire(1,j)=1;

30 end

31

32 if tangentesd(1,j)>=157.5 |l tangentesd(l,j)<—157.5

33 dire (1,j)=3;

34 end

35

36 if tangentesd(1,j)<—22.5 && tangentesd(l,j)>=—67.5

37 dire (1,j)=4;

38 end

39

40 if tangentesd(1l,j)<—67.5 && tangentesd(1l,j)>=—112.5

41 dire (1,j)=6;

42 end

43

44 if tangentesd(1,j)<—112.5 && tangentesd (1,j)>=—157.5

45 dire(1,j)=2;

46 end

xii
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end

end
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Error Check

1 function go_flag=errorcheck (Mplates)

2 9%Function to check if one of the electromagnet combinations is a non—valid
one. If so, go_flag=0

3

4 Nmodules=size (Mplates ,1) ;%Number of modules

5 go_flag=1;%Assuming everything is OK

6 noaccep=[0 1 0 1;0 1 1 1;1 0 1 O0;1 O 1 1;1 1 O 1;1 1 1 O]; %Non accepted

combinations

7 na_rows=size (noaccep,l) ;%Number of rows in the exception matrix

8

9 for il=1:1:Nmodules%For all vectors in the Matrix

10 for i2=1:1:na_rows%Checking all of the non accepted vectors

11 if (Mplates (il ,:)==noaccep(i2,:))

12 disp ('Non—accepted combination in row #: ’);

13 disp (il)

14 go_flag=0;%If there is an error, raise flag

15 end

16 end

17 end

18

19 end

20

21 9%%Note: If more magnets are to be added, the ’noaccep’ combinations must be
changed to the new ones
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Exhaustive

Y%Script for the inverse kinematics of a HRMS—>Exhaustive method

close all;
clear all;
cle;

%PHYSICAL PARAMETERS

h=input (’\nMinimum space between modules (m)?: ’);
L=input(’\nLength of each module (m)?: ’);

Nmodules=input (’\nNumber of Modules? —No more than 4—: ’);

user_input=input(’\nPress *’0’’ for Random case, ’’1°’ for user—input: )

if user_input==

Pfinal_user=input(’\nFinal Destination Point: BN
Pfinal_user=Pfinal_user (:) ;
Afinal_user=input(’\nFinal Orientation: )

Afinal_user=Afinal_user/norm( Afinal_user);
Afinal_user=Afinal_user (:);

else
M_original=create_mod_robot2 (Nmodules) ;
Final_int=NOAP_calc(M_original ,h,L);
[~,~,A_vect,P_vect]=NOAP_vects( Final_int);
Afinal_user=A_vect(1:3,Nmodules) ;
Pfinal_user=P_vect(1:3,Nmodules) ;

end

%Preallocation
out_errorl=zeros (1x10~(Nmodules—1),1);
out_error2=zeros(1*x10"Nmodules+1,1);

YDSensibility for first module calculation
sens2=0.00001;

%First module calculation
primmod=dir_calc2 (Pfinal_user ,sens2);
cents_aux=M2centsg (primmod) ;

disp (°’Time with first module calculation’)

tic

cont=1;

for i=cents_aux:1/10ANmodules: cents_aux+0.1000
out_errorl (cont ,l1)=calc_error (i, Pfinal_user , Afinal_user ,Nmodules,h,L);
cont=cont+1;

end

toc

XV



50 disp(’Time without first module calculation’)
51 tic

52 cont=1;

53 for i=0:1/10"Nmodules:1

54 out_error2(cont ,l)=calc_error (i, Pfinal_user , Afinal_user ,Nmodules,h,L);
55 cont=cont+1;

56 end

57 toc

58

59

60 %SOLUTION DISPLAY

61

62 %For graphics

63 t1=0:1/10"(Nmodules—1):1;

64 t2=0:1/10"Nmodules:1;

65

66

67

68 disp(’ )

69 disp(’ SOLUTIONS )
70 disp(’ )

71

72 [errorl ,yl]=min(out_errorl);

73 yl=yl—1;

74 Mcentsl=cents_aux+yl/(10"Nmodules) ;

75 disp(’Solution with first module calculation’)

76 disp (Mcentsl)

77 disp (’Module Solution with first module calculation’)
78 Ml=cents2M (Mcentsl , Nmodules) ;

79 disp (Ml)

80

81

82 [error2 ,y2]=min(out_error2);
83 y2=y2-1;

84 Mcents2=y2/(10~ Nmodules) ;

85 disp(’Solution without first module calculation’)

86 disp (Mcents2)

87 disp (’Module Solution without first module calculation’)
88 M2=cents2M (Mcents2 , Nmodules) ;

89 disp (M2)

90

91

92 %GRAPHICATION

93 figure ()

94 plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+’);
95 han=gecf;

96 fdirect_cinematicsg (Ml,h,L, b’ ,han);

97 fdirect_cinematicsg (M2,h,L, g’ ,han);

98 fdirect_cinematicsg (M_original ,h,L,’ r’ ,han);

99 plot_standard(’Module solutions FM: Blue w/oFM:Red’);

100

Xvi



101 figure (han+1)
102 plot(tl ,out_errorl ,’b’)
103 title (’Error with first module calculation’)

104 xlabel (’Module ’’cents’’ configuration’)
105 ylabel(’Error’);

106

107

108 figure (han+2)

109 plot(t2,out_error2,’r’)

110 title (" Error without first module calculatuion’)
111 xlabel(’Module ’’cents’’ configuration’)

