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Abstract

The Lagrangian relaxation method for solving a Mixed-Integer Linear Problem was imple-

mented in order to improve the current TEMPO-PSI team �exible manufacturing system

solutions, available at the AIP-primeca pole in University of Valenciennes, France.

The MILP optimization model, from TEMPO-PSI team, can not guarantee good

results when the amount of jobs in the manufacturing system increases due to the growth

in the number of variables of the model.

A study on the optimization model was conducted with the objective to �nd the

candidate constraints for Lagrangian relaxation. A comparative study is made between

the initial model solutions and Lagrange-relaxed model solutions.

The results of the present research indicate that the use of the Lagrangian relaxation

method on the scheduling problems could have advantages in obtaining better solutions.

Keywords: Flexible manufacturing systems, Lagrangian relaxation, Mixed-Integer

Linear Problems, Scheduling.
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Resumo

Um método relaxação lagrangeana para resolver um problema de Programação Misto-

Inteira Linear foi implementado com o objetivo de melhorar as soluções actuais dos sis-

temas de manufatura �exíveis da equipa TEMPO-PSI, disponível no laboratório AIP-

primeca da Universidade de Valenciennes, França.

O modelo de optimização MILP, da equipa TEMPO-PSI, não consegue garantir bons

resultados quando a quantidade de operações no sistema de manufactura aumenta, devido

ao crescimento do número de variáveis do modelo.

O estudo do modelo de optimização foi levado a cabo com o objectivo de encontrar

as restrições candidatas para a relaxação Lagrangeana. O estudo comparativo é feito

entre as soluções iniciais do modelo e as soluções do modelo relaxado com o método de

Lagrange.

Os resultados da presente investigação indicam que o uso de método da relaxação

Lagrangeana nos problemas de escalonamento de tarefas poderá ter vantagens na obtenção

de melhores soluções.

Palavras-chave: Sistemas de Manufatura �exíves, Relaxação Lagrangeana, Proble-

mas de Programação Inteira-Mista Linear, Escalonamento de tarefas.
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Nomenclature

AIP Atelier Inter-Etablissments de Productique (Workshop Inter-Integrated Manufac-

turing Facilities)

FJSP Flexible Job-Shop Problem

FMS Flexible Manufacturing System

IPB Instituto Politécnico de Bragança

JSP Job-Shop Problem

MILP Mixed-Integer Linear Problem

TEMPO-PSI Thermique Ecoulement Mécanique Matériaux Mise en Forme Production -

Production Service Information, research team, University of Valencienes.
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Chapter 1

Introduction

The requirements on production of today's industry have increased not only in volume or

precision, but also in variety and e�ciency. According to Bousbia [3]. �we have noticed

an inherently related evolution of the needs expressed by the industrialists.�

Every time more and more complex automated manufacturing systems are producing

what we consume in our everyday life.

A manufacturing system could be described as an orchesta, on which every instrument

plays a di�erent role in the production of the �nal product, the symphony. The automatic

control of a manufacturing system can be analog to the orchesta's director, whose role is to

coordinate every movement of the musicians during the function. This coordination gets

more and more complicated when the amount of instruments on the orchesta increases,

among other factors, such as: delays, breakdowns, order modi�cations and more.

Mathematical models are typically used to study the behavior of manufacturing sys-

tems. The di�culty to solve those models radicates into their inherent high combinational

nature, where the amount of variables of the model increases signi�cantly with the growth

of the products to be produced, this introduces a bigger computational weight during the

process of �nding solutions to the model.

When an orchesta gets too complicated (or big) to direct, as well as the mathematical

modelling of a manufacturing system gets too complicated to solve, it is necessary to make

some adjustments on the symphony so the �nal tone is similar to the original, yet easier

to direct. The same simpli�cation is what mathematical relaxation pursues. Aproximate

but easier and feasible solutions to a very complicated problem.

The manufacturing systems nowadays are seeking for �exibility on their productions

because it provides a higher and faster adaptability and robustness against perturbations.

A notion on �exible manufacturing systems is presented on Chapter 2.
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1.1 Objectives

The development of this research has the following objectives:

• To obtain optimal and feasible solutions in shorter CPU processing time applying

mathematical relaxation to the MILP model designed by TEMPO-PSI team.

• To compare the relaxed with the un-relaxed model solutions to evaluate the advan-

tages and disadvantages of the mathematical method.

• To provide TEMPO-PSI team with solutions to their MILP model for di�erent

scenarios in the system.

1.2 Organization

In chapter 2, di�erent kinds of schedulings for FMS systems are presented, along with

their problems and the solution methods commonly used.

The Chapter 3 characterizes the study case, conformed by a �exible manufacturing

system available at the University of Valenciennes, France. Its description and real im-

plementation are both detailed to fully understand its functionality.

The Chapter 4 consists on a mathematical modeling of the study case. A comparative

study of the results given by the initial model vs the relaxation of constraints is presented

so the advantages and disadvantages of each model are highlighted.

Chapter 5 analyzes the results generated by the application of Lagrangian relaxation

in comparison with the previous results found by TEMPO-PSI team.

In Chapter 6, the conclusions and future work describe the importance of the �ndings

upon this research.
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Chapter 2

Scheduling problem in the FMS

2.1 Flexible Manufacturing Systems.

Several de�nitions on the term Manufacturing Flexibility have been presented. According

to Gupta and Goyal [8], manufacturing �exibility is �the ability of a manufacturing system

to cope with changing circumstances or instability caused by the environment�. Swami-

dass [19] de�nes it as �the capacity of a manufacturing system to adapt successfully to

changing environmental conditions as well as changing product and process requirements�.

In general, Flexible Manufacturing Systems (FMS) are those which can adapt over

certain kinds of changes in the process enviroments, being able to continue their functions

successfully with a certain modi�ed performance.

Althought there are several kinds of manufacturing �exibilites, the two basic types

are highlighted on this investigation since they are needed by the rest (Product, Process,

Operation, Volume, Expansion and Production Flexibility) [18]. See Figure 2.1.

1. Machine Flexibility: Several operations can be performed by the same machine.

2. Routing Flexibility: A given operation can be performed by several machines.

Figure 2.1: Machine Flexibility vs Routing Flexibility

The FMS scheduling problem consists in coordinating the production of every opera-

tion of every product performed in the system. �The objectives can be the minimisation

of the completion time of jobs, mean �ow time, lateness of jobs, processing cost, etc� [14].
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Figure 2.2: Scheduling problem in a FMS.

According to [4]: �FMS scheduling has received a great deal of attention because

reducing lead time is always a very important goal for industry�.

