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Novembro 2012





Acknowledgements
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Abstract

In the last few years, the computing systems processing capabilities have increased significantly,

changing from single-core to multi-core and even many-core systems. Accompanying this evo-

lution, local networks have also become faster, with multi-gigabit technologies like Infiniband,

Myrinet and 10G Ethernet. Parallel/distributed programming tools and standards, like POSIX

Threads, OpenMP and MPI, have helped to explore these technologies and have been frequently

combined, giving rise to Hybrid Programming Models.

Recently, co-processors like GPUs and FPGAs, started to be used as accelerators, requiring

specialized frameworks (like CUDA for NVIDIA GPUs). Presented with so much heterogene-

ity, the industry formulated the OpenCL specification, as a standard to explore heterogeneous

systems. However, in the context of cluster computing, one problem surfaces: OpenCL only en-

ables a developer to use the devices that are present in the local machine. With many processor

devices scattered across cluster nodes (CPUs, GPUs and other co-processors), it then became

important to enable software developers to take full advantage of the full cluster device set.

This dissertation demonstrates and evaluates an OpenCL extension, named clOpenCL, which

supports the simple deployment and efficient running of OpenCL-based parallel applications that

may span several cluster nodes, thus expanding the original single-node OpenCL model. The

main contributions are that clOpenCL i) offers a transparent approach to the porting of tra-

ditional OpenCL applications to cluster environments and ii) provides significant performance

increases over classical (non-)hybrid parallel approaches.

Keywords: Hybrid Programming, Heterogeneous Computing, High-Performance Computing,

MPI, OpenCL, clOpenCL.
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Resumo

Nos últimos anos , a capacidade de processamento dos sistemas de computação aumentou signi-

ficativamente, passando de CPUs com um núcleo para CPUs multi-núcleo. Acompanhando esta

evolução, as redes locais também se tornaram mais rápidas, com tecnologias multi-gigabit como

a Infiniband, Myrinet e 10G Ethernet. Ferramentas e standards paralelos/distribúıdos, como

POSIX Threads, OpenMP e MPI, ajudaram a explorar esses sistemas, e têm sido frequente-

mente combinados dando origem a Modelos de Programação Hı́brida.

Mais recentemente, co-processadores como GPUs e FPGAs, começaram a ser utilizados

como aceleradores, exigindo frameworks especializadas (como o CUDA para GPUs NVIDIA).

Deparada com tanta heterogeneidade, a indústria formulou a especificação OpenCL, como sendo

um standard para exploração de sistemas heterogéneos. No entanto, no contexto da computação

em cluster, um problema surge: o OpenCL só permite ao desenvolvedor utilizar dispositivos pre-

sentes na máquina local. Com tantos dispositivos de processamento espalhados pelos nós de um

cluster (CPUs, GPUs e outros co-processadores), tornou-se assim importante habilitar os desen-

volvedores de software, a tirarem o máximo proveito do conjunto total de dispositivos do cluster.

Esta dissertação demonstra e avalia uma extensão OpenCL, chamada clOpenCL, que suporta

a implementação simples e execução eficiente de aplicações paralelas baseadas em OpenCL que

podem estender-se por vários nós do cluster, expandindo assim o modelo original de um único

nó do OpenCL. As principais contribuições referem-se a que o clOpenCL i) oferece uma abor-

dagem transparente à portabilidade de aplicações OpenCL tradicionais para ambientes cluster

e ii) proporciona aumentos significativos de desempenho sobre abordagens paralelas clássicas

(não-)h́ıbridas.

Palavras-chave: Programação Hı́brida, Computação Heterogénea, Computação de Alto De-

sempenho, MPI, OpenCL, clOpenCL.
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Chapter 1

Introduction

In the recent years, the computing systems processing capabilities have increased signif-

icantly, changing from one core CPUs to multi-core and many-core ones. Accompanying

this evolution, local networks have also become faster, using Myrinet, Infiniband and

10G-Ethernet technologies. Parallel/distributed programming tools and standards, like

MPI (Message Passing Interface) and OpenMP, have helped to explore these technolo-

gies and have been frequently combined, giving rise to Hybrid Programming Models. All

of these contributed to the growing importance of Parallel Computing in the modern

computing landscape.

In this context, clusters are still the main approach to Parallel Computing, they are

being used to solve problems that need large computational power and/or storage capacity,

and for such problems, clusters have the right features: large storage capacity, using

resources available throughout its nodes; increased parallel processing capabilities, using

the distributed CPUs. However, to solve increasingly demanding computational problems,

an improve in performance is needed. For CPUs, higher clock speeds are no longer the

only answer and, in their small package, one way to increase performance is by adding

multiple cores. Because of this, devices like GPUs, with dozens/hundreads of cores have

become programmable parallel processors, evolving from fixed function rendering devices

1



2 CHAPTER 1. INTRODUCTION

[Gro11], and are being coupled with traditional CPUs, creating heterogeneous systems.

Presented with so much heterogeneity, the process of developing software for such a

wide array of architectures poses a number of challenges to the programming community

[GHK+11], because programming approaches for multi-core CPUs and GPUs are very

different. Thus, new standards where introduced to help for this kind of programming,

like the OpenCL and CUDA standards. However, in cluster computing, one problem

surfaces: these standards only enable a developer to use the devices that are present in

the local machine.

Once recent clusters included highly parallel CPUs, GPUs and other types of co-

processors, it became important to enable software developers to take full advantage of

these heterogeneous processing devices present across all nodes. In recent years different

projects started to address this problem, taking CUDA or OpenCL as a starting point

and creating extensions of these specifications.

This dissertation introduces and demonstrates an OpenCL extension, named clOpenCL,

which supports the simple deployment and efficient running of OpenCL-based parallel ap-

plications that may span several cluster nodes, expanding the original single-node OpenCL

model [ARPS12].

1.1 Context

This work was conducted as part of a scholarship during the PERFORM (Portabil-

ity and Performance in Heterogeneous Parallel Systems) research project (ref. PTD-

C/EIA/100035/2008). The project was funded by the ERDF - European Regional Devel-

opment Fund through the COMPETE Programme (operational programme for compet-

itiveness) and by National Funds through the FCT (Portuguese Foundation for Science

and Technology) within project FCOMP-01-0124-FEDER-010067.
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In the context of the PERFORM project, an extension of the OpenCL standard (sec-

tion 2.3.3) has been developed. This extension, called clOpenCL (more on section 2.4), is

a library and a set of utilities and support services, which sustains an OpenCL execution

environment extended to a cluster. clOpenCL allows OpenCL applications to benefit from

operating in a cluster, in a quickly and almost transparent way.

1.2 Objectives & Contributions

The main objective of this dissertation was to assess the merits of the current clOpenCL

implementation, regarding to its compatibility with the original OpenCL standard, its

ease of use by programmers and its stability and operational performance. In this context,

the starting point of this work was the familiarization with the OpenCL programming

model. Later, clOpenCL was used as the execution platform of an OpenCL application

in the area of Numerical Methods – a Matrix Multiplication application. This application

was considered to be sufficiently representative of a typical OpenCL usage scenario and

allowed to exploit the unprecedented potentialities introduced by clOpenCL. To comple-

ment the clOpenCL evaluation, other parallel variants were developed, in order to be used

as comparison baselines (MPI-Only and MPI-with-OpenCL approaches).

The objectives initially set for this dissertation were achieved. Thus, its main contri-

butions are: i) the offer of a transparent approach to the porting of traditional OpenCL

applications to cluster environments and ii) the ability to provide significant performance

increases over classical (non-)hybrid parallel approaches. These contributions were val-

idated by a paper submited and accepted in an international conference: “clOpenCL –

Supporting Distributed Heterogeneous Computing in HPC Clusters” [ARPS12], see Ap-

pendix C.1.
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1.3 Dissertation Structure

The remaining of this dissertation is organized as follows:

� Chapter 2 describes the main concepts related to the development of the current

work and introduces the reader to the main frameworks used for the applications

development, as well as the parallel test environment used.

� Chapter 3 describes preliminary tests and evaluations of the matrix multiplication

algorithm, using well known sequential approaches and libraries.

� Chapter 4 describes in detail the important aspects about the implemented parallel

approaches, the issues encountered during their development and the evaluation

results. A discussion is also provided on the results obtained.