112 ylabel (’Error’);
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F Direct Cinematics G

function [N_MSE,O_MSE,A MSE,P_MSE]=fdirect_cinematicsg (Mdec,h,L,c,n)
YoFunction to calculate the direct cinematics gith graphics

end

Mplates=decbin (Mdec); %Translating the input matrix to binary code
Mangles=conversor (Mplates ,h,L); %Converting the binary row vector code
to alpha and theta angles
PO=eye (4);%Initialization for NOAP calculation
Mdec=Mdec (:) ;
Nmodules=size (Mdec,1) ;
for i=1:1:Nmodules %QVOAP calculation and plotting for each one of
the modules

9NOAP Calculation

P1=POxhomo_rot_mat_any (Mangles(i,2) ,[0 0O 1]);
P2=Plxhomo_trans_mat ([0 O Mangles(i,3)]);
P3=P2xhomo_rot_mat_any (( Mangles(i,1)/2),[1 0 0]);
P4=P3xhomo_trans_mat ([0 0 Mangles(i,4)x*sin(Mangles(i,1)/2)]);
P5=P4xhomo_rot_mat_any ((Mangles(i,1)/2),[1 0 0]);
P6=P5xhomo_rot_mat_any(—(Mangles(i,2)),[0 0 1]);
Punit=unit_vector_mat (P6);

%Spine & Plate plotting

figure (n)

hold on

plot_point (PO, Punit,c);
plot_plate (Punit , Mangles(i,4) ,c);

%Visualization
Final MSE (i%4—3:i%4,i%x4—3:i%4)=Punit;

Y%For continuing loop
PO=Punit;

end
[N_MSE,O_MSE,A_MSE,P_MSE]=NOAP_vects (Final_MSE) ;%Pretty Print output

/Comparison
hold off
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F Exhaustive

function Mopt=fexhaustive (h,L, Nmodules)
Y%oFunction to calculate the Inverse kinematics through exhaustive method
without graphics

user_input=input(’\nPress *’0’’ for Random case, ’’1°° for user—input: ’);

if user_input==

Pfinal_user=input(’\nFinal Destination Point: )
Pfinal_user=Pfinal_user (:) ;
Afinal_user=input(’\nFinal Orientation: ’);

Afinal_user=Afinal_user/norm( Afinal_user);
Afinal_user=Afinal_user (:);

else
M _original=create_mod_robot2 (Nmodules) ;
Final_int=NOAP_calc(M_original ,h,L);
[~,~,A_vect,P_vect]=NOAP_vects( Final_int);
Afinal_user=A_vect(1:3,Nmodules) ;
Pfinal_user=P_vect(1:3,Nmodules) ;

end

%Preallocation
out_error2=zeros(1x10"Nmodules+1,1);

cont=1;

for i=0:1/10"Nmodules:1
out_error2(cont ,l)=calc_error (i, Pfinal_user , Afinal_user ,Nmodules,h,L);
cont=cont+1;

end

[~,y2]=min(out_error2);
y2=y2—-1;
Mcents2=y2/(10”Nmodules) ;
Mopt=cents2M (Mcents2 , Nmodules) ;

figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+’);
han=gcf;
[~,~,~,~]=fdirect_cinematicsg (Mopt,h,L, b’ ;han);
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ ,han);
end

plot_standard (’ Solution with exhaustive Method’);

end
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F Optimization

function Mopt=foptimization (h,L,Nmodules)

YoFunction to calculate the Inverse kinematics through error—optimization

method

user_input=input(’Do you want a random case(0) or user—input(1l)?:

%FINAL PARAMETERS

if user_input==1%For specific case
Pfinal_user=input(’\nWrite the Final Point: )
Pfinal_user=Pfinal_user (:) ;
Afinal_user=input(’\nWrite the Final Orientation:

Afinal_user=Afinal_user/morm( Afinal_user);
Afinal_user=Afinal_user (:);

else%For Random case
M_original=create_mod_robot2 (Nmodules) ;
Final_int=NOAP_calc(M_original ,h,L);
[~,~,A_vect,P_vect]=NOAP_vects( Final_int);
Afinal_user=A_vect(1:3,Nmodules) ;
Pfinal_user=P_vect(1:3,Nmodules) ;
cents_original=M2centsg (M _original);

end

sets=ceil (Nmodules/4) ;

DINITIAL POINT CALCULATION
rand_robot=create_mod_robot2 (Nmodules) ;

primmodM=dir_calc2 (Pfinal_user ,0.00001) ;
primmodC=M2cents (primmodM) ;

)

rand_robot (1)=primmodM; %Ayuda del primero modulo calculado

rand_cents=M2centsg(rand_robot);

%TARGET FUNCTION (FOR OPTIMIZATION )

fun=@(cents)calc_error (cents , Pfinal_user , Afinal_user ,Nmodules ,h,L);

9%0OPTIMIZATION PROCEDURE
disp(’ )

disp(* 7)

disp (’Code: ")

disp (™ 7)

disp ( 'LOCAL: 1)
disp ( 'PATTERNSEARCH: 27)
disp ( "GENETIC ALGORITHM: 37)
disp ( "GLOBALSEARCH: 47)

XX
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disp ("MULTISTART: 57)
disp ( "SIMULANNEALBND: 6)

algs=input(’\nWrite down (as a vector) the codes for Global Optimizaton
Algorithms to compare : ’);
algs=algs (:);

%Struct Creation
Results=struct (’Code’ ,[], 'Name’ ,{},’ ElapsedTime’ ,[],’Solution’ ,[],’
PositionError’ ,[],  OrientationError’ ,[]);

for i=1:1:size(algs)
switch algs(i,l)

case 1 %LOCAL
[nombre , codigo , tiempo ,centsopt_local , titulo ]=1local_algorithm (fun
,rand_cents) ;