At a hardware level, the FMS's have the characteristics of possessing programmable

machinery for multi purposes, this makes them easy to re-con�gure to operate in di�erent

�exible production cells.

According to [12], a FMS implementation has the following features:

Advantages

• Faster, lower-cost changes from one part to another which will improve capital

utilization.

• Lower direct labor cost, due to the reduction in number of workers.

• Reduced inventory, due to the planning and programming precision.

• Consistent and better quality, due to the automated control.

• Lower cost/unit of output, due to the greater productivity using the same number

of workers.

• Savings from the indirect labor, from reduced errors, rework, repairs and rejects.
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Disadvantages

• Limited ability to adapt to changes in product or product mix (ex. machines are of

limited capacity and the tooling necessary for products, even of the same family, is

not always feasible in a given FMS).

• Substantial pre-planning activity.

• Expensive, costing millions of dollars.

• Technological problems of exact component positioning and precise timing necessary

to process a component.

• Sophisticated manufacturing systems.

The biggest advantage of �exible manufacturing systems over other manufacturing con�g-

urations is the adaptability and thus, continuity of production over certain eventualities

applied to the system. This adaptation feature will depend directly from each case and

how robust each component is, towards di�erent perturbations. No matter how complex

and robust a FMS might be, it can not foresees every possible eventuality. However, most

FMS are designed to react favorably to the most common perturbations know due to the

process characteristics.

The redundancy in equipment capacities, routing combinations, among others, com-

bine with more robust and demanding production requirements, make the Flexible Manu-

facturing Systems a new tendency in terms of productions structures. However, this new

production systems are very complex in terms of modelling, optimization and control due

to its highly combinational nature, in fact they have been proved to be NP-hard problems

[5].

For example: A FMS with 12 jobs to be processed, each job consisting of 10 operations

and 5 workstations where di�erent operations can be performed. This conditions mean a

total of 120 operations to be scheduled on the 5 workstations over the time.

Looking at only one workstation, in which 3 out of 5 operations can be performed,

(meaning around 72 possible operations to be performed by this workstation) there are

72! = 6.12344584 × 10103 possible ways of scheduling the operations over the time. Of

course this rough calculation also needs to take in count the rules of operation sequences

to discard the non-feasible permutations. The amount of posible schedules depends fac-

torially of the number of operations to be performed.

The inclusion of more jobs to performed by the FMS makes the problem even more

di�cult to solve because it increases the computational weight factorially, causing a com-

binatorial explosion (See [9]) if the problem is attempted to be solved by exhaustive

search.
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Although nowaday's computers have higher computing capacities, it is still di�cult to

obtain fast solutions for the problem. In fact, parallel computer processing is also being

used in scheduling problems in order to reduced its solving time, but it increases the costs

of planning and implementation. (For further reading about this topic see [6]).

Commonly, there are three categories used for solving these kind of problems in which

all the methods can be divided [15]:

1. Optimization methods: Optimal solutions, require big amount of iterations and

computer time. Faster solutions are found when allowing the objective not to be

the optimal.

2. Heuristic methods: Based on dispatching rules with good results, however, every

system requiers di�erent con�gurations, which consumes big amount of time. The

genetic algorithm is one of the most common techniques on this category.

3. Hybrid methods: Combine the advantages of other methods, usually exploring the

state spaces with heuristics. Di�cult to implement due to the huge times in planning

and modeling each systems.

Nowadays computers have increased the possibilities to �nd optimal solutions for static

models of FMS, however, it is still di�cult and unpractical to �nd solutions for systems

with medium-high number of products. The number of variables involved in the opti-

mization process increasses dramatically with the introduction of products on a FMS.

Di�erent techniques for �nding optimal solutions (or lower bounds) are used in order

to have practical and feasible solutions for a particular di�cult problem (More on this

topic can be found in [13]). On industries, most manufacturing systems operate in a

dynamic enviroment with real-time events which usually turns static-predictive optimal

scheduling techniques unstable or unfeasible. However, static scheduling techniques such

as optimization of mixed-integer linear problem (MILP) models gives a framework to

other approaches due to the optimal nature of its solutions.

Accordin to [14]: Dynamic scheduling techniques for control purposes such as dis-

patching rules, heuristics, metaheuristics, knowledge-based systems, fuzzy logic, neural

networks, Petri nets, hybrid techniques, and multiagent systems have a common charac-

teristic: Its solutions are practical and adaptable but most of the times not optimal.

Static MILP modelling for FMS's give optimal (and thus ideal) solution of the problem

in a global approach. This base is used by several dynamic scheduling techniques for

comparison and even as an ideal �seed� as a starting point for their solutions.

A MILP model gets more di�cult to solve as the real system's size increases. In most

of the cases the system can not be solved by analytical methods, exhaustive search, or

even linear programing due to its high number of variables. Then several alternatives
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emerge such as Lagrangian relaxation, penalty methods, linear programing relaxation,

among others.

Mathematical relaxation, althought is an uncommon static technique applied to this

kind of problems, it is capable to solve them consistently when some degree of versatility

is permitted within its constraints. It is the particular case of Lagrange Relaxation that

calls the interest of the present investigation.

A �exible assembly cell was used as a case study for modelling, optimization and

Lagrangian relaxation of a mixed-integer linear (MILP) problem. The description of said

FMS is given in the following Chapter.
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Chapter 3

Caracterization of the case study

An application of Lagrangian relaxation was studied in a real case study, a �exible assem-

bly cell at the Valenciennes AIP-Primeca pole of the Univeristy of Valenciennes, France

was employed. This Chapter fully describes the cell and its implementation details. Fig-

ures and most descriptions from this Chapter are taken from [2].

3.1 AIP-Cell description

3.1.1 Description of the resources and the transportation system

The assembly cell is comformed by seven workstations (Wi), each one of them is placed

around a �exible transportation system (See Figures 3.1 and 3.4):

Workstation W1: This workstation is in charged of loading the base plates onto the

shuttles, also performs visual control and unloads the product out of the man-

ufacturing cell.

Workstations W2,W3 andW4: These three workstations use Kuka robots [10] to assemble

di�erent components automatically. Each robot (designated as Robot 1, 2

and 3 on Figure 3.1) is capable to assemble three types of components on this

FMS. Each component can be picked from two di�erent workstations. This

redundancy introduces �exibility into the system, which is particularly useful

in cases of robot malfunctions (See Figure 3.2).

Workstation W5: This workstation is an automated visual control station, taking images

of the products and verifying the state of �nished products.

Workstation W6: This workstations is a manual inspection unit. Not used on this imple-

mentation.