� Chapter 5 (last chapter) summarizes the main contributions of the work, and

presents some ideas for future work.

The dissertation also includes the appendices: Appendix A, Appendix B and Ap-

pendix C, containing the references to the complete implemented code of the developed

applications, complementary content and the scientific contributions.



Chapter 2

Concepts and Technologies

In this chapter, the developed work is contextualized, through an assessment of approaches

and technologies related to the dissertation main themes. The core study of the disserta-

tion is also introduced, as well as the experimental platform used.

2.1 Parallel Computing Fundamental Concepts

Parallel Computing is considered the pinnacle of modern computing. This form of com-

puting has been used to attack complex problems in various areas of the Fundamental

Sciences (Physics, Biotechnology, Genetics, Chemistry, Geology, Mechanics, Mathematics,

etc.), Engineering (e.g., calculation and modelling of structures), and even more recently,

Economy and Finance (stock market, datamining, etc.). For example, more accurate

simulations, or simulations of larger problems, need large computational power and/or

storage capacity, thus being typical targets for the use of Parallel Computing.

2.1.1 Sequential Execution versus Parallel Execution

Traditionally, most of the software has been developed on the assumption that it will be

executed sequentially, i.e., on a single computer and requiring only a single processor. In

5



6 CHAPTER 2. CONCEPTS AND TECHNOLOGIES

this perspective, the problem to be solved is subdivided into a series of instructions that

are executed one after the other so, at a given time, only one instruction of the program is

running. Figure 2.1 illustrates this (simplified) description of the Sequential Computing.

Figure 2.1: Representation of the sequential execution model.

In contrast, Parallel Computing includes the simultaneous use of multiple processors

to solve, computationally, a particular problem, usually with the aim of accelerating its

resolution. In this case, the problem addressed will be divided into sub-problems with a

minimum possible of interdependencies, so that it can be resolved simultaneously, within

specific tasks. Thus, the software must be parallelized, i.e. designed and developed,

from the start, in order to be executed in parallel, by multiple processors. This vision is

represented in Figure 2.2.

Figure 2.2: Representation of the parallel execution model.
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2.1.2 Scalability and Acceleration

A very important concept in parallel computing is Scalability. Scalability refers to the

ability a parallel system has to support a proportional increase (i.e., linear) of performance

(or, equivalently, an inversely proportional decrease in execution time) with the addition

of more processors.

Ideally, the acceleration (also known as speedup) allowed by the parallelization of an

application should be linear, i.e., the increase in the number of processors that perform the

application, from N to N+1, should imply a reduction in execution time from TN = T1/N

to TN+1 = T1/(N + 1), where T1 is the sequential time (time with only one processor). In

this context, the optimum speedup with N processors, is given by:

SN =
T1
TN

Therefore, in an ideal situation SN = N , since TN = T1/N . However, very few

parallel algorithms achieve this optimum acceleration. Most of these algorithms have a

quasi-linear acceleration, for reduced numbers of processors, which stabilizes and tends to

decline even with a large number of processors [Lab11a]. Figure 2.3 illustrates this case.

Figure 2.3: Optimal Scalability (linear), limited by Amdahl’s Law [Bri12].
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There are, however, some factors that can contribute to a good scalability, among

which: i) the type of hardware used (particularly with regard to the bandwidth availability

between the memory and the CPU, and of the local network); ii) the base algorithm

and specific characteristics of the parallel application; iii) parallelization strategy and

quality/expertise of the programmer.

2.1.3 Amdahl’s Law and Gustafson’s Law

The potential acceleration of an algorithm in a parallel computing platform is given by

Amdahl’s Law, formulated in 1960 by the computers architect Gene Amdahl. This law

states that in any program there are typically one or more portions inherently not par-

allelizable, which will limit the ability to accelerate the implementation of the program

through parallelization. In this context, if P is the fraction of the program that is paral-

lelizable, the speedup with N processors becomes:

SN =
1

(1− P ) + P/N

Again, if the entire program is parallelizable (ideal situation, with P = 1.0), then

SN = N . On the other hand, if N is too big, SN tends to 1/(1−P ); this value represents

an effective limit to the maximum acceleration achievable, demonstrating that it is useless

to indefinitely add more and more units of parallel execution in an attempt to improve

performance (this idea is conveyed by the dashed line in Figure 2.3).

Figure 2.4 shows the speedup value according to Amdahl’s Law, for different values

of P and N . The theoretical limitation imposed to the speedup by the Amdahl’s Law

becomes clear. For instance, if the parallel portion of the program corresponds to 90% of

runtime, it is not possible to obtain more than an acceleration of 10x against the purely

sequential version, regardless of adding more than 512 processors.



2.1. PARALLEL COMPUTING FUNDAMENTAL CONCEPTS 9

Figure 2.4: Speedup according to Amdahl’s Law, for different values of P and N [Bar11a].

Another important law in parallel computing is Gustafson’s law, which is closely re-

lated to Amdahl’s law. This law can be formulated as follows:

S(P ) = P − α(P − 1),

where P is the number of processors, S is the acceleration and α the non-parallelizable

part of the problem.

In a simplistic way, Gustafson’s law states that problems with a large, repetitive data

set can be efficiently parallelized. Thus, this law contradicts (to some extent) and comple-

ments Amdahl’s Law, which describes the existence of a speedup limit that the paralleliza-

tion can offer. The Amdahl’s law also does not consider the variation in the availability

of computing power as the number of systems increases. Therefore, the Gustafson’s law

proposes that programmers define the size of the problems in order to use the equipment

available to solve these problems in a practical and fixed time. Thus, if a faster hardware

is available, larger problems can be solved in the same amount of time.
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Amdahl’s law assumes a fixed size problem, implying that the sequential portion of the

program does not change with the increase of the number of processors, and the parallel

portion is evenly distributed over P processors. The impact of Gustafson’s law, allowed

problems to be reworked, so that the solution for large problems were possible, in the

same amount of time [Sul12].

2.2 Parallel Computing Platforms

Parallel Applications may target a wide range of platforms. In this section we provide a

brief description of the main parallel computing platforms used nowadays.

2.2.1 SMP, Multi-Core and Many-Core Systems

A computer system that uses symmetric multiprocessing is called SMP (Symetric Mul-

tiprocessor). This type of systems involve computational hardware that accommodates

two or more identical processors connected to a single shared memory, and controlled by

a single instance of an OS (Operating System) – see Figure 2.5.

Figure 2.5: SMP system representation.

SMP systems allow any processor to work on any task, no matter the location in

memory of this task, provided that each task in the system is not running on two or more

processors simultaneously. With the correct support provided by the OS, SMP systems
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can easily move tasks between processors in order to balance the load efficiently. However,

one of the obstacles in the scalability of such type of systems is the bandwidth restrain

and power consumption of the connections between the various processors, memory and

disk. Another obstacle is that the maximum number of usable processors is relatively

small (typically 32) [Wik12h].

Nowadays, SMP systems evolved to Multi-core Systems. In this type of systems,

multiple processor cores are integrated in a single chip (see Figure 2.6), instead of a single

core per chip.

Figure 2.6: Multi-core System representation.

The Multi-core Systems were motivated by the high energy consumption (and con-

sequent heat dissipation) of SMP systems, resulting from the strategy of increasing pro-

gressively the core frequencies. Introducing this type of systems has brought advantages,

since the proximity of the processor cores lead to more economical manufacture: i) less

raw material required; ii) sharing some components between multiple cores (e.g., L2/L3

caches), higher performance of the whole; iii) increased number of cores for the same

physical area; iv) shorter paths of electrical signals.

The term Multi-core is related to Many-core. Many-core and Massively Multi-core

are terms used to describe multi-core architectures with an especially high number of

cores, in the order of the tens or hundreds, while Multi-core often refers only for dual-,

triple-, quad- or octo-core units. Many-core is closely related to the GPUs architecture, for
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example, which is being deployed in a broad spectrum of applications including Clusters,

Clouds and Grids, in order to increase performance through parallelism.