YDlnfo

Results (i) .Name=nombre ;
Results (i) .Code=codigo;
Results (i) .ElapsedTime=tiempo;

Y%Proposed Solution
Mopt=(cents2Mg (centsopt_local ,Nmodules));
Results (i) . Solution=Mopt’;

Y%Graphics
figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+’);
k=gcf;
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ k)
end

[~,~,A_MSE,P_ MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);
plot_standard (titulo);

Afinal_calc=A_MSE(1:3,Nmodules) ;

Pfinal_calc=P_MSE(1:3 ,Nmodules) ;

YDError Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

case 2
Yolnfo
Results (i) .Name="PATTERNSEARCH’ ;
Results (i) .Code=2;

YAlgorithm & Time calculation
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tic. PATTERNSEARCH=tic ;

[centsopt_patternsearch ,~,~,~]=patternsearch (fun,rand_cents
L1 .01,.11,0]1,zeros(sets ,1) ,ones(sets ,1));

Results (i) .ElapsedTime=toc (tic_.PATTERNSEARCH) ;

YoProposed Solution
Mopt=(cents2Mg (centsopt_patternsearch ,Nmodules));
Results(i).Solution=Mopt’;

Y%Graphics
figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+’);
k=gecf;
if user_input~=l
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L, 1’ ,k);
end

[~.,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L, b’ ,k);
plot_standard (’Solution with PATTERNSEARCH’) ;
Afinal_calc=A MSE(1:3,Nmodules) ;
Pfinal_calc=P_MSE(1:3,Nmodules) ;

Y%Error Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

case 3
Yol nfo
Results (i) .Name="GENETIC ALGORITHM’ ;
Results (i) .Code=3;

Y%Problem Description

YAlgorithm & Time calculation

tic_GA=tic ;

[centsopt_geneticalgorithm ,~]=ga(fun,sets ,[],[],[],[],zeros(sets
,1) ,ones(sets ,1));

Results (i) .ElapsedTime=toc (tic_GA);

Y%Proposed Solution
Mopt=(cents2Mg (centsopt_geneticalgorithm , Nmodules));
Results (i) . Solution=Mopt’;

Y%Graphics
figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+’);
k=gcf;
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ k)
end

[~,~,A_MSE,P_ MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);
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plot_standard (’Solution with GENETIC ALGORITHM’) ;
Afinal_calc=A MSE(1:3 ,Nmodules) ;
Pfinal_calc=P_MSE(1:3,Nmodules) ;

Y%Error Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

case 4
Yol nfo
Results (i) .Name="GLOBALSEARCH ;
Results (i) .Code=4;

Y%Problem Description

problem=createOptimProblem (’fmincon’,’ objective’ ,fun,’x0’,
rand_cents ,’1b’ ,zeros(sets ,1),’ub’ ,ones(sets ,1));

gs=GlobalSearch;

YAlgorithm & Time calculation
tic_.GLOBALSEARCH=tic ;

[centsopt_globalsearch ,~,~,~]=run(gs, problem);
Results (i) .ElapsedTime=toc (tic. GLOBALSEARCH) ;

YProposed Solution
Mopt=(cents2Mg(centsopt_globalsearch ,Nmodules)) ;
Results (i) . Solution=Mopt’;

Y%Graphics
figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+’);
k=gef;
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ ,k);
end

[~,~,AMSE,P_ MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);
plot_standard (’ Solution with GLOBALSEARCH’) ;
Afinal_calc=A_MSE(1:3 ,Nmodules) ;

Pfinal_calc=P_MSE(1:3 ,Nmodules) ;

YError Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

case 5
Y%Problem Description
disp(* )
disp(* 7)
disp (’Code: )
disp(* 7)
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disp ( "FMINUNC: 1)

disp ("LSQNONLIN: 27)

global_type=input(’\n\nWrite down the code for MULTISTART
Algorithm to compare: ’);

switch global_type
case 1
problem=createOptimProblem (’fminunc’,  objective ’,fun, "x0
>,rand_cents) ;
Results (i) .Name="MULTISTART: fminunc’;
Results(i).Code=5.1;
titulo="Solution with MULTISTAR: fminunc’;
case 2
problem=createOptimProblem (’lsqnonlin’,’ objective ’ ,fun,
x0’ ,rand_cents);
Results (i) .Name="MULTISTART: lsqnonlin’;
Results(i).Code=5.2;
titulo="Solution with MULTISTAR: lsqnonlin’;
otherwise
disp (’Error: No MULTISTART Algorithm Selected’);

s

end
ms=MultiStart ;

YAlgorithm & Time calculation

tic. MULTISTART=tic ;

[centsopt_multistart ,~,~,~,~]=run(ms, problem ,50) ;
Results (i) .ElapsedTime=toc (tic_MULTISTART) ;

YProposed Solution
Mopt=(cents2Mg(centsopt_multistart , Nmodules));
Results(i).Solution=Mopt’;

Y%Graphics
figure ()
plot3 (Pfinal_user(l,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+");
k=gcf;
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ ,k);
end

[~,~,AMSE,P_ MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);
plot_standard (titulo);

Afinal_calc=A_MSE(1:3 ,Nmodules) ;

Pfinal_calc=P_MSE(1:3 ,Nmodules) ;

YD%Error Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

case 6
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244 Yol nfo

245 Results (i) .Name='SIMULANNEALBND ;

246 Results (i) .Code=6;

247

248 YDAlgorithm & Time calculation

249 tic. SIMULANNEALBND=tic ;

250 [centsopt_simulannealbnd ,~]=simulannealbnd (fun,rand_cents , zeros(
sets ,1) ,ones(sets ,1));