Workstation W7: Consists in a new workstation to take several functions to de�ne on

future con�gurations. Not used on this implementation.

9



Figure 3.1: Schematic view of the �exible cell

Figure 3.2: Redundancy of workstations/robots and components.

The Table 3.1 shows the manufacturing processing times needed for every workstation

to performe each operation of which it is capable. Data taken from [20].

The Table 3.2 shows the transportation times between every adjacent node of the

system (taken from [20]), meaning every possible destination node that can be reached

directly from a given source node. The nodes are graphically designated over the manu-

facturing cell on Figure 3.1.

The transportation system is based on modular conveyor components form Montech

technology[11]. This system is basically a monorail-like �exible transport system using

self-propelled shuttles to transport materials on tracks from one point to another.
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Workstation
Operation WS1 WS2 WS3 WS4 WS5

Loading 10 - - - -
Unloading 10 - - - -
Axis_comp - 20 20 - -
r_comp - 20 20 - -
I_comp - - - 20 -
L_comp - 20 - 20 -

screw_comp - - 20 20 -
Inspection - - - - 5

Table 3.1: Operations processing times (in seconds)�
���������������
���������������
���������������
���������������

So
ur

ce
 n

od
e

Destination node

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 M1 M2 M3 M4 M5 M6 M7
n1 4 - - - - - - - 5 - - - - - - - -

n2 - 4 - - - - - - - - 5 - - - - - -

n3 - - 4 - - - 5 - - - - - - - - - -
n4 - - - 4 - - - - - - - 5 - - - - -

n5 - - - - 3 - - - - - - - 11 - - - -

n6 - - - - - 4 - - - - - - - 5 - - -

n7 - - - 5 - - 4 - - - - - - - - - -
n8 - - - - - - - 4 - - - - - - 5 - -
n9 - 5 - - - - - - 4 - - - - - - - -

n10 - - - - - - - - - 4 - - - - - 7 -
n11 9 - - - - - - - - - - - - - - - 10
M1 - - - 6 - - - 7 - - - - - - - - -
M2 - - - - - 5 - - - - - - 13 - - - -
M3 - - - - - - 6 - - - - - - 7 - - -
M4 - - - 7 - - - 6 - - - - - - - - -
M5 - 7 - - - - - - - 6 - - - - - - -
M6 12 - - - - - - - - - - - - - - - 13
M7 - 6 - - - - - - - 7 - - - - - - -

���������������
���������������
���������������
���������������

So
ur

ce
 n

od
e

Destination node

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 M1 M2 M3 M4 M5 M6 M7
n1 4 - - - - - - - 5 - - - - - - - -

n2 - 4 - - - - - - - - 5 - - - - - -

n3 - - 4 - - - 5 - - - - - - - - - -
n4 - - - 4 - - - - - - - 5 - - - - -

n5 - - - - 3 - - - - - - - 11 - - - -

n6 - - - - - 4 - - - - - - - 5 - - -

n7 - - - 5 - - 4 - - - - - - - - - -
n8 - - - - - - - 4 - - - - - - 5 - -
n9 - 5 - - - - - - 4 - - - - - - - -

n10 - - - - - - - - - 4 - - - - - 7 -
n11 9 - - - - - - - - - - - - - - - 10
M1 - - - 6 - - - 7 - - - - - - - - -
M2 - - - - - 5 - - - - - - 13 - - - -
M3 - - - - - - 6 - - - - - - 7 - - -
M4 - - - 7 - - - 6 - - - - - - - - -
M5 - 7 - - - - - - - 6 - - - - - - -
M6 12 - - - - - - - - - - - - - - - 13
M7 - 6 - - - - - - - 7 - - - - - - -

Table 3.2: Transportation times between nodes (in seconds)

Based on the system's con�guration, a graph conformed by nodes can be used to model

the parts of the manufacturing system. There are three kinds of nodes, called resource,

divergent and transfer nodes, they are detailed on the Table 3.3:

3.1.2 Product description

The catalogue of product produced in the manufacturing systems consists of assembling

seven types of jobs, each one of them is an alphabet letter: ``b'', ``E'', ``L'', ``T'', �A�, �I�

and �P�.

Every job is made out of �ve di�erent components: ``Axis_comp'', ``I_comp'', ``L_comp'',

``r_comp'' and ``screw_comp''. In order to build a job, several components need to be

assembled over a plate which is mounted on each shuttle. See Figure 3.3.
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Node numbers Type of node Characteristics

n1, n6, n9, n12,
n17, n22, n25

Resource
Nodes that o�er services,
also called destination

nodes
n3, n5, n8, n11,
n14, n16, n19,

n21, n24, n27, n29

Divergent
Decision nodes, based on
transfer gates to direct
shuttles on the tracks

n2, n4, n7, n10,
n13, n15, n18,

n20, n23, n26, n28

Transfer
Consist of transfer gates

without decisions

Table 3.3: AIP-Cell node description

Figure 3.3: Components, Jobs and products.

It is relevant to point out that for each job of the same kind to be sucessfully assem-

bled, the order of mounting and placing the components has to be the same as the ones

indicated in the Table 3.4. This production requirement guarantees homogeneity of the

�nal products.

The Figure 3.4 shows a real view of the �exible manufacturing system study case The

workstations are also indicated.

The AIP-Cell is currently being used as an experimental study case by the TEMPO-

PSI team and for teaching purposes to students of University of Valenciennes. The

scheduling problem of this manufacturing cell by static modelling and optimization has

proved to be di�cult to achieve when the number of jobs in the systems increases until

seven or more. On the next Chapter, a Lagrangian relaxation was applied to the MILP

model of the cell in order to obtain better results.
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Process �b� product �E� product �L� product �T� product �A� product �I� product �P� product

Phase 1 Loading Loading Loading Loading Loading Loading Loading

Phase 2 Axis_comp Axis_comp Axis_comp Axis_comp Axis_comp Axis_comp Axis_comp

Phase 3 Axis_comp Axis_comp Axis_comp Axis_comp Axis_comp Axis_comp Axis_comp

Phase 4 Axis_comp Axis_comp Axis_comp L_comp Axis_comp I_comp r_comp

Phase 5 r_comp r_comp I_comp r_comp r_comp screw_comp L_comp

Phase 6 r_comp r_comp I_comp Inspection L_comp Inspection Inspection

Phase 7 I_comp L_comp screw_comp Unloading I_comp Unloading Unloading

Phase 8 screw_comp Inspection screw_comp screw_comp

Phase 9 Inspection Unloading Inspection Inspection

Phase 10 Unloading Unloading Unloading

Table 3.4: Assembly process plan for each product.