2.2.2 Clusters

Clusters are another type of systems used in parallel computing. A cluster is a group

of loosely coupled computers that work together, so that, in some aspects, it may be

considered as a single computer. Clusters are composed by multiple individual machines

connected by a network – see Figure 2.7. These individual machines, or compute nodes,

are typically SMP or Multi-core Systems. While the machines in the cluster do not have

to be homogeneous, load balancing is more difficult if they are not. As for the network,

which links the cluster nodes, it may use widespread technologies (Ethernet) or very

high-bandwidth proprietary technologies (Myrinet/Infiniband).

Figure 2.7: A Cluster system representation.

The most common type of cluster is the Beowulf cluster, which is implemented on

multiple common commercial computers, connected by a local TCP/IP Ethernet network.

A cluster with Multi-core Systems was the parallel computing platform used for the

development of this project – see section 2.6.



2.2. PARALLEL COMPUTING PLATFORMS 13

2.2.3 Grids/Clouds

If a set of clusters is connected via the Internet, another parallel system arises, called

Grid. Such systems are commonly used for computing as a service, for resolution of

highly parallel problems, being the most distributed parallel computing form. Each clus-

ter has its own independent management and specific hardware. What distinguishes grid

computing from conventional high performance computing systems such as cluster com-

puting is that grids tend to be more loosely coupled, heterogeneous, and geographically

dispersed. Although a single grid can be dedicated to a particular application, commonly

a grid is used for a variety of purposes. For certain applications, “distributed” or “grid”

computing, can be seen as a special type of parallel computing that relies on complete

computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) con-

nected to a network (private, public or the Internet) by a conventional network interface,

such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which

has many processors connected by a local high-speed computer bus.

Related to Grid computing is the concept of Cloud Computing. However it is

not a completely new concept, since it is also closely related to cluster computing and

distributed systems in general. The concept of Cloud computing resides in the fact that

the same Grid architecture is delivered on demand to external customers over the Internet

for standard or high demanding tasks, while Grid computing is normally set to solve high

demanding problems. These concepts are what distinguish these two models. Usually

the Cloud service is delivered and driven by big enterprises, since they have the resources

to create large-scale systems containing hundreds of thousands of computers, providing

continuous support and on demand service [Mye12, FZRL08].

2.2.4 Heterogeneous Systems

The world is heterogeneous in nature. The diversity given by this provides richness and

detail, providing also, at the same time, complexity and interaction where different entities
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are optimized specifically for certain tasks and environments [GHK+11]. This happens in

our world but, in computing, heterogeneous electronic systems also add richness, because

they allow a programmer to choose the best architecture to execute the task at hand or to

choose the best task that makes an optimal usage of a particular architecture. These two

ways of approaching an heterogeneous environment, allow to be aware of the flexibility

of an heterogeneous system when used to solve computational problems that involve a

variety of different tasks. Thus, recently the computer design community, driven by

the high performance computing (HPC) community, started to experiment with building

heterogeneous systems, which combine a number of different classes of architectures.

To sum up, in general, heterogeneous computing consists on using processors with

different instruction set architectures (ISAs), to solve computational problems in order to

achieve high performance or to solve the problem quicker, by using a variety of different

types of computational units, namely: general purpose processors (GPPs) (i.e. a CPU),

special purpose processors (i.e. digital signal processor (DSP) [Wik12d] or a graphics

processing unit (GPU)), a co-processor, or a custom acceleration logic (application-specific

integrated circuit (ASIC) or field-programmable gate array (FPGA)) [Wik12e, Wik12f].

Heterogeneous computing can thus be considered a way of breaking the high performance

computing barrier imposed by the limitations of Moore’s Law [Sha06].

In the past years, parallel computing devices have been increasing in number and in

processing capabilities. From the computational units mentioned above, newer to the

computing scene are the GPUs, which are providing unprecedented levels of processing

capabilities at low cost. The demand for real-time three-dimensional graphics rendering

(a highly data-parallel problem) increased and, because of this, GPUs have evolved as

rapidly as very powerful, full programmable and capable of supporting task and data

parallelism. Now the combination of CPUs and GPUs is usual, creating a new generation

of heterogeneous computing platforms. In these platforms, compute- and data-intensive

portions of an application can be offloaded to the GPU, providing significant performance

gains, while the host CPU executes other, less intensive tasks.
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2.3 Parallel Programming Models and Frameworks

Parallel Applications may be developed using various programming models, including:

Shared Memory, Threads, Message Passing and Hybrid. These models exist as an ab-

straction above the hardware and memory architecture. Although not apparent, the

models mentioned are not specific to one type of machine or memory architectures. In

fact, any of these models can be implemented (theoretically) on any hardware [Bar11a].

The next sections provide a brief description of these models and some related frame-

works and implementations, with a main focus on those used to support this dissertation.

2.3.1 Shared Memory and Threads

Shared memory refers to an extra large block of RAM that is attached to some address

spaces, which can be accessed by several different CPUs in a multiple-processor computer

system. In a shared memory system, all processors share a single view of data and the

communication between processors can be as fast as memory accesses to a same location.

As a result, all of these processes share the same memory segment and have access to it

[Tec12]. This is great when the system has only a few processors that take advantage of

the quick communication but, as more processors are added to a bus, the chances that

there will be conflicts over access to the bus increase dramatically [Pac11]. This will likely

cause the CPUs to cache memory, resulting in some complications [Wik12g]:

� CPU-to-memory connection becomes a bottleneck. Shared memory computers can-

not scale very well. Most of them have ten or fewer processors.

� Cache coherence, whenever one cache is updated with information that may be

used by other processors, the change needs to be reflected to the other processors,

otherwise the different processors will be working with incoherent data. Such co-

herence protocols can, when they work well, provide extremely high-performance



16 CHAPTER 2. CONCEPTS AND TECHNOLOGIES

access to shared information between multiple processors. On the other hand they

can sometimes become overloaded and become a bottleneck to performance.

In shared memory multiprocessor architectures, such as those mentioned on the pre-

vious section, threads can be used to implement parallelism. Technically, a thread is

defined as an independent stream of instructions that can be scheduled to run as such by

the operating system.

POSIX Threads

Historically, hardware vendors have implemented their own proprietary versions of threads.

These implementations differed substantially from each other making it difficult for pro-

grammers to develop portable threaded applications. In order to take full advantage of the

capabilities provided by threads, a standardized programming interface was required. For

UNIX systems, this interface has been specified by the IEEE POSIX 1003.1c standard.

Implementations adhering to this standard are referred to as POSIX threads, or Pthreads.

Pthreads are defined as a set of C language programming types and procedure calls,

implemented with a pthread.h header/include file and a thread library – though this

library may be part of another library, such as libc, in some implementations [Bar12].

There are around one hundred Pthreads procedures, all prefixed “pthread ” and they

can be categorized into four groups: thread management (creating, joining threads, etc.),

mutexes, condition variables, and synchronization between threads using read/write locks

and barriers.

2.3.2 Message Passing

The Message Passing model uses messages exchanges between processors that have their

own memory, in order to share data or synchronization state. Communicating proces-

sors can co-exist on the same computer system, using the busses and local memories for
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communication, or may be located on different systems, in this case interconnected via

a data network, which can use common technologies (e.g., Ethernet) or very high speed

ones (e.g., Myrinet, Infiniband, 10G Ethernet, etc.).

From the programming perspective, Message Passing models implementations typi-

cally include a library of subroutines that are embedded in the source code. The program-

mer is responsible for choosing and designing the whole parallelization strategy, including

tasks synchronization. The programmer should also decide on how communication takes

place: for example, if the most appropriate communication primitives are synchronous or

asynchronous, what kinds of guarantees (delivery ones, sorting ones, etc.) are offered in

message exchanges, etc..

Sets of tasks that use local memory during computation fit into this model; these

tasks may exchange data through various communication patterns, which require coop-

erative complementary operations in the process involved (e.g., a send operation must

have a corresponding receive operation). In Figure 2.8 it is possible to view a simplified

representation of this model.

Figure 2.8: A simplified view of the Message Passing Model.

Examples of the Message Passing model are: PVM (Parallel Virtual Machine) [Lab11b],

MPI (Message Passing Interface [For94], used on this project – see next – and MPL (Mes-

sage Passing Library) [IBM].
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MPI

In the 80s, there was a wide variety of Message Passing libraries but, these implementa-

tions differed substantially from each other, making it difficult for developers to create

portable applications. Then, in 1992, the MPI Forum was formed, aiming to establish a

standard interface for Message Passing implementations. Thus, in 1994, and subsequently

in 1996, two Message Passing Interface1 specifications were published.