251 Results (i) .ElapsedTime=toc (tic. SIMULANNEALBND) ;

252

253 JoProposed Solution

254 Mopt=(cents2Mg (centsopt_simulannealbnd , Nmodules) ) ;

255 Results(i).Solution=Mopt ’;

256

257 Y%Graphics

258 figure ()

259 plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’g+’);

260 k=gcf;

261 if user_input~=lI

262 [~,~,~,~]=fdirect_cinematicsg (M_original ,h,L, 1’ ,k);

263 end

264 [~.,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L, b’ ,k);

265 plot_standard (’Solution with SIMULANNEALBND’) ;

266 Afinal_calc=A_ MSE(1:3 ,Nmodules) ;

267 Pfinal_calc=P_MSE(1:3,Nmodules) ;

268

269 Y%Error Calculation

270 Results(i).OrientationError=abs( Afinal_user—Afinal_calc);

271 Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

272

273

274 otherwise

275 disp (' Error: No Global Optimization Logarithm Selected’);

276 disp (’There is an error on the Algorithm Selection Code on item
#:7)

277 disp (i)

278 disp(’The invalid value you entered was:’)

279 disp(algs(i,l))

280

281 end

282

283 end

284

285 Codes=[Results.Code] ’;

286 Names={Results .Name} ’;

287 ElapsedTimes=[Results.ElapsedTime]’;

288 Solutions=[Results. Solution ];

289 PositionErrors=[Results.PositionError];

290 OrientationErrors=[Results. OrientationError |;
291 PPTimes=[Codes ElapsedTimes];
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Forward Kinematics

Y%Script to calculate the Forward Kinematics of the HRRS

clear all; %clear of variables
close all; %close all windows
cle; %Workspace clear

%l
%FOR FORWARD CINEMATICS

9R————3———1
%| | |
9%6———0/15——9
%!| | I
9A————12——8

[0O0O1 0]———— ort11]——-— [00 0 1]
| |
| I
| I
| [0 0O 0 0] |
[0 1 10]——— -t ————— [1 00 1]
| [1 11 1] [
| I
| I
| |
[0 1 0 0]————— [1100——--— [T O 0 0]
%}

9JScript for Direct Cinematics

disp(’Script for Forward Kinematics’)

disp (")

9%PHYSICAL PARAMETERS

h=input (’\nMinimum space between modules

L=input(’\nLength of each module (m)?: ’);

user_robot=input(’\nPress *’0°’

)

if user_robot==

(m) ?:

)

for Random Robot,

Nmodules=input (’\nNumber of Modules ?:

Mplatesdec=create_mod_robot2 (Nmodules) ;

Mplates=decbin (Mplatesdec);
go_flag=1;

XXVi
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else

end

M=input (’\nWrite down each one of the modules configuration as a decimal
number in a column or row vector or as a binary matrix were each row

represents a module:

)

Mplates=decbin (M) ;%Translating the input matrix to binary code
Mplatesdec=bi2de (Mplates , ’left —msb’); %For checking the decimal MC
go_flag=errorcheck (Mplates) ;%Checking for errors

if go_flag==1%This means there weren’t any non accepted module
configurations

else

end

YoMathematical conversion

Mangles=conversor (Mplates ,h,L) ;%Converting the binary row vector code

alpha and theta angles

INOAP Calculation

Final_MSE=calculate_NOAP_MSE (Mangles) ;%Calculating the NOAP for each

module

[N MSE,O_MSE,A_ MSE,P MSE]=NOAP_vects(Final MSE) ;%Pretty Print output/

Comparison

disp (°’There is an error.
combinations ’) ;

Go to xerrorcheckx for non—accepted

XXvii

to



Homo Rot Mat Any

1 function T_rot=homo_rot_mat_any(rot_angle ,rot_axis_vect)
2 9%Function to calculate the homogeneous rotation matrix with rotation axis
described by ’rot_axis_vect’ over a certain rotation angle ’'rot_angle’

3

4  %Preallocation

5 T_rot_l=zeros(3);

6 T_rot=zeros (4);

7

8 unit_rot_axis_vect=rot_axis_vect/(norm(rot_axis_vect));%Normalizing
vector

9

10 u=unit_rot_axis_vect(1,1);

11 v=unit_rot_axis_vect(1,2);

12 w=unit_rot_axis_vect(1,3);

13

14 %Values

15 u2=u”2;

16 v2=vA2;

17 w2=w”"2;

18 c=cos(rot_angle);

19 s=sin(rot_angle);

20

21 %Filling the matrix

22 T_rot_1(1,1)=u2 + (v2 + w2)x*c;

23 T_rot_1(1,2)=uxvx(l—c) — wxks;

24 T_rot_1(1,3)=uswx(l—c) + vx*s;

25 T_rot_1(2,1)=uxvx(l—c) + wxks;

26 T_rot_1(2,2)=v2 + (u2+w2)x*c;

27 T_rot_1(2,3)=vswx(l—c) — uxs;

28 T_rot_1(3,1)=usxwx(l—c) — vx*s;

29 T_rot_1(3,2)=vswx(l—c)+uxs;

30 T_rot_1(3,3)=w2 + (u2+v2)x*c;

31

32 T_rot(4.4)=1,;

33 T_rot(1:3,1:3)=T_rot_1;

34

35

36 end

XXViii
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Homo Trans Mat

function [T_trans]=homo_trans_mat(vect)
Y%oFunction to calculate the translation matrix for any 3D vector