Figure 3.4: Real view of the �exible cell
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Chapter 4

Aplication of Lagrangian relaxation to

the scheduling problem

4.1 TEMPO-PSI Formulation

The University of Valenciennes, in France, speci�cally the TEMPO-PSI team has devel-

oped a model for the FMS described on the study case of Chapter 2 [2].

For the resolution of the FJSP it is considered a mixed-integer linear program (MILP)

model that represents the mathematical formulation of the scheduling problem.

According to its developers [2]: �The results of the MILP can only be considered as

a lower bound since all the real constraints cannot be taken into account in this formal

model�. This consideration takes in count that every model, of any given system, can not

represent its properties and functions on every single way, yet it gets close to do it.

4.1.1 Formulation

The objective of this MILP is to minimize the completion time of all the production

operations:

Cmax = max(tij) ∀i ∈ Ij, ∀j ∈ P (4.1)
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J Set of jobs, J = 1, 2, . . .n

P set of jobs to be performed: P = 1, 2, . . .n, denoted

by the expression j ∈ P
R Set of machines, R = 1, 2, . . . r

Ij Set of operation of the job j, Ij = 1, 2, . . . , |Ij|, j ∈ J
Oij Operation i of the job j

Mij Set of possible machines for the operation Oij

pij Processing time of operation i (i ∈ Ij)
ttm1m2 Transportation time from machine m1 to m2

MJ Maximum simultaneous jobs in the shop �oor

cir Input queue capacity of machine r

dj Due date of job j, j=1, ..., n

αj ,βj Are the tardiness and lateness penalties associated to the

job j, j=1, ..., n

Notations for variables
tij completion time of operation Oij (i ∈ Ij),tij ∈ N .

µijr a binary variable set to 1 if operation Oij is performed

on machine r, 0 otherwise.

bijkl a binary variable set to 1 if operation Oij is performed

before operation Okl, 0 otherwise.

trijr1r2 a binary variable set to 1 if job j is transported to machine

r2 after performing operation Oij, 0 otherwise.

wijr waiting time of operation Oij in the queue of machine r.

wvijklr a binary variable set to 1 if operation Oij is waiting for

operation Okl in the queue of machine r, 0 otherwise,

zlj set to 1 if job l and job j are in the shop �oor in the same

time, 0 otherwise.

Detail of the constraints

Disjunctive constraints: A machine can process one operation at time and an

operation is performed by only one machine.

tij + pkl ∗ uklr +BM ∗ bijkl ≤ tkl +BM ∀i, k ∈ I, ∀j, l ∈ P, ∀r ∈ Rij (4.2)

where BM is a large number

bijkl + bklij ≤ 1 ∀i ∈ Ij, k ∈ Il, ∀j, l ∈ P (4.3)

∑
r∈Rij

µijr = 1 ∀i ∈ Ij, ∀j ∈ P (4.4)
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Precedence constraints: Ensure the task sequence of a product. The completion

time of the next operation considers the completion time of the precedent one, the waiting

time and the transportation time if the two operations are not performed in the same

machine.

t(i+1)j ≥ tij + p(i+1)j + w(i+1)jr2 +
∑

r1,r2∈R ttr1r2trijr1r2

∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij

(4.5)

∑
r1, r2 ∈ R
r1 6= r2

trijr1r2 ≤ 1 ∀i ∈ Ij, ∀j ∈ P (4.6)

Allocation and transportation relationship: If successive operations of a product

are performed on di�erent machines, this implies that there is a transport operation

between those two machines. Transportation delays are set to zero and the transportation

system has unlimited capacity.

µijr1 + µ(i+1)jr2 − 1 ≤ trijr1r2 ∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij, r1 6= r2 (4.7)

µijr1 + µ(i+1)jr2 ≥ (1 + ε)trijr1r2 ∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij, r1 6= r2 (4.8)

where ε is a small number

Queue capacity of the machine input and FIFO rule: each machine has a

limited queue capacity. No more operations than this capacity can wait in the queue.

The �rst product arriving in the queue is the �rst treated.

bijkl + wvijklr ≤ 1 ∀i, k ∈ I, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl (4.9)

bijkl − wvijklr ≥ 0 ∀i ∈ Ij, ∀k ∈ Il, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl (4.10)

wvijklr + wvklijr ≤ 1 ∀i ∈ Ij, ∀k ∈ Il, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl (4.11)

tij − pij +BM · bijkl +BM · wvklijr ≤ tkl − pkl − wklr + 2 ·BM
∀i ∈ Ij, ∀k ∈ Il, ∀j, l ∈ P, j 6= l, ∀r ∈ Rij ∩Rkl

(4.12)

17



wklr ≤
∑
i ∈ I

j ∈ P, j 6= l

pijwvklijr ∀k ∈ Il, ∀l ∈ P, ∀r ∈ Rkl (4.13)

µijr + µklr ≥ 2(wvijklr + wvklijr)

∀i ∈ Ij, ∀k ∈ Ik, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl

(4.14)

tij +BM · bijkl ≤ tkl +BM ∀i ∈ Ij, ∀k ∈ Ik, ∀j, l ∈ P (4.15)

tij − pijµijr − wijr +BM · bijkl ≤ tkl − pklµklr − wklr +BM

∀i ∈ Ij, ∀k ∈ Ik, ∀j, l ∈ P, ∀r ∈ R
(4.16)

∑
l ∈ P, k ∈ Il

l 6= j

wvijklr ≤ cir − 1 ∀i ∈ Ij, ∀j ∈ P, ∀r ∈ Rij ∩Rkl (4.17)

Limitation of the number of product in the system: The number of simulta-

neous job in the shop �oor can be limited by MJ .

∑
l ∈ P
l 6= j

zlj ≤MJ − 1 ∀j ∈ P (4.18)

zjl ≥ b0luj + b0j0l − 1 ∀j, l ∈ P (4.19)

zjl ≤ 1− b0l0j + bujul ∀j, l ∈ P (4.20)

zjl ≥ b0l0j + bujul − 1 ∀j, l ∈ P (4.21)

Constraints for the type of each variable

tij ≥ pij ∀i ∈ Ij, ∀j ∈ P (4.22)

bijkl ∈ {0, 1} ∀i ∈ Ij, ∀j ∈ P, ∀k ∈ Il, ∀l,∈ P (4.23)

trijr1r2 ∈ {0, 1} ∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij (4.24)

18



µijr ∈ {0, 1} ∀i ∈ Ij, ∀j,∈ J, ∀r ∈ Rij (4.25)

4.1.2 Model Solution

The model developed by TEMPO-PSI team is solved for di�erent scenarios using IBM

ILOG Optimizer CPLEX 12.4 (User's manual [7]). This solution are called the �Default�

solution.