Currently, MPI is the standard used by the industry, having replaced, virtually, all

other Message Passing standards. Some of the main reasons for choosing MPI as a model

for developing parallel programs are, among others [Bar11b]:

� Standardization: as mentioned previously, the MPI specification is the only one

that can be considered a standard, and it is supported by virtually all platforms

and computer architectures;

� Portability: there is no need to modify the code (or the changes will be minimal)

when it is needed to transfer an MPI application to a different platform, provided

this last one supports an implementation following the MPI standard;

� Functionality: over 115 routines are defined in MPI, covering a wide range of

aspects;

� Safety: reliable communication interface, freeing the programmer from concerns

about miscommunication;

� Availability: there are several MPI implementations, many open-source; the most

used ones are OpenMPI [Tea11] and MPICH-2 [GLA+09], available for both Unix/

Linux and Windows.

1 Part 1 and Part1 2 of MPI can be found at http://www.mcs.anl.gov/research/projects/mpi/.

http://www.mcs.anl.gov/research/projects/mpi/
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MPICH2

The MPI implementation used in this project was MPICH-2, one of the most popu-

lar implementations in the industry. This is a high performance and widely portable

implementation. It provides a MPI implementation that effectively supports different

computation and communication platforms, including clusters: i) desktop systems; ii)

shared memory systems; iii) multi-core architectures, high-speed networks (10G Ether-

net, InfiniBand, Myrinet, Quadrics) and proprietary computing systems (Blue Gene,

Cray, etc). MPICH-2 enables cutting-edge research in MPI, through a scalable modular

framework that allows the use of other derived implementations [MPI11].

Choosing which MPI implementation to use may depend on how it behaves in exe-

cuting a specific application. That is, it may be necessary to perform a benchmark on

the program using different implementations, and using one or other depending on those

benchmark results. In our case, the choice fell on MPICH-2, instead of OpenMPI. Due to

memory limitations, OpenMPI is not suitable for large-scale problems [Sta11, fACR11],

such as those used in this project. A slight increase in performance and less benchmarks

variance were also observed with MPICH2, when compared to OpenMPI in our cluster.

2.3.3 Heterogeneous Systems

In this section we present the main models and frameworks currently used to exploit het-

erogeneous systems. Novel frameworks that extend those models to parallel/distributed

execution environments are also present, with the exception of the clOpenCL framework,

whose validation was one of the main purposes of this work, and thus is presented in a

section of its own – see section 2.4.

CUDA

CUDA (Compute Unified Device Architecture) is a proprietary parallel computing plat-

form and programming model developed by Nvidia [Nvi12] for graphics processing. CUDA
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enables software developers to have access to Nvidia graphics processing units (GPUs) to

perform general purpose computing, using variants of standard programming languages:

“C, C++ and Fortran” (standard languages with Nvidia extensions and certain restric-

tions). Moreover, CUDA gives developers access to the virtual instruction set and mem-

ory of the parallel computational elements, and requires developers to configure access of

global memory, cache, and the amount of available threads. The developers will also be

responsible for scaling the activities between the GPU and CPU [Wik12c].

Nvidia also provides what they call the “CUDA Toolkit”, which gives a comprehen-

sive development environment for C and C++ developers, including a compiler, math

libraries and tools, for debugging and optimizing one’s applications. CUDA also supports

wrappers2 for languages, like Python, Perl, Fortran, Java, Ruby, Haskell, Matlab, and so

on, being these third-party ones.

Figure 2.9 explains the CUDA processing flow, which demonstrates how CUDA enables

the interaction with the GPU and global memory and the parallel throughput architecture

of an enabled CUDA GPU.

Figure 2.9: CUDA architecture.

2 Wrapper libraries (or library wrappers) consist of a thin layer of code which translates a library’s
existing interface into a compatible interface.
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Currently CUDA architecture shares the “market” with two competitors, namely:

Khronos Group OpenCL [Gro12c] and Microsoft DirectCompute [Mic12]. But, unlike

OpenCL, CUDA enabled GPUs are only available from Nvidia.

OpenCL

OpenCL is a parallel programming standard/framework for writing programs that exe-

cute across heterogeneous platforms (see section 2.2.4) and it was developed specifically

to ease the programming burden when writing applications for this kind of platforms

[GHK+11]. These platforms include CPUs, GPUs, Cell Broadband Engines [Wik12b],

FPGAs (Field-Programmable Gate Arrays), DSPs (Digital Signal Processors), and other

processor devices. The diversity in architectures allows the designer to provide optimized

solutions for many kinds of problems. If a solution is designed within the OpenCL speci-

fication, it can scale with the growth and breadth of available architectures.

OpenCL is an open standard maintained by the non-profit technology consortium

Khronos Group [Gro12b]. It has been adopted by Intel, AMD, Nvidia, and ARM Holdings.

Each OpenCL implementation (i.e. an OpenCL library from AMD, Nvidia, etc.) defines

platforms which enable the host system to interact with OpenCL-enabled devices. There

are, presently, three major implementations of the OpenCL specification, being these the

following: i) AMD APP SDK (for CPUs and AMD GPUs), ii) Nvidia’s implementation

(for NVIDIA GPUs only) and iii) Intel OpenCL SDK (for CPUs only).

This framework enables a language based on C99 standard [Wik12a] (with some lim-

itations and additions) for writing kernels (programs that are to be executed on the

device side, syntactically similar to a standard C function – see Appendix B.1). How-

ever, it ommits the use of function pointers, recursion, bit fields, variable-length arrays,

and standard C99 header files. On the other hand, the language is extended to ease

the use of parallelism with vector types and operations, synchronization and functions to

work with work-items/groups. Memory region qualifiers were added ( global, local,
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constant, private (refer to Appendix B.1.2) and also many built-in functions, along

with changes to the supported data types, which received the prefix “cl ” (see Table B.1

in Appendix B.2).

OpenCL also provides APIs that are used to define and control the platforms, and

enables parallel computing using task-based and data-based parallelism. With OpenCL,

developers can give any application access to the GPU for non-graphical computing,

extending this way, the power of the graphics processing unit beyond graphics.

When comparing CUDA and OpenCL one should stress the fact that CUDA supports

Homogeneous Computing, while OpenCL targets, by design, Heterogeneous Computing.

The later is the main reason for choosing OpenCL for this project, despite the maturity

of CUDA: while CUDA only targets Nvidia GPUs (homogeneous approach), OpenCL

targets any processor device that supports input and output (heterogeneous approach).

This way, with OpenCL, it is possible to have multiple CPUs and GPUs, from different

manufacturers and models, working together to increase performance.

Despite being a great step towards heterogeneous computing, the original OpenCL

specification is unable to meet the needs of HPC applications for clusters and other

distributed environments. This is due to the fact that OpenCL applications can only

utilize the local devices present on a single machine. Therefore, in the OpenCL model,

an application can only run in a single node and the number of OpenCL devices available

to an application may be rather limited. All of this applies also to CUDA.

Thus, new or modified models are needed for OpenCL applications to be able to use

several cluster nodes. To address this issue, several projects were initiated, and there are

now several approaches available. In the next section a brief description of some of those

approaches is provided (excluding the clOpenCL approach, presented in section 2.4).



2.3. PARALLEL PROGRAMMING MODELS AND FRAMEWORKS 23

MOSIX VCL

The Virtual OpenCL (VCL) cluster platform [BS11] can transparently run unmodified

OpenCL applications in many devices (including GPU and APU devices) in a cluster,

as if all the devices are located in the hosting node. It can create the abstraction of a

global OpenCL platform combining all compute devices present in a cluster. VCL benefits

OpenCL applications that can use many devices concurrently; it’s users can start parallel

applications on an hosting node, then VCL will manage and transparently run kernels of

the application on different nodes.

The VCL cluster platform consists of three components: the VCL library, which is

a cluster implementation of the OpenCL standard; the broker, which performs cluster-

wide allocation of resources; and a back-end daemon, which runs kernels on behalf of

host applications. Therefore, the VCL structure is flexible enough, allowing the incor-

poration of many algorithms, such as network optimizations, load-balancing and dynamic

configurations [BS11]. Note, however, that only VCL binaries are distributed.