Yol
[ 1 0 0 vectx
0 1 0 vecty
0 0 1 vectz
0 0 0 1 ]
%}
if size(vect,l)<l
disp (’Must be a 3D vector’)
else
T_trans=eye(4);
T_trans (1:3,4)=vect ’;
end
end

XXiX



Inverse Kinematics

9PScript to calculate the inverse kinematics of the HRRS based on exhaustive
(for less or equal to 3 modules) or error—optimization methods

clec;
close all;
clear all;

%PHYSICAL PARAMETERS

h=input (’\nMinimum space between modules (m)?: ’);
L=input(’\nLength of each module (m)?: ’);
Nmodules=input (’\nNumber of Modules ?: )

if Nmodules>=4
modo=2;
else
modo=1;
end

switch modo
case 1
Mopt=fexhaustive (h,L, Nmodules) ;

case 2
Mopt=foptimization (h,L, Nmodules) ;

otherwise

disp(’You did not select a valid Method’);
end

XXX
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2 9%Function to select and calculate
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11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Local Algorithm

rand_cents)

error—optimization algorithm

the

function [nombre,codigo,tiempo,centsopt_local ,titulo]=1local_algorithm (fun,

Y%Algorithm Selection & Time calculation

disp(™ )

disp(™ )

disp (’Code: )

disp(* )

disp ( ’FMINUNC: 1)
disp ( 'LSQNONLIN: 27)
disp ( "FMINSEARCH: 37)

local_type=input(’\n\nWrite down the code for Local Optimizaton

Algorithm to compare: ’);
switch local_type
case 1 %’ fminunc’

YDInfo

nombre="LOCAL: fminunc’;

codigo=1.1;

titulo="Solution with LOCAL: fminunc’;

%Time calculation

tic_LOCAL=tic ;

[centsopt_local ,~,~,~]=fminunc (fun,rand_cents);

tiempo=toc (tic_LOCAL) ;

s

case 2 %’lsqnonlin

Yolnfo
nombre="LOCAL: lsqnonlin’;
codigo=1.2;

titulo="Solution with LOCAL:

Y%Time calculation
tic. LOCAL=tic ;

[centsopt_local ,~,~,~]=1sqnonlin (fun,rand_cents);

tiempo=toc (tic_LOCAL) ;

case 3 %’ fminsearch’

YDlnfo
nombre="LOCAL: fminsearch’;
codigo=1.3;

titulo="Solution with LOCAL:

%Time calculation

Isqnonlin ’;

fminsearch’;

XXX1

inverse kinematics based on a local
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tic. LOCAL=tic ;
[centsopt_local ,~,~,~]=fminsearch (fun,rand_cents);
tiempo=toc (tic_LOCAL) ;

>

case 4 %’lsqcurvefit
nombre="LSQCURVEFIT’ ;
codigo=1.4;
tic_LOCAL=tic ;
[centsopt_local ,~,~,~]=1sqcurvefit(fun,rand_cents ,[],[]);
tiempo=toc (tic_LOCAL) ;

Yol
case 5 %’fmincon
nombre="FMINCON" ;

b

codigo=1.5;
tic_ LOCAL=tic ;
[centsopt_local ,~,~,~]=fmincon (fun,rand_cents ,[],[]);
tiempo=toc (tic_LOCAL) ;
Po}
Yol

case 6 %’ fseminf’
nombre="FSEMINF’ ;
codigo=1.6;
tic. LOCAL=tic ;
[centsopt_local ,~,~,~]=fseminf(fun,rand_cents);
tiempo=toc (tic_LOCAL) ;
P}

case 7 %’ fminbnd’ %Single—variable bounded nonlinear function
minimization .
nombre="FMINBND’ ;
codigo=1.7;
tic_LOCAL=tic ;
[centsopt_local ,~,~,~]=fminbnd (fun ,[0 O],[1 1]);
tiempo=toc (tic_LOCAL) ;

otherwise
disp(’Error: No Local Optimization Algorithm Selected’);

end

XXXii



M2Cents

function cent=M2cents (M)
YJoFunction to convert MC decimal code to cents (4 MCs at a time)

cent=0;
Nmodules=size (M,2) ;

for i=1:1:Nmodules

01NN AW~
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aux3=M(1,1);
switch aux3

end
end

end

case 0

cent=cent+0x(0.

case 1

cent=cent+4x(0.

case 2

cent=cent+6x(0.

case 3

cent=cent+5x%(0.

case 4

cent=cent+8x(0.

case 6

cent=cent+7x*(0.

case 8

cent=cent+2x(0.

case 9

cent=cent+3x(0.

case 12

cent=cent+1x(0.

case 15

cent=cent+9x%(0.

Ini)
17i);
17hi);
1)
17,
17i);
17i);
17i);
1ni)

1)

XXXiil



M2Cents G

1 function cents=M2centsg (M)

2 %Function as the gemneral version of M2cents
3

4 M=aM(:) *;%Vector transform into column

5 Nmodules=size (M,2) ;

6

7 sets=ceil (Nmodules/4) ;

8

9 Mparcial=zeros (1,sets x4);

10 cents=zeros (sets ,1);

11

12 Mparcial (1 ,1: Nmodules)=M;

13 Mparcial=reshape (Mparcial ,4 ,[]) ’;

14

15

16 for i=1:1:sets

17 cents (i,1)=M2cents(Mparcial (i,1:4));
18 end

19
20 end

XXX1V
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NOAP Calc

function Final MSE=NOAP_calc(M,h,L)

9%This function calculates NOAP vectors without any plotting involved
YMangles (:,1)=Alpha

YoMangles (:,2)=Theta

YoMangles (:,3)=h

YoMangles (:,4)=L

Mplates=decbin (M) ; %Translating the input matrix to binary code
Mangles=conversor (Mplates ,h,L); %Converting the binary row vector code
to alpha and theta angles