There are two di�erent experiments conducted on this research. Their di�erence rely

on the transportation times. The �rst experiment (referred to as Experiment 1) has

longer transportation times and it was used to generate the trial for �nding values on the

Lagrangian parameter λ.

The second experiment (Experiment 2) has lower transportation times, and it was

used to apply the Lagrangian relaxation method with the previously chosen λ parameters

for several production scenarios.

The TEMPO-PSI team solutions to both experiments are resumed in the Tables 4.2

and 4.1.

Cmax (s)
CPU Time (s) Default scenario

300 661
600 602
1800 572
5400 571 (optimal)

Table 4.1: Cmax for default case for 7 Jobs BELTAIP, Experiment 1.

Scenario Cmax (s) Optimal/ PT (s) Comment

3 jobs AIP 219 Yes �
4 jobs BELT 276 Yes �
6 jobs 2AIP 332 No / 1600 Gap of 9%
8 jobs 2BELT 446 No/1600 Gap of 22%

Table 4.2: Cmax for di�erent scenarios, default optimization, Experiment 2.

Each result produces a schedule where the operations of each job are processed in

di�erent machines through the time.

The operations of each jobs in the schedule diagrams are represented by the mathe-

matical expresion from equation 4.26.(
1

2

)
sin

(
π
(t− tinitial)
toperation

)
(4.26)
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Where:

t The global time when a operation is being performed

tinitial Initial time of a given operation,

toperation The processing time of a given operation.

Since equation 4.26, is a sin(x) function, the resulting graphical representation of any

operation will be half-period waves, starting from the initial time to the completion time

of each operation. The magnitud of the function is diminish by one half in order to create

an equal distance from machine to machine. The previous explanation can be observed

on Figure 4.1.

Figure 4.1: Schedule 7 jobs BELTAIP Default case, Experiment 1.

On the Figure 4.1, the optimal schedule for 7 jobs BELTAIP Default-case has a

makspan (Cmax) of 571 s (Indicated at the bottom of the image). Each Job is represented

by a di�erent color and every operation of each job respects its production sequence (See

Table 3.4).

On the next section, the characterization and results of applying the lagrangian re-

laxation method are presented in order to compare with the current TEMPO-PSI teeam

results.

4.2 Lagrangian Relaxation

Lagrangian relaxation is a promising optimization technique for obtaining lower bounds

since it allows the MILP model to have a certain degree of freedom on contraints that can

be violated parcially. Relaxing constraints in the mathematical formulation could lead to

solutions for higher number of jobs (currently no solution for more than 8 jobs), so the

TEMPO-PSI team would be enriched with results under these conditions.
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An inspection on which constraint(s) could be relaxed (for consistent solution pur-

poses) was conducted with the guide of Dr. Bekrar from TEMPO-PSI team and Dra.

Pereira (IPB master thesis guide). It was found out that the model posses two constraints

that can be relaxed without loosing feasibility on the �nal solution. Those constraints are

described by equation 4.17 and 4.18. These constraints represent the amount of queue

capacity of each workstation and the amount of operations the manufacturing system can

performed at any given time, respectively.

On the case of equation 4.17 (called Constraint Ci), the amount of shuttles that can be

waiting in the line of any workstation cannot be higher than two. This is due to physical

space at the entrance of the workstations. Constraint Ci is �exible for implementation

only if some modi�cation is applied to the manufacturing cell.

The equation 4.18 (referred as Constraint MJ) indicates that the system cannot have

more than 4 worksations performing tasks during any given time. This constraint is

promisingly �exible, since there is no physical implications on the partial implementation

of its violation.

4.2.1 Formulation

Consider a linear optimization problem described by the following:

min cTx

s.t Ax ≤ b
(4.27)

where x ∈ Rn and A ∈ Rm,n.

If the constraint Ax ≤ b is splitted into two constraints such that A1 ∈ Rm1,n, A2 ∈
Rm2,n and m = m1 +m2, the optimization problem (4.27) can be reformulated as:

min cTx

s.t A1x ≤ b1

A2x ≤ b2

(4.28)

The second constraint can be introduced in the objective function.

min cTx+ λT (b2 − A2x)

s.t. A1x ≤ b1
(4.29)

Where L(x, λ) ≡ cx+λ(b2−A2x) is known as the Lagrange Function, named after the

mathematician Joseph-Louis Lagrange (1763-1813). If the weightsλ = (λ1, ..., λm2) are

nonnegative values, then the Lagrange function gets penalized if the included constraint

(A2x ≤ b2) is violated. The objective function also gets rewarded if the constraint is

satis�ed strictly.
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The election of how to split the constraints will depend directly from each problem

and the physical meaning of the constraints. Relaxing contraints that are not physically

permitted on the problem would lead to have optimal but non-realistic solutions.

The Lagrange relaxation method consists in allowing some constraints not to be fully

accomplished, instead it guides the solution to violate those contraints as few times as

possible.

Since the MILP model is not derivable, most analitical methods for �nding λ do not

apply.

The λ vector consists in new set of variables to be determined by during the optimiza-

tion process. For efects of this research, the λvector was chosen to be constant, several

optimization runs were conducted to choose this parameter.

The model presented in the section 4.1.1 has been modi�ed so it can be represented

as a relaxed problem with a constraint included inside of the objective function. The

notation of the variables stays the same.

For each relaxation, a new model can be described as a new enlarged objective function,

plus the rest of the unmodi�ed constraints (obviosly not taking in count the respective

relaxed constraint).

Lagrangian relaxation of: Limitation of the maximun number of jobs at the same time

in the system.

Cmax = max(tij) + λv

MJ − 1−
∑

l ∈ P
l 6= j

zlj


∀i ∈ Ij, ∀j ∈ P, ∀v ∈ V1, ∀λ ≥ 0

(4.30)

Where V1 = (1, 2, ..., n2), which means that λ = (λ1, ..., λn2) and it represents the

combinations between jobs in the system. The variable zlj has n× n dimension.

Lagrangian relaxation of: Queue capacity on each resource (workstation).

Cmax = max(tij) + λv

cir − 1−
∑

l ∈ P, k ∈ Il
l 6= j

wvijklr


∀i ∈ Ij, ∀j ∈ P, ∀r ∈ Rij ∩Rkl, ∀v ∈ V2, ∀λ ≥ 0

(4.31)

On this case, V2 = (1, 2, ..., r × n2), and it represents the combination between jobs

and resources in the system. Notice that wvijklr has r × n× n dimension.