Hybrid OpenCL

The Hybrid OpenCL [AONM11] project enables the utilization of OpenCL devices over

the network. This platform consists of two elements: a runtime system that provides the

abstraction of different OpenCL implementations and, a bridge program that connects

multiple runtime systems over the network. The runtime system of the Hybrid OpenCL

is divided in two parts: i) the host part, and ii) the remote part. The runtime systems of

the remote part can be different. Also, the operating environment of the runtime systems

of the remote part can be different from the host part.

This system was developed for a particular device independent OpenCL implemen-

tation, thus making it difficult to exploit high performance GPUs, for example. Also,

although focusing on simplicity, some performance related issues still need to be tackled.
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GVirtuS

The GVirtus (Generic Virtualization Service) [GML+11] is a framework for implemen-

tation of split-driver based abstraction components and the virtualization of hardware

devices. GVirtuS fills the gap between in-house hosted computing clusters, equipped

with custom devices, and pay-for-use high performance virtual clusters deployed via pub-

lic or private computing clouds. It allows an instanced virtual machine to access CUDA

powered GPGPUs in a transparent way, with an overhead slightly greater than a real

machine/GPGPU setup. GVirtuS is hypervisor independent, and although it currently

virtualizes nVIDIA CUDA based GPUs, it is not limited to a specific brand technology

[fHPSC12]. The framework currently has full threadsafe support to CUDA drivers, CUDA

runtime and OpenCL. Also, it partially supports OpenGL integration. GVirtuS approach

is composed in two parts: GVirtuS Frontend, a dynamic loadable library with the same

application binary interface that runs on the guest user space; GVirtuS Backend, a server

application running on the host user space and performing concurrent requests [MCG+11].

rCUDA

rCUDA [DPnS+10] enables applications to concurrently use CUDA-compatible GPUs

installed in remote computers as if they were local devices. To enable a remote GPU-

based acceleration, rCUDA creates virtual CUDA-compatible devices on those machines

without a local GPU. These virtual devices represent physical GPUs located in a remote

host offering GPGPU services. As a result, all of the nodes are able to concurrently access

the whole set of CUDA accelerators installed in the cluster.

This framework follows a client-server model where the client uses a wrapper library

and a GPU network service listens for TCP requests. On the down side, the framework is

limited in the number of compute devices that CUDA can handle (NVIDIA devices only).
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2.3.4 Hybrid Models

Usually, the exploitation of heterogeneous systems is associated with hybrid models, al-

though these models have been used, until recently, mainly in homogeneous systems.

A hybrid model is a combination of several parallel programming models in the same

program. They may be mixed in the same source; and they may be combinations of

components or routines, each being in a single parallel programming model.

The most familiar hybrid model is the junction of MPI with OpenMP3 [Gro12a], where

OpenMP parallelization takes place at each node and MPI parallelization between nodes.

Depending on the kind of communication and computation, these models can be used,

generally, in two ways. In the first one, communication and computation do not overlap:

MPI is called only outside of parallel regions and by the master thread; also, MPI is called

by several threads. In the second one, communication and computation do overlap (while

some of the threads communicate, the rest are executing an application): MPI is called

only by the master thread; communication is carried out by several threads; each thread

handles its own communication demands [vA08].

The hybrid approach is difficult: developers always want to use the best tools for each

part of their program, and that sometimes means building their applications from pieces

in different languages. However, this model usually translates in performance benefits,

due to better computation/communication ratios.

In the work presented on this dissertation two different hybrid models were used: a

hybrid model using i) MPI to manage a distributed set of worker processes, and ii) OpenCL

to exploit computation on local worker-specific devices; another hybrid model (clOpenCL)

based on i) a distributed set of OpenCL device-proxies (daemons), POSIX Threads to

interact with a cluster-aware OpenCL routine, and iii) Open-MX for communications.

The clOpenCL model is thoroughly explained in section 2.4.

3 An API that can be used for multithreaded shared memory parallelization that enables parallelization
of one part of the program at a time.



26 CHAPTER 2. CONCEPTS AND TECHNOLOGIES

2.4 Cluster OpenCL

Frameworks like VCL, Hybrid OpenCL, GVirtuS and rCUDA, previously presented in

section 2.3.3, try to cope with the limitations of specifications originally tailored to self-

contained systems, by providing the necessary support for their instantiation in distributed

environments, like clusters, grids and even clouds.

Making possible the running of unmodified OpenCL applications in a transparent

way, on devices scattered in a cluster environment, was the main motivation of a novel

framework, named clOpenCL (cluster OpenCL). clOpenCL was developed (as part of a

R&D project to which this dissertation is related) using an hybrid programming model

that mixes POSIX Threads, OpenCL and a low-level/high performance message passing

library (Open-MX4) [Gog11].

2.4.1 General Architecture

clOpenCL comprises a wrapper library and a set of daemons. Every call from an ap-

plication to an OpenCL primitive is intercepted by the wrapper library, which redirects

its execution to a specific daemon at a cluster node or to the local OpenCL runtime.

clOpenCL daemons are simple OpenCL programs that listen and handle remote calls

and interact with local devices. The host component of a typical clOpenCL application

will be multi-threaded (POSIX Threads)5. It will start in a particular cluster node and

will create OpenCL contexts, command queues, buffers, programs and kernels across all

cluster nodes [ARPS12].

Figure 2.10.a) shows the clOpenCL operation model, where a single OpenCL host

application component interacts with multiple compute devices, whether local or remote.

Figure 2.10.b) represents the different software and hardware layers that support the host

4 An open-source message passing stack over generic Ethernet which provides low-level communication
mechanisms at user-level space and allows to achieve low latency communication and low CPU overhead.

5 This is mainly for performance reasons, since there is no fundamental limitation for not using the
process model on top of the clOpenCL library.
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application component.

Figure 2.10: clOpenCL (a) operation model, (b) host application layers.

2.4.2 Operation Model

When the host program starts, the clOpenCL wrapper library, wich also wraps the main

function, locates all active clOpenCL daemons by interacting with the Open-MX mapper

service (this service creates a distributed directory, where each process, with an opened

Open-MX end-point, is registered).

In a traditional OpenCL application, the programmer has to manipulate only the ob-

jects returned from the OpenCL API, namely: platforms and device identifiers, contexts,

command queues, buffers, images, programs, kernels, events and samplers. These objects

are actually pointers to complex OpenCL data structures, having their internal consti-

tution not accessible to the programmer. In a distributed/parallel environment, where

OpenCL primitives are executed in multiple daemons, those pointers cannot be used only

to identify objects, because each daemon has its own address space. Therefore, for each

object created by OpenCL, the wrapper library returns a ”fake pointer” used as a global

identifier, and stores the real pointer alongside with the corresponding daemon location.

Each time the wrapper library redirects an OpenCL primitive, its parameters are
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packed into an Open-MX frame and sent to the remote daemon that will execute the

primitive. Every parameters that reference OpenCL objects are previously mapped into

their real pointers and the daemon is determined accordingly. The wrapper library and

daemons do not maintain any information about calls to OpenCL primitives, i.e., they are

stateless. Any data or state needed for subsequent primitive calls are maintained by the

OpenCL runtime at each cluster node. Therefore, it is not necessary to manage complex

data structures related to the OpenCL operation and state [ARPS12].

Typically, an OpenCL application starts with a discovery phase with the purpose of

finding platforms and their respective devices locally (i.e., available at the node where the

application is hosted). In clOpenCL this discovery phase will return a set of all platforms

and devices available (both local and remote) in the cluster nodes where the clOpenCL

service (daemon) is running. In more detail, clOpenCL first returns all local platforms, if

any (once it is not mandatory that any OpenCL platforms be locally available); afterwards

it returns the remote platforms, node by node.

A problem with clOpenCL was to know to which cluster node a certain platform

belongs. Thus, the OpenCL primitive clGetPlatformInfo was extended with a special

attribute named CL PLATFORM HOSTNAME. Having the possibility of choosing specific cluster

nodes where to run OpenCL kernels may be useful, e.g., for load balancing purposes.