Nmodules=size (Mangles , 1) ; %Number of Modules
PO=eye (4); %Initialization for NOAP calculation
for i=1:1:Nmodules %VOAP calculation for each one of the modules

9NOAP Calculation

P1=POxhomo_rot_mat_any (Mangles(i,2) ,[0 O 1]);
P2=Plxhomo_trans_mat ([0 O Mangles(i,3)]);
P3=P2xhomo_rot_mat_any (( Mangles(i,1)/2) ,[1 0 0]);
P4=P3xhomo_trans_mat ([0 0 Mangles(i,4)x*sin(Mangles(i,1)/2)]);
P5=P4xhomo_rot_mat_any (( Mangles(i,1)/2) ,[1 0 0]);
P6=P5+xhomo_rot_mat_any(—(Mangles(i,2)),[0 0 1]);
Punit=unit_vector_mat (P6);

Final_ MSE (i*4—-3:i%4,i%4—3:i*4)=Punit;

PO=Punit;

end

end

XXXV
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NOAP Vects

function [N_vect,O_vect,A_vect,P_vect]=NOAP_vects(Final)

9%This function calculates NOAP vectors for any ’Final’

end

Final_size=size (Final ,1);

N_vect(1:3,1)=Final (1:3,1);
O_vect(1:3,1)=Final (1:3,2);
A_vect(1:3,1)=Final (1:3,3);
P_vect(1:3,1)=Final(1:3,4);

for

end

j=1:1:Final_size/4—1

N_vect(1:3,j+1)=Final (j*4+1:j%4+1+2,j%4+1);
O_vect(1:3,j+1)=Final (j*4+1:j*x4+1+2,j%4+2);
A_vect(1:3,j+1)=Final (j*4+1:jx4+1+2,j%4+3);
P_vect(1:3,j+1)=Final (j*4+1:jx4+1+2,jx4+4);

XXXVI
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Optimization

Y%Script to calculate the inverse kinematics through error—optimization
method

clc;
close all;
clear all;

%PHYSICAL PARAMETERS

h=input (’\nMinimum space between modules (m)?: ’);
L=input(’\nLength of each module (m)?: ’);
Nmodules=input (*\nNumber of Modules?: ’);
sets=ceil (Nmodules/4) ;

user_input=input(’Do you want a random case(0) or user—input(l)?: ’);

%FINAL PARAMETERS
if user_input==1%For specific case

Pfinal_user=input(’\nFinal Destination Point: )
Pfinal_user=Pfinal_user (:);
Afinal_user=input(’\nFinal Orientation: BN

Afinal_user=Afinal_user (:) ;
Afinal_user=Afinal_user/norm( Afinal_user);

else%For Random case
M_original=create_mod_robot2 (Nmodules) ;
Final_int=NOAP_calc(M_original ,h,L);
[~,~,A_vect,P_vect]=NOAP_vects( Final_int);
Afinal_user=A_vect(1:3,Nmodules) ;
Pfinal_user=P_vect(1:3,Nmodules) ;
cents_original=M2centsg (M _original);

end

%INITIAL POINT CALCULATION
rand_robot=create_mod_robot2 (Nmodules) ;

primmodM=dir_calc2 (Pfinal_user ,0.00001);

primmodC=M2cents (primmodM) ;

rand_robot (1)=primmodM; %Ayuda del primero modulo calculado
rand_cents=M2centsg(rand_robot);

%TARGET FUNCTION (FOR OPTIMIZATION )
fun=@(cents)calc_error (cents , Pfinal_user , Afinal_user ,Nmodules ,h,L);

%OPTIMIZATION PROCEDURE
disp(* ")

XXX Vil
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disp(* 7)

disp (’Code: )

disp(™ )

disp ( 'LOCAL: 1)
disp ( 'PATTERNSEARCH: 27)
disp ( "GENETIC ALGORITHM: 37)
disp ( "GLOBALSEARCH: 47)
disp (’MULTISTART: 57)
disp ( 'SIMULANNEALBND: 67)

algs=input(’\nWrite down (as a vector) the codes for Global Optimizaton
Algorithms to compare : ’);
algs=algs (:);

%Struct Creation
Results=struct (’Code’ ,[], 'Name’ ,{},’ ElapsedTime’ ,[],’ Solution’ ,[],’
PositionError’ ,[],  OrientationError’ ,[]);

for i=1:1:size(algs)
switch algs(i,1)

case 1 %LOCAL
[nombre , codigo ,tiempo ,centsopt_local , titulo]J=1local_algorithm (fun
,rand_cents);

YDoInfo

Results (i) .Name=nombre ;
Results (i) .Code=codigo;
Results (i) .ElapsedTime=tiempo;

YProposed Solution
Mopt=(cents2Mg(centsopt_local ,Nmodules));
Results(i).Solution=Mopt ’;

Y%Graphics
figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+");
k=gcf;
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L, 1’ ,k);
end

[~,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);
plot_standard (titulo);

Afinal_calc=A_MSE(1:3,Nmodules) ;

Pfinal_calc=P_MSE(1:3 ,Nmodules) ;

Y%Error Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

XXXViil



97

98 case 2

99 YDlnfo

100 Results (i) .Name="PATTERNSEARCH’ ;

101 Results (i) .Code=2;

102

103 YAlgorithm & Time calculation

104 tic. PATTERNSEARCH=tic ;

105 [centsopt_patternsearch ,~,~,~]=patternsearch (fun,rand_cents
,L1,01.0]1,[],zeros(sets ,1) ,ones(sets ,1));