The constraints which are not relaxed will stay the intact from the MILP model.

Disjunctive constraints:
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tij + pkl ∗ uklr +BM ∗ bijkl ≤ tkl +BM ∀i, k ∈ I, ∀j, l ∈ P, ∀r ∈ Rij (4.32)

where BM is a large number

bijkl + bklij ≤ 1 ∀i ∈ Ij, k ∈ Il, ∀j, l ∈ P (4.33)

∑
r∈Rij

µijr = 1 ∀i ∈ Ij, ∀j ∈ P (4.34)

Precedence constraints:

t(i+1)j ≥ tij + p(i+1)j + w(i+1)jr2 +
∑

r1,r2∈R ttr1r2trijr1r2

∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij

(4.35)

∑
r1, r2 ∈ R
r1 6= r2

trijr1r2 ≤ 1 ∀i ∈ Ij, ∀j ∈ P (4.36)

Allocation and transportation relationship:

µijr1 + µ(i+1)jr2 − 1 ≤ trijr1r2 ∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij, r1 6= r2 (4.37)

µijr1 + µ(i+1)jr2 ≥ (1 + ε)trijr1r2 ∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij, r1 6= r2 (4.38)

where ε is a small number

Queue capacity of the machine input and FIFO rule:

bijkl + wvijklr ≤ 1 ∀i, k ∈ I, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl (4.39)

bijkl − wvijklr ≥ 0 ∀i ∈ Ij, ∀k ∈ Il, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl (4.40)

wvijklr + wvklijr ≤ 1 ∀i ∈ Ij, ∀k ∈ Il, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl (4.41)

tij − pij +BM · bijkl +BM · wvklijr ≤ tkl − pkl − wklr + 2 ·BM
∀i ∈ Ij, ∀k ∈ Il, ∀j, l ∈ P, j 6= l, ∀r ∈ Rij ∩Rkl

(4.42)
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wklr ≤
∑
i ∈ I

j ∈ P, j 6= l

pijwvklijr ∀k ∈ Il, ∀l ∈ P, ∀r ∈ Rkl (4.43)

µijr + µklr ≥ 2(wvijklr + wvklijr)

∀i ∈ Ij, ∀k ∈ Ik, ∀j, l ∈ P, ∀r ∈ Rij ∩Rkl

(4.44)

tij +BM · bijkl ≤ tkl +BM ∀i ∈ Ij, ∀k ∈ Ik, ∀j, l ∈ P (4.45)

tij − pijµijr − wijr +BM · bijkl ≤ tkl − pklµklr − wklr +BM

∀i ∈ Ij, ∀k ∈ Ik, ∀j, l ∈ P, ∀r ∈ R
(4.46)

∑
l ∈ P, k ∈ Il

l 6= j

wvijklr ≤ cir − 1 ∀i ∈ Ij, ∀j ∈ P, ∀r ∈ Rij ∩Rkl (4.47)

Limitation of the number of product in the system:

∑
l ∈ P
l 6= j

zlj ≤MJ − 1 ∀j ∈ P (4.48)

zjl ≥ b0luj + b0j0l − 1 ∀j, l ∈ P (4.49)

zjl ≤ 1− b0l0j + bujul ∀j, l ∈ P (4.50)

zjl ≥ b0l0j + bujul − 1 ∀j, l ∈ P (4.51)

Constraints for the type of each variable:

tij ≥ pij ∀i ∈ Ij, ∀j ∈ P (4.52)

bijkl ∈ {0, 1} ∀i ∈ Ij, ∀j ∈ P, ∀k ∈ Il, ∀l,∈ P (4.53)

trijr1r2 ∈ {0, 1} ∀i ∈ Ij, ∀j ∈ P, ∀r1, r2 ∈ Rij (4.54)

µijr ∈ {0, 1} ∀i ∈ Ij, ∀j,∈ J, ∀r ∈ Rij (4.55)
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Cmax (s)

CPU Lagrange Relaxation of MJ Constraint - λ values Default

Time (s) [0.1, ..., 0.1] [0.5, ..., 0.5] [0.75, ..., 0.75] [1, ..., 1] [2, ..., 2] [20, ..., 20]

300 467 467 467 497 517 527 661

600 467 466 467 475 466 476 602

1800 456 456 456 467 465 477 572

5400 456 456 456 466 457 475 571 (optim)

9671.73 456 456 (optim) � � � �

9792.56 � 456 (optim) � � �

12064.37 456 (optim) � � �

14221 � 456 �

17000 466 466

Table 4.3: Cmax for Relaxed and default cases for 7 Jobs BELTAIP, Experiment 1.

4.2.2 Results

The results from Lagrangian relaxation were obtained using the optimization program

IBM ILOG Optimizer CPLEX 12.4, running on a PC with an Intel R© Core 2 solo processor

@ 1.40 GHz and 4 Gb of RAM memory. These solutions would be called the �Relaxed�

solutions.

4.2.2.1 Experiment 1 (longer transportation times)

The Table 4.3 resumes the optimization trials conducted with Lagrangian relaxation of

the �MJ� constraint, compared to the �Default� solutions for the Experiment 1 (bigger

transportation times).

For a better comprehension of the data from Table 4.3, The solution time Cmax was

plotted in function of the CPU time for each case of λ and the default case.

It is notorious that, on Experiment 1, all of the Cmax values from all the parameters λ

were better than the default case, even when their values are not proved to be optimal by

the CPLEX algorithm, they prove to be better than the optimal values of the default case.

Having better solutions on shorter CPU processing times present obvious advantages on

terms of computer resources, less time for �nding solutions and the possibility of applying

the method to higher number of jobs included in the �exible manufacturing system.

Two λ values are taken from this experiment in order to be used on the next experi-

ment. The best found value is λ = [0.5, ..., 0.5] according to the performance described in

Figure 4.2 and Table 4.3.

On the case of Lagrangian relaxation of Ci contraints, the Cmax was was plotted in

function of the CPU time for each case of λ and the default case. For this Lagrangian

relaxation, the parameter λ was chosen to be a vector of 1's and a vector of 2's. The

results are compared to the default case on the Figure 4.3.

As seen in Figure 4.3, the Lagangian relaxation of Ci constraint does not imply neither
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(b) Comparison of Lagrangian relaxations

Figure 4.2: Cmax in function of CPU time for Default and Lagrangian relaxations of MJ
constraint, 7 jobs BELTAIP, Experiment 1.