2.4.3 Using clOpenCL

Porting OpenCL programs to clOpenCL, only requires linking to the OpenCL and clOpenCL

libraries. This is accomplished by taking advantage of the GCC directives, -Xlinker

--wrap, for function wrapping during link-time. Currently, clOpenCL does not support

mapping buffer and image objects. However, as its current state, the clOpenCL platform

is enough to the purpose of testing its general concept, including running basic OpenCL

applications [ARPS12], like a kernel for matrix multiplication.



2.5. CASE STUDY: MATRIX PRODUCT 29

2.4.4 Distributed OpenCL

dOpenCL (distributed OpenCL) [KSG12] is a recent framework, developed at the same

time as clOpenCL, with whom has resemblances: it supports transparent multi-node-

multi-accelerator OpenCL applications and combines a wrapper client library with re-

mote services. However, dOpenCL is oriented to general distributed environments, uses a

TCP/UDP based communication framework, and devices may not be concurrently shared.

In turn, clOpenCL targets HPC clusters, uses Open-MX to maximize the utilization of

commodity Gigabit Ethernet links, and devices are fully shareable. Both approaches work

on top of any OpenCL platform and so are able to exploit many device types.

2.5 Case Study: Matrix Product

To test, evaluate and demonstrate the usability of a new parallel programming framework,

it is essential to choose appropriate case studies. In this work, clOpenCL was evaluated

using a reference HPC “benchmark” algorithm: the Matrix Product algorithm.

Although simple, this ”embarrassingly parallel”6 algorithm is sufficient to test the

scalability and correctness of the current clOpenCL implementation. Choosing this al-

gorithm also allows for the quick development of alternate implementations (both serial

and parallel) to be used for control (correctness verification) and performance comparison

purposes. Note, however, that the aim is not an HPC-class performance of the clOpenCL

version but, as already stated, to assess its correctness and scalability.

Matrix Product Basic Concepts

This section, quickly describes the concept of the matrix product in formal terms. The

product of a matrix A of order m × n (m rows and n columns) by a matrix B of order

6 The program that has virtually no communications between the system’s parallel activities, is called
embarrassingly parallel.
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n × p (n rows and p columns), is a matrix C of order m × p (m rows and p columns) –

see Figure 2.11. An element in C, on the i-th row and j-th column, is obtained by the

dot product of the entire i-th row of A by the entire j-th column of B (this is why if A

has n columns, B must have n rows). For example, if vector i is a row of A that contains

[a11, a12, ..., a1n], and vector j is a column of B that contains [b11, b12, ..., b1p], their dot

product can be computed as follows: i.j = a11b11 + a12b12 + ...+ a1nb1p.

Figure 2.11: Matrix multiplication representation.

If A and B are square matrices of order 4 × 4, the full matrix multiplication will

require 16 products, i.e., each of the four rows of A must be multiplied by each of the

four columns of B. If A and B are not square matrices, the product requires vectors of

equal length, so the rows of the first matrix must have the same size as the columns of

the second.

2.6 Experimental Testbed

To test, evaluate and demonstrate the usability of a developed parallel application, there

is always a need for a parallel computing platform where these activities can be performed.

The testbed platform used in this work was a small scale commodity cluster, operated
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by the Informatics Laboratory of ESTIG/IPB. The Cluster concept, as a parallel execu-

tion platform, was already discussed at section 2.2. Therefore, in this section, only the

particular aspects that characterize the used cluster will be described.

2.6.1 Computational Systems

The cluster includes the following computational systems:

� a frontend (beta), with an Intel Core 2 Duo E6400 2.13GHz CPU and 4Gb of RAM;

� several subsets of compute nodes, defined taking into account their physical location,

their hardware features and their degree of availability (continuous/intermittent):

– datacenter subset, with 4 computing nodes, each one with an Intel Core 2 Quad

Q9650 3GHz CPU, 8Gb of RAM and two Ethernet 1Gbps NICs (on-board Intel

82566DM-2 and a PCI64 SysKonnect SK-9871); plus, the nodes are fitted with

NVIDIA GTX 460 GPUs (1Gb of GDDR5 RAM): 1 node (compute-4-0) with

2 GPUs and the 3 remaining nodes (compute-4-1 to compute-4-3) with 1

GPU each; this subset is continuously available for work execution;

– labinf subset, with 8 computing nodes (compute-4-4 to compute-4-11), each

one with an Intel Core 2 Quad Q9400 2.6GHz CPU and 8Gb of RAM; this

subset is only available to work outside lessons hours;

– esa subset, with 3 computing nodes (esa-16-0 to esa-16-2), located at the

ESA/IPB Informatics Resource Center, each one with an AMD Opteron 6128

Magny-Cours 2.0GHz “Octo-Core” CPU, and 16Gb of RAM; this subset is

continuously available for work execution.

For this work only the nodes of the datacenter subset were used, taking advantage of

all of the processing devices available there: 4 CPUs (16 cores in total) and 5 GPUs.
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2.6.2 Network(s)

The frontend and the compute nodes are interconnected in a main private network (eth0 ),

based on 1Gbps Ethernet; however, for logistical reasons, only the datacenter node sub-

set is directly connected to the same switch on which the frontend also connects; the

remaining subsets, external to the datacenter, bind to this switch through a succession

of switches properly configured to support a specific cluster VLAN. A secondary private

network (eth1 ) also exists, connecting the datacenter node subset with the frontend ; the

1Gbps Ethernet switch used for this purpose is configured with jumbo frames (mtu 9000);

this secondary network is used as a “poor-man’s”, high speed network, once the cluster

currently lacks Myrinet or Infiniband. This configuration is illustrated in Figure 2.12.

Figure 2.12: Cluster network(s) configuration.

It should be noted that the dispersion of the different node subsets, separated by

multiple switches, is not advisable to perform work that use simultaneously different sets

and have high communication needs. However that was not the case of this work, since

only the datacentre node subset was used.
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2.6.3 Exploitation System

All cluster systems run Linux Rocks [Gro12d] (version 5.4.3), a specific distribution for

cluster environments, developed as part of a project that began in 2000. The ROCKS

distribution is built upon the CentOS distribution, a community version of Red Hat

Enterprise Server (RHEL), which is a commercial distribution. The choice of CentOS

allows a solid and stable foundation, binary compatible with RHEL, which is a reference

for the business market. The ROCKS distribution adds to CentOS a number of facilities:

support to bulk (re)installation (automatic, over the network, via PXE) of compute nodes

[Sac09]; a Ganglia system for node monitoring [Pro12b]; the SGE (Sun Grid Engine)

system [Sun12] for queue management of deferred execution of work; the Condor system

for the automatic load balancing of nodes through processes migration [Pro12a]; various

MPI platforms (such as OpenMP and MPICH2), etc.

On ROCKS, the frontend node hosts all cluster user accounts and, in general, all

the necessary software; these accounts are shared over the network via NFS, to the

compute nodes; this sharing extends to a folder /share/apps, with applications in-

stalled on the frontend and accessible to all nodes; the nodes have a local partition

(/state/partition1) immune to possible reinstallation, thus adequate to store, in a

lasting way, large amounts of data.

OpenCL and Open-MX support software was also installed on the frontend and the

datacenter node subset. The specific OpenCL platform and GPU driver versions used

were AMD SDK 2.6 with driver 11.12, and CUDA 4.1.28 with driver 285.05.33. Open-

MX 1.5.2 was used with the SysKonnect NICs (that provide better performance than the

on-board Intel NICs), the ones used to build the secondary private network (eth1 ).





Chapter 3

Preliminary Experiments

As mentioned previously (see section 2.5), the Matrix Product algorithm was chosen to

be the case study of this dissertation. Thus, in order to have an idea of the magnitude

of the performance gains eventually achieved by the parallel approaches that would need

to be developed (at least a clOpenCL based approach), a preliminary assessment was

made of readily available and well-known sequential and parallel approaches, including

naive approaches, approaches based on public domain linear algebra libraries and also

commercial reference approaches.

3.1 General Experimental Conditions

All the experimental studies (including those of Chapter 4) were narrowed to square ma-

trices of order n ∈ {8K, 16K, 24K}, filled with single-precision elements (4 byte floats).