106 Results (i) .ElapsedTime=toc (tic_ PATTERNSEARCH) ;

107

108 Y%Proposed Solution

109 Mopt=(cents2Mg (centsopt_patternsearch ,Nmodules));

110 Results (i) . Solution=Mopt’;

111

112 Y%Graphics

113 figure ()

114 plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+");

115 k=gcf;

116 if user_input~=1

117 [~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ k)

118 end

119 [~,~,A_MSE,P_MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);

120 plot_standard (’ Solution with PATTERNSEARCH’) ;

121 Afinal_calc=A_MSE(1:3,Nmodules) ;

122 Pfinal_calc=P_MSE(1:3 ,Nmodules) ;

123

124 Y%Error Calculation

125 Results(i).OrientationError=abs( Afinal_user—Afinal_calc);

126 Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

127

128

129 case 3

130 YDlnfo

131 Results (i) .Name="GENETIC ALGORITHM’ ;

132 Results (i) .Code=3;

133

134 Y%Problem Description

135

136 YAlgorithm & Time calculation

137 tic_GA=tic;

138 [centsopt_geneticalgorithm ,~]=ga(fun,sets ,[],[].[],[],zeros(sets
,1) ,ones(sets ,1));

139 Results(i).ElapsedTime=toc (tic_GA);

140

141 YProposed Solution

142 Mopt=(cents2Mg(centsopt_geneticalgorithm , Nmodules)) ;

143 Results(i).Solution=Mopt ’;

144

145 Y%Graphics

XXX1X



146 figure ()

147 plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+");

148 k=gecf;

149 if user_input~=1

150 [~,~,~,~]=fdirect_cinematicsg (M_original ,h,L, 1’ ,k);

151 end

152 [~,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L, b’ ,k);

153 plot_standard (’ Solution with GENETIC ALGORITHM) ;

154 Afinal_calc=A_MSE(1:3,Nmodules) ;

155 Pfinal_calc=P_MSE(1:3,Nmodules) ;

156

157 Y%Error Calculation

158 Results(i).OrientationError=abs( Afinal_user—Afinal_calc);

159 Results(i).PositionError=abs(Pfinal_user —Pfinal_calc);

160

161

162 case 4

163 YDlnfo

164 Results (i) .Name="GLOBALSEARCH’ ;

165 Results (i) .Code=4;

166

167 Y%Problem Description

168 problem=createOptimProblem (’fmincon’,  objective ’ ,fun, 'x0’,
rand_cents ,’1b’ ,zeros(sets ,1),’ub’ ,ones(sets ,1));

169 gs=GlobalSearch;

170

171 YDAlgorithm & Time calculation

172 tic_.GLOBALSEARCH=tic ;

173 [centsopt_globalsearch ,~,~,~]=run(gs,problem);

174 Results (i) .ElapsedTime=toc (tic_ GLOBALSEARCH) ;

175

176 YoProposed Solution

177 Mopt=(cents2Mg (centsopt_globalsearch ,Nmodules));

178 Results(i).Solution=Mopt ’;

179

180 Y%Graphics

181 figure ()

182 plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+’);

183 k=gcf;

184 if user_input~=l1

185 [~,~,~,~]=fdirect_cinematicsg (M_original ,h,L, 1’ ,k);

186 end

187 [~,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L, b’ ,k);

188 plot_standard (’ Solution with GLOBALSEARCH’) ;

189 Afinal_calc=A MSE(1:3 ,Nmodules) ;

190 Pfinal_calc=P_MSE(1:3,Nmodules) ;

191

192 Y%Error Calculation

193 Results(i).OrientationError=abs( Afinal_user—Afinal_calc);

194 Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

195

x1



196

197 case 5

198 Y%Problem Description

199 disp(’ )

200 disp(’ )

201 disp (’Code: ")

202 disp(’ )

203 disp ( "FMINUNC: 17)

204 disp ( ’LSQNONLIN: 27)

205 global_type=input(’\n\nWrite down the code for MULTISTART

Algorithm to compare: ’);

206

207 switch global_type

208 case 1

209 problem=createOptimProblem (’fminunc’,’ objective ’ ,fun, ’x0
>,rand_cents) ;

210 Results (i) .Name="MULTISTART: fminunc’;

211 Results(i).Code=5.1;

212 titulo="Solution with MULTISTAR: fminunc’;

213 case 2

214 problem=createOptimProblem (’lsqnonlin’,  objective ’ ,fun,’
x0’ ,rand_cents);

215 Results (i) .Name="MULTISTART: lsqnonlin’;

216 Results(i).Code=5.2;

217 titulo="Solution with MULTISTAR: lsqnonlin’;

218 otherwise

219 disp (’ Error: No MULTISTART Algorithm Selected’);

220 end

221

222 ms=MultiStart ;

223

224 YDAlgorithm & Time calculation

225 tic. MULTISTART=tic ;

226 [centsopt_multistart ,~,~,~,~]=run(ms, problem ,50) ;

227 Results (i) .ElapsedTime=toc (tic_MULTISTART) ;

228

229 YProposed Solution

230 Mopt=(cents2Mg(centsopt_multistart ,Nmodules));

231 Results(i).Solution=Mopt ’;

232

233 Y%Graphics

234 figure ()

235 plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+’);

236 k=gcf;

237 if user_input~=1

238 [~,~,~,~]=fdirect_cinematicsg (M_original ,h,L, 1’ .,k);

239 end

240 [~,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L,’ b’ ,k);

241 plot_standard (titulo);