Cmax (s)

CPU Lagrange Relaxation of Ci constraints - λ values Default

Time (s) λ = [0.5, ..., 0.5] λ = [1, ..., 1] λ = [2, ..., 2]

300 no solution 651 no solution 661

600 701 601 682 602

1800 591 582 612 572

5400 571 572 571 571 (optimal)

Table 4.4: Cmax for relaxed Ci constraints, 7 jobs, Experiment 1.

26



���������������������������

� ���� ���� ���� 	��� ���� ����
���������

���������	
��


��
������
��
����
��
�����������

Figure 4.3: Cmax in function of CPU time for Default and Lagrangian relaxations of Ci
constraint, 7 jobs BELTAIP, Experiment 1.

a better solution nor smaller CPU processing times for any of the chosen λ parameters.

For the experiment 2, this Lagrangian relaxation will not be applied.

The values presented on the Tables 4.3 and 4.4 generate several the schedules depend-

ing on the applied parameter λ and the relaxed constraints.

Schedules of Lagrangian relaxation of MJ constraints - 7 jobs BELTAIP -

several parameters λ.

Figure 4.4: Schedule 7 jobs BELTAIP Lagrangian Relaxation MJ constraint, lambda=0.1
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Figure 4.5: Schedule 7 jobs BELTAIP Lagrangian Relaxation MJ constraint, lambda=0.5

Figure 4.6: Schedule 7 jobs BELTAIP Lagrangian Relaxation MJ constraint, lambda=0.75
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Figure 4.7: Schedule 7 jobs BELTAIP Lagrangian Relaxation MJ constraint, lambda=1

Figure 4.8: Schedule 7 jobs BELTAIP Lagrangian Relaxation MJ constraint, lambda=2
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Figure 4.9: Schedule 7 jobs BELTAIP Lagrangian Relaxation MJ constraint, lambda=20

Schedules of Lagrangian relaxation of Ci constraints - 7 jobs BELTAIP - several

parameters λ.

Figure 4.10: Schedule 7 jobs BELTAIP Lagrangian Relaxation Ci constraint, lambda=0.5
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Figure 4.11: Schedule 7 jobs BELTAIP Lagrangian Relaxation Ci constraint, lambda=1

Figure 4.12: Schedule 7 jobs BELTAIP Lagrangian Relaxation Ci constraint, lambda=2

4.2.2.2 Experiment 2 (smaller transportation times)

The Table 4.5 and 4.6 resume the optimization conducted with Lagrangian relaxation of

the �MJ� constraint, (longer transportation times).

For this experiment, only the MJ constraints Lagrangian relaxation was taken in

count. The Ci constraint relaxation was ruled out for not having acceptable performance.

Also, there were chosen two λ values from the previous experiment λ = [0.5, ..., 0.5] and

λ = [1, ..., 1].

The values presented on the Tables 4.5 and 4.6 generate several the schedules depend-

ing on the applied parameter λ and the applied parameter λ.
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Scenario Cmax (s) Optimal/ CPUTime (s) Comment

3 jobs AIP 219 Yes/3.90 Same as default

4 jobs BELT 276 Yes/27.8 Same as default

6 jobs 2AIP 309 No/1798.54 Better than default - Gap 3.24%

8 jobs 2BELT 446 No/1795.26 Same as default - Gap 27.35%

Table 4.5: Cmax for di�erent scenarios, Lagrangian relxation MJ. lambda =0.5

Scenario Cmax (s) Optimal/ CPUTime (s) Comment

3 jobs AIP 219 Yes/2.71 Same as default

4 jobs BELT 276 Yes/17.43 Same as default

6 jobs 2AIP 309 Yes/1258.41 better than default

8 jobs 2BELT 456 No/5394.61 Gap of 20.59%

Table 4.6: Cmax for di�erent scenarios, Lagrangian relxation MJ. lambda =1

Schedules of Lagrangian relaxation of MJ constraints - Several scenarios -

λ = [0.5, ..., 0.5].

Figure 4.13: Schedule 3 jobs AIP Lagrangian Relaxation MJ constraint, lambda=0.5

32



Figure 4.14: Schedule 4 jobs BELT Lagrangian Relaxation MJ constraint, lambda=0.5

Figure 4.15: Schedule 6 jobs 2AIP Lagrangian Relaxation MJ constraint, lambda=0.5
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Figure 4.16: Schedule 8 jobs 2BELT Lagrangian Relaxation MJ constraint, lambda=0.5

Schedules of Lagrangian relaxation of MJ constraints - Several scenarios -

λ = [1, ..., 1].

Figure 4.17: Schedule 3 jobs AIP Lagrangian Relaxation MJ constraint, lambda=1
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Figure 4.18: Schedule 4 jobs BELT Lagrangian Relaxation MJ constraint, lambda=1

Figure 4.19: Schedule 6 jobs 2AIP Lagrangian Relaxation MJ constraint, lambda=1
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Figure 4.20: Schedule 8 jobs 2BELT Lagrangian Relaxation MJ constraint, lambda=1
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Chapter 5

Analysis of the results

The Experiment 1 (7 jobs BELTAIP - Bigger transportation times) helped to test the

Lagrangian relaxation with the two constraints MJ and Ci. It also served to obtain a λ

parameter that will work adequately regarding the Default case for �nding solutions to

the scheduling problem.

Looking at the Table 4.3 and Figure 4.2, the solutions to the Lagrangian-relaxed

MJ-constraint MILP model always had lower completion times (Cmax) than the Default

unrelaxed solutions. Even when the algorithm could not prove to have an optimal solution

to the problem, the Lagrangian-relaxed solutions were better than the default case. No

matter the value of the λ parameter, the simulations of CPU processing time of 300 s was

better than the optimal solution found by CPLEX on 5400 s for the default case. This is

a very desirable characteristic for this complex optimization problem.

The Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 show the production schedules of each

solution of the Lagrangian-relaxed MJ-constraint MILP model. Notice that the schedules

are feasible, every operation lasts its due time and no operations are interfearing with any

other.

The best λvalue is consider to be λ = [0.5, ..., 0.5] since it gave the best optimization

performance in the shortest time (See Table 4.3).

The solutions from Lagrangian relaxation of Ci constraint are detailed in Table 4.4

and Figure 4.3. Notice that this Lagrangian relaxation did not improve neither the CPU

processing time, nor the completion time (Cmax) in almost all of the cases.

The Figures 4.10, 4.11 and 4.12 show the resulting production schedule of each solution

of the Lagrangian-relaxed Ci-constraint MILP model. Althought this schedules are all

feasible, their completion times Cmax (which is the optimization objective function) are

not lower than the Default case. The Lagrangian relaxation of Ci constraints was not

applied for the Experiment 2 due to its poor performance.