These 3 different orders were chosen to support a minimal scalability study. This config-

uration resulted into matrices of size no less than 256 Mbytes, 1 Gbyte and 2.25 Gbytes,

respectively. As there are 3 matrices involved (the operands A and B, and the result

matrix C = AB) the minimum theoretically RAM occupancy is 768 Mbytes, 3 Gbytes

and 6.75 Gbytes, respectively.

35
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For all experiments of this chapter, the complete matrices A and B were used to

yield the complete matrix C, i.e., the whole A matrix was multiplied by the whole B

matrix through a single execution of the matrix product function used. Furthermore, all

experiments were performed in the cluster node compute-4-0, using a single core, except

for Matlab. The compiler optimization levels used in each case are specifically stated. All

execution times presented are averages of at least 3 runs.

3.2 Sequential Naive Approach

The first evaluated approach follows a naive sequential algorithm that served as a starting

point to the development of the remaining variants.

Under this algorithm, the matrices A, B and C are first allocated (using the order

n sizes previously mentioned); and initialized with float values. Then, matrix B is

transposed into BT (see Figure 3.1 for an example); this is done to accelerate the product

of A rows by B columns (since arrays are stored in row-major order in programs developed

in C language, the transposition of matrix B will make the dot product of A rows by B

columns much more cache-friendly, by minimizing cache-misses). Finally, matrices A and

BT are multiplied.

Figure 3.1: Example of a matrix transposition.

Code Excerpt 3.1 shows the implementation and invocation of the naive multiplication

function (the full algorithm implementation code is in Appendix A.1).
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1 #define SIZE 24576 //16384//8192

2

3 void mulMatrix(float *a, float *b, float *c)

4 // assumes "b" has been transposed

5 {

6 int i, j, k, cc;

7 float v;

8 int numCells;

9

10 numCells = SIZE*SIZE;

11 cc=0;

12 for(i=0; i<numCells; i+=SIZE){

13 for(j=0; j<numCells; j+=SIZE){

14 v = 0.0;

15 for(k=0; k<SIZE; k++)

16 v += a[i+k] * b[j+k];

17 c[cc] = v;

18 cc++;

19 }

20 }

21 }

22 int main()

23 {

24 //...

25 mulMatrix(a, bTrans, c);

26 //...

27 }

Code Excerpt 3.1: Sequential Naive Approach Matrix Product.

Table 3.1 presents the evaluation results, with GCC optimization level “O3”.

Table 3.1: Sequential Naive Approach Execution Time (seconds).

Order n (SIZE) 8K 16K 24K

Execution Time 610,50s 4901,19s 16569,40s

3.3 BLAS Approaches

BLAS (Basic Linear Algebra Subprograms) [For12] are routines that provide standard

building blocks for performing basic vector and matrix operations. The Level 1 BLAS

perform scalar, vector and vector-vector operations; the Level 2 BLAS perform matrix-

vector operations; the Level 3 BLAS perform matrix-matrix operations. Because BLAS

routines are efficient, portable, and widely available, they are commonly used in the

development of high quality linear algebra software.
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The Level 3 BLAS provides the following function for the multiplication of two matrices

(single-precision): sgemm(TransA, TransB, M, N, K, ALPHA, A, LDA, B, LDB, BETA,

C, LDC). The function sgemm (Single Precision General Matrix Multiply) is not limited

to perform a single product between two matrices, since the input parameters aren’t only

the matrices A, B and C. Instead, this routine calculates C = αAB+βC, where α and β

are scalar coefficients. Thus, to perform the simple product C = AB, it is enough to have

α = 1.0 and β = 0.0. The sgemm function has also the option of using the transposed

forms of A, B, or both. The function full list of parameters and their meaning follows:

� TransA: specifies whether to transpose matrix A.

� TransB: specifies whether to transpose matrix B.

� M: number of rows in matrices A and C.

� N: number of columns in matrices B and C.

� K: number of columns in matrix A; number of rows in matrix B.

� ALPHA: scaling factor for the product of matrices A and B.

� A: matrix A.

� LDA: the size of the first dimention of matrix A; if passing a matrix A[m][n], the

value should be m.

� B: matrix B.

� LDB: the size of the first dimention of matrix B; if passing a matrix B[m][n], the

value should be m.

� BETA: scaling factor for matrix C.

� C: matrix C.

� LDC: the size of the first dimention of matrix C; if passing a matrix C[m][n], the

value should be m.
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All the non-naive approaches evaluated in the next sections (including Matlab) are

based on Level 3 BLAS implementations. When using the sgemm function, special care

must be taken to know which order (row/column major) is assumed by the implementation

(the original specification is Fortran-oriented and so the original order is column-major).

3.4 ATLAS BLAS

The Automatically Tuned Linear Algebra Software (ATLAS) [Sou12] provides a highly

optimized implementation of the BLAS interface, heavily used in high-performance com-

puting, and with C and Fortran77 interfaces. It is characterized for having an optimization

approach called Automated Empirical Optimization of Software (AEOS), which is able to

produce code specifically tuned for the target execution system. In our case, the ATLAS

version used was optimized for the datacenter node subset CPUs (Core 2 Quad Q9650).

Code Excerpt 3.2 is from a program that follows the same base algorithm of the naive

approach (the full code is in Appendix A.1), except that the matrix B is not transposed

and the matrix product function is, in this case, the BLAS-like function cblas_sgemm

(Order,TransA,TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc). This

function adds a parameter Order to the original specification, specifying the use of row-

or column-major order for all matrices involved. In our case, the A and B matrices are

now supplied in column-major order and, for that reason, no transposition is requested.

1 #include "cblas.h"

2 #define SIZE 24576 //16384//8192

3

4 int main()

5 {

6 //...

7 cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, SIZE, SIZE, SIZE, 1.0,

8 A, SIZE, B, SIZE, 0.0, C, SIZE);

9 //...

10 }

Code Excerpt 3.2: ATLAS BLAS Matrix Product.
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Table 3.2 shows the evaluation results, this time with the default GCC optimization

level (“O0”), since the ATLAS library used is pre-compiled and already optimized.

Table 3.2: ATLAS BLAS Execution Time (seconds).
Order n (SIZE) 8K 16K 24K

Execution Time 59,15s 471,08s 1588,61s

3.5 ACML BLAS

The AMD Core Math Library (ACML) [Cen12] provides a free set of thoroughly optimized

and threaded math routines for HPC, scientific, engineering and related compute-intensive

applications, supporting both Linux and Windows. This library, released by AMD, pro-

vides useful mathematical routines optimized for AMD processors. Furthermore, it offers

an implementation of the BLAS specification.

In ACML, the BLAS Level 3 function for the matrix multiplication is sgemm(TransA,

TransB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC). This function follows the

specification faithfully (it has no additional parameters, differently to ATLAS), thus as-

suming column-major order for the matrices.

Code Excerpt 3.3 shows the invocation of this function in the developed ACML test

(the full code is available in Appendix A.1). As with ATLAS, matrices A and B are given

in column-major order and so no transpositions are necessary (which is conveyed by the

value ’N’ of the first two parameters).

ACML requires the usage of the AMD OPEN64 compiler [AMD12], whose version

4.2.5.2 was used to compile this test. Also, in this case, the “Ofast” optimization level

was used. Table 3.3 shows the evaluation results under these conditions.
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1 #include "acml.h"

2 #define SIZE 24576 //16384//8192

3

4 int main()

5 {

6 //...

7 sgemm(’N’, ’N’, SIZE, SIZE, SIZE, 1.0, A, SIZE, B, SIZE, 0.0, C, SIZE);

8 //...

9 }

Code Excerpt 3.3: ACML BLAS Matrix Product.

Table 3.3: ACML BLAS Evaluation Execution Time (seconds).

Order n (SIZE) 8K 16K 24K

Execution Time 48,60s 388,00s 1308,81s

3.6 GSL BLAS

The GNU Scientific Library (GSL) [GNU12] is a numerical library for C and C++ pro-

grammers. It is free software under the GNU General Public License. This library provides

a wide range of mathematical routines such as random number generators, special func-

tions and least-squares fitting. There are over 1000 functions in total with an extensive

test suite, covering a wide range of subject areas. It has also an implementation of BLAS.

In the previous approaches (naive and BLAS based), the 3 matrices were allocated

and initialized using standard C data types (float), functions (malloc) and operators

(“=”). In GSL one needs to declare matrices of type gsl-matrix-float, the function

gsl matrix float alloc(m, n) allocates a matrix of floats of order m × n, and the

function gsl matrix float set(M, i, j, value) translates into M [i][j] = value. The

BLAS-based matrix multiplication is provided by the function gsl blas sgemm (TransA,

TransB, alpha, A, B, beta, C), a simplified version of the BLAS specification (it as-

sumes column-major order and LDA, LDB and LDC parameters are absent).

Code Excerpt 3.4 shows how these functions were used together to implement the GSL

matrix multiplication (the entire code can be viewed in Appendix A.1).
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1 #include <gsl/gsl_blas.h>

2 #define SIZE 24576 //16384//8192

3

4 int main(){

5 gsl_matrix_float *A, *B, *C;

6 A = gsl_matrix_float_alloc(SIZE,SIZE);

7 B = gsl_matrix_float_alloc(SIZE,SIZE);

8 C = gsl_matrix_float_alloc(SIZE,SIZE);

9

10 for(i=0; i<SIZE; i++){

11 for(j=0; j<SIZE; j++){

12 gsl_matrix_float_set (A, i, j, i+1);

13 gsl_matrix_float_set (B, i, j, j+2);

14 }

15 }

16 gsl_blas_sgemm (CblasNoTrans, CblasNoTrans, 1.0, A, B, 0.0, C);

17 //...

18 }

Code Excerpt 3.4: GSL BLAS Matrix Product.

Table 3.4 shows the results obtained with GSL BLAS. A quick comparison with the

previous BLAS-based approaches reveals that the GSL execution times are one order of

magnitude above the ones achieved with those approaches. This observation is further

discussed in section 3.8.

Table 3.4: GSL BLAS Evaluation Execution Time (seconds).

Order n (SIZE) 8K 16K 24K

Execution Time 731,13s 5753,23s 19460,31s

3.7 Matlab

Matlab [Mat12b] is not considered a library, but a high-level language and interactive en-

vironment for numerical computation, visualization, simulation and programming. It al-

lows matrix manipulations, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programs written in other languages,

including C, C++, Java, and Fortran.
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Unlike the previous approaches, the Matlab environment allows algorithms to be exe-

cuted in parallel using multicore processors, GPUs, and computer clusters. This is accom-

plished through the Parallel Computing Toolbox [Mat12c], and the Matlab Distributed

Computing Server [Mat12a]. More specifically, the later allows to run the application on a

computer cluster almost without changing the program code; with the Matlab Distributed

Computing Server running on the cluster nodes it is possible to designate the number of

workers7 who will execute the intended application, while Matlab handles the paralleliza-

tion and communication between nodes, without requiring the programmer interference.

Even though Matlab uses BLAS routines at its core, the programming procedures

were a little different from the previous C-based approaches. The matrices A and B were

initially created and filled in Matlab but, to accelerate successive runs, A and B are saved

in .txt files, from which they are filled when necessary. The Matlab code is simple and

straightforward, as shown by Code Excerpt 3.5 (the complete code is in Appendix A.1).

1 %%%%%%%%%%%%%%%%%%%%%%%%%

2 size = 24576; //16384//8192

3

4 %declare and initialize the matrices

5 matA = zeros(size);

6 matB = zeros(size);

7 matC = zeros(size);

8 %%%%%%%%%%%%%%%%%%%%%%%%%

9

10 %populate the matrices by reading the file

11 matA = dlmread(’matA16K.txt’);

12 matB = dlmread(’matB16K.txt’);

13 %...

14 %perform distributed matrix product

15 matlabpool open;

16 pmatA = distributed(matA);

17 pmatB = distributed(matB);

18 matC = pmatA * pmatB;

19 matlabpool close;

20 %...)

Code Excerpt 3.5: Matlab Approach Matrix Product.

In the code excerpt above, some instructions deserve special attention: matlabpool

open enables the full functionality of the parallel features, starting a distributed worker

pool (the pool size is the number of processes one wants to use); distributed(m), en-

sures that the matrix m is distributed across the worker pool; the calculation of matC is

7 Computational engines that run independently of client sessions, one per each core.



44 CHAPTER 3. PRELIMINARY EXPERIMENTS

expressed in the usual Matlab syntax (matC = pmatA * pmatB;) but, beneath, is done in

parallel; matlabpool close stops the worker pool, reseting Matlab to the usual (sequen-

tial) operation mode.

The previous Matlab code may thus be executed with different processor configura-

tions: a) in one node, using one or more cores, and b) in a set of cluster nodes, also with

a variable number of cores per node. Table 3.5 and Figure 3.2 present the evaluation

results obtained in several of these configurations. Results with more than one node were

produced by adding to the base node compute-4-0 additional nodes, from compute-4-1

to compute-4-3 and using all the 4 cores of each node.

Table 3.5: Matlab Matrix Product Results (seconds).

Order n (SIZE)

Num. of Cluster Nodes (num. of cores) 8K 16K 24K

1 (1) 60,06s ND ND

1 (2) 37,06s ND ND

1 (3) 30,06s 136,19s ND

1 (4) 27,38s 104,85s ND

2 (8) 20,27s 63,35s 190,23s

3 (12) 19,30s 48,88s 140,98s

4 (16) 19,16s 40,39s 112,72s

Figure 3.2: Matlab evaluation results graphic.
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Differently than what happened with the previous approaches with Matlab, wasn’t

possible to get all the execution times for orders 16K and 24K. Thus, only when using

3 or more cores was it possible to compute the product of order 16K, meaning that, in

Matlab, matrices of this order need a lot of processing power. This demand is even higher

for order 24K which requires at least two nodes (8 cores) to execute.

Figure 3.3 shows the speedups achieved by increasing the number of nodes and/or

cores. As may be observed, with order 8K the gains are modest with more than one node

and negligible with 3 or more nodes; with order 16K and 24K the speedups are smaller

but there’s still room for improvement with more than 5 nodes (scenarios not tested).

Figure 3.3: Speedups for all combinations.

Only the Matlab result for 8K in a single core (60, 06s) is comparable with the pre-

vious evaluated sequential approaches, having roughly the same performance as ATLAS

(59, 15s). The remaining Matlab results provide a comparison basis for the results of the

parallel versions discussed in the next chapter.



46 CHAPTER 3. PRELIMINARY EXPERIMENTS

3.8 Preliminary Results Analysis

This chapter ends with a brief comparison of the most relevant results from the preliminary

experiments conducted. These results are gathered in Figure 3.4.

The figure only presents results for sequential runs, and so Matlab appears only once

(for only one processor core, and when the order of the matrices is 8K). Also note that

the Naive and GSL implementations are not referenced in the graphic, due to the fact that

both are particularly time consuming, in comparison to the remaining ones. Therefore

those two implementations were excluded from the parallel approaches of Chapter 4.

Figure 3.4: Preliminary tests results comparison.

For 8K size matrices, Matlab is comparable with ATLAS (taking 60, 06 seconds against

59, 15). However, both lag behind ACML, which is approximately 21% faster. This same

observation applies to the 16K and 24K scenarios, where ATLAS and ACML keep the

same relative distance.

So, it is clear that, from all methods, ACML produced the best results, being the

most optimized library tested for matrix multiplication. However, ACML-based code

only compiles using the “opencc” compiler, which is a limitation that prevents ACML to



3.8. PRELIMINARY RESULTS ANALYSIS 47

be used in support of the MPI-based approach presented in Chapter 4. Since ATLAS is

the second fastest implementation, while it enables compilation using both “opencc” and

“gcc” compilers, it was the obvious choice to that role.





Chapter 4

Parallel Approaches

This chapter presents three parallel versions of the Matrix Product: a pure MPI approach,

an hybrid approach that combines MPI and OpenCL, and another hybrid approach based

on clOpenCL with POSIX Threads and Open-MX. For each version, its design and im-

plementation is discussed and evaluation results are presented. A final comparison is also

provided.

4.1 Parallelization Strategy

In order to distribute the work involved in the Matrix Product by different processors,

a parallelization strategy is needed. The same basic strategy