242 Afinal_calc=A_ MSE(1:3 ,Nmodules) ;

243 Pfinal_calc=P_MSE(1:3,Nmodules) ;

xli
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end

%Error Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user—Pfinal_calc);

case 6

YDlnfo
Results (i) .Name="SIMULANNEALBND ;
Results (i) .Code=6;

YAlgorithm & Time calculation

tic_SIMULANNEALBND=tic ;

[centsopt_simulannealbnd ,~]=simulannealbnd (fun,rand_cents , zeros (
sets ,1) ,ones(sets ,1));

Results (i) .ElapsedTime=toc (tic. SIMULANNEALBND) ;

Y%Proposed Solution
Mopt=(cents2Mg (centsopt_simulannealbnd , Nmodules)) ;
Results(i). Solution=Mopt’;

Y%Graphics
figure ()
plot3 (Pfinal_user(1,1),Pfinal_user(2,1),Pfinal_user(3,1),’r+");
k=gcf;
if user_input~=1
[~,~,~,~]=fdirect_cinematicsg (M_original ,h,L,’r’ ,k);
end

[~,~,AMSE,P MSE]=fdirect_cinematicsg (Mopt,h,L, b’ ,k);
plot_standard (’ Solution with SIMULANNEALBND’) ;
Afinal_calc=A_MSE(1:3,Nmodules) ;
Pfinal_calc=P_MSE(1:3,Nmodules) ;

%Error Calculation
Results(i).OrientationError=abs( Afinal_user—Afinal_calc);
Results(i).PositionError=abs(Pfinal_user —Pfinal_calc);

otherwise

disp (’Error: No Global Optimization Logarithm Selected’);

disp (’There is an error on the Algorithm Selection Code on item
#:7)

disp (i)

disp (’The invalid value you entered was:’)

disp(algs(i,l))

290 Codes=[Results.Code] ’;

291

Names={ Results .Name} ’;

292 ElapsedTimes=[Results.ElapsedTime]’;

xlii



293 Solutions=[Results. Solution ];

294 PositionErrors=[Results.PositionError];

295 OrientationErrors=[Results.OrientationError ];
296 PPTimes=[Codes ElapsedTimes ];

xliii
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Plot Plate

function plot_plate (Punit,L, colores)
9PFunction to plot the squares ’line of each module

N=Punit(1:3,1);
O=Punit (1:3,2);
A=Punit (1:3,3);
P=Punit (1:3.,4);
dist=Lx(27(1/2)/2);

NO=N+O;
NO=NO/norm (NO) ;

%Vertix calculation

Pointl=P+rot_any (NO’ ,pi/2 ,A’)*xdist;
Point2=P+rot_any (NO’ ,0 ,A’)=xdist;
Point3=P+rot_any (NO’,—pi/2 ,A’)xdist;
Point4=P+rot_any (NO’ ,pi,A’)*xdist;

Y%Line Plotting between vertix

C=[Pointl Point2 Point3 Point4 Pointl]’;
H=line (C(:,1), C(:,2), C(:,3));

set (H, ’color’ ,colores);

end

xliv



Plot Point

1 function plot_point (PO, Punit,colores)

2 9%Function to plot the modules’ central point and ’spine’
3

4 Hl=plot3 (Punit(1,4) ,Punit(2,4),Punit(3,4)); %Plotting each point
5

6 vx=[PO(1,4) Punit(l,4)];

7 vy=[P0(2,4) Punit(2,4)];

8 vz=[P0(3,4) Punit(3.,4)];

9

10 H2=line (vx,vy,vz);

11

12 set (H1, ’color’,colores);

13 set (H2, color’ ,colores);

14

15

16 end

xlv
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Plot Standard

function plot_standard(titulo)
YJoFunction to standarize graphics

title (titulo)
xlabel (’X [m]’)
ylabel (Y [m]’)
zlabel (°Z [m]’)
grid on

end

xlvi



Rot Any

1 function T_rot_trans=rot_any(vect,rot_angle ,rot_axis_vect)
2 9%Function to calculate the result of rotating a vector ’vect’ around a
rotation axis described by ’'rot_axis_vect’  over a certain rotation angle

>

"rot_angle

3

4 T_rot_transl=zeros(3);

5

6 unit_rot_axis_vect=rot_axis_vect/(norm(rot_axis_vect));
7

8

9 u=unit_rot_axis_vect(l,1);

10 v=unit_rot_axis_vect(1,2);

11 w=unit_rot_axis_vect(1,3);

12

13 u2=u”2;

14 v2=v~/2;

15 w2=w"2;

16 c=cos(rot_angle);

17 s=sin(rot_angle);

18

19 T_rot_transl (1,1)=u2 + (v2 + w2)x*c;
20 T_rot_transl (1,2)=uxvx(l—c) — wxs;
21 T_rot_transl (1,3)=uxwx(l—c) + vxs;
22 T_rot_transl (2,1)=uxvx(l—c) + wxs;
23 T_rot_transl (2,2)=v2 + (u2+w2)xc;
24 T_rot_transl (2,3)=vxwkx(l—c) — uxs;
25 T_rot_transl (3,1)=uxwx(l—c) — vxs;
26 T_rot_transl (3,2)=vswx(l—c)+ux*s;
27 T_rot_transl (3,3)=w2 + (u2+v2)xc;
28

29 T rot_trans=T _rot_transl*vect ’;

30

31

32 end

xlvii
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Unit Vector Mat

function [U_mat]=unit_vector_mat (P)
IJoFunction to normalize NOA vectors in matrix

U_mat=zeros (4) ;
U_mat(1:4,4)=P(1:4.,4);

for i=1:1:3

U_mat(1:3,i)=P(1:3,i)/(norm(P(1:3,i)));
end

xlviii
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