The Experiment 2 (di�erent production scenarios - smaller transportation times) com-

piles the TEMPO-PSI team's proposed scenarios on which their interest to improve its

optimization results were higher.
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The Table 4.2 resumes the Default optimization results of the proposed production

scenarios. This values are compared with the Tables 4.5 and 4.6. The solutions obtained

on the Experiment 2 were conducted relaxing the MJ constraints for the two chosen

λ values, the best found (λ = [0.5, ..., 0.5]) and an acceptable value (λ = [1, ..., 1]) for

experimentation purposes.

The Lagrangian relaxation of MJ constraints for the Experiment 2 presented better

completion times Cmax for the scenario of 6 jobs 2AIP, being the Default case 332 s

and the Lagrangian-relaxed optimization results (for both applied λ values) 309 s. It is

reelevant to notice that both Lagrangian-relaxed schedules present di�erent combinations

on the organization of the operations, althought they have the same completion time.

This is expectable since the results from the MILP model are consider as lower bounds.

The scenarios of 3 jobs-AIP and 4 jobs-BELT resulted on the same compeltion times

with very low CPU processing times (less than 30 s).

The 8 jobs-2BELT scenario presented the same results as the Default case when the

best value of λ was used (λ = [0.5, ..., 0.5]).

The Figures 4.13, 4.14, 4.15 and 4.16 show the resulting schedules from the Lagrangian

relaxation of MJ constraints using λ = [0.5, ..., 0.5]. The Figures 4.17, 4.18, 4.19 and 4.20

show the resulting schedules from the Lagrangian relaxation of MJ constraints using

λ = [1, ..., 1]. Notice that all the production schedules are feasible and any operation

inter�ers with other at any time on the same machine.
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Chapter 6

Conclusions and future work

The Lagrangian relaxation optimization method was applied to a MILP model represent-

ing a FMS. The results proved shorter CPU processing times when the transportation

times were bigger.

The Experiment 1 revealed that the MILP model can be relaxed obtaining positive

results. The CPU processing times of the lagrange-relaxed MILP model were signi�cantly

lower than the Default case.

The Experiment 2 produced similar results to the Default case and in some cases

they proved to be better. This was noticed in the reduction of the objective value Cmax

(completion time of last operation processed by the Flexible system).

Since the Results from Experiment 2 were not as good as expected (this given by the

fact that Experiment 1 presented promising results), the hypothesis for this behavior lies

on the fact that Experiment 2 had smaller transportation times, and this condition could

a�ect the performance of the Lagrange-relaxed optimization method.

A deep study on the mathematical model of the AIP-CELL developed by TEMPO-

PSI team was conducted with the leading of the TEMPO-PSI team professor in charge,

Abdelghani Bekrar, PhD. Some minor modi�cations were introduced to the formulation

due to this study, in order to improve its formality.

Since the AIP-CELL represents a �exible manufacturing system (FMS), other mod-

eling approaches were studied in order to improve the current model. However, most

approaches found in literature were destined to Job-Shop Problem (JSP), which made

them di�cult to adapted to the AIP-Cell FMS case. Graph theory for Flexible Job Shop

Problem (FJSP) was study brie�y as an alternative approach but no other studies on this

speci�c topic were found so far (only JSP mixed with metaheuristic techniques).

For further research, it is recomended to �nd the vector λ in the lagrangian relax-

ation technique through iterative methods, this is practical only when the optimization

algorithms prove to have acceptable and feasible solutions for short computer processing

times. Iterative methods need to run the optimization algorithm several times in order

to �nd optimal values for λ.
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Iterative algorithms for �nding an optimal value of the λ vector were found in the

literature, some of them are based on penalty methods, subgradient methods and more

(See [16] for more on this topic). The Volume algorithm proposed by Barahona & Abnil

[1] is a promising method for this objective.
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Appendix A: Matlab code for generating manufacturing

scheduling graphics.

1 % Generate Manufacturing Schudule from results.txt

2 % Victor H. Granados June 2012

3

4 clear all

5 clc

6

7 %% Include the data from results.txt into variable sol (solution)

8 sol =[];

9 im_title =('prueba '); % Title of the image.

10

11 %% Schedule generator

12

13 tmax=max(sol(:,6));

14 jmax=max(sol(:,1));

15 figure1=figure;

16 Create axes axes1 = axes('Parent ',figure1 ,'YGrid ','on');

17

18 % Uncomment the following line to preserve the Y-limits of the axes

19 ylim(axes1 ,[0 6]); %Y axis

20 hold(axes1 ,'all');

21

22 for h=1:( size(sol ,1))

23 x=(sol(h,5) :1: sol(h,6));

24 y=sol(h,4) +(1/2)*sin(pi*(x-x(1))/(size(x,2) -1));

25 switch sol(h,1) % Column of Job number

26 case 1, J1=plot(x,y,'-r'); %Job:1 Color:Red

27 case 2, J2=plot(x,y,'-b'); %Job:2 Color:Blue

28 case 3, J3=plot(x,y,'-k'); %Job:3 Color:Black

29 case 4, J4=plot(x,y,'-g'); %Job:4 Color:Green

30 case 5, J5=plot(x,y,'-y+'); %Job:5 Color:Yellow

31 case 6, J6=plot(x,y,'-c+'); %Job:6 Color:Cyan

32 case 7, J7=plot(x,y,'-m'); %Job:7 Color:Magenta

33 end

34 end

35

36 % Image Title

37 title(im_title);

38

39 % Legend on the image

40 hold off

41 legend ([J1 ,J2 ,J3 ,J4,J5,J6,J7], 'Location ', 'NorthWest ', 'Job number 1'

, 'Job number 2', 'Job number 3', 'Job number 4', 'Job number 5', '

Job number 6', 'Job number 7')
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43 % Text with Cmax value plotted in figure

44 index = find(max(sol(:,6)) == sol(:,6)); % Find the index of the Cmax

45

46 text(sol(index ,6) ,0.5,['Cmax= ',num2str(tmax),' s'], '

VerticalAlignment ', 'top', 'HorizontalAlignment ', 'right', 'FontSize

', 14)

47

48 % Create xlabel

49 xlabel('Time (s)');

50

51 % Create ylabel

52 ylabel('Machine number ');

53

54 %%%%% End of program %%%%%
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Appendix B: The Volume algorithm proposed by Bara-

hona & Abnil [1].

Figure 6.1: Volumen algorithm proposed by Barahona & Abnil.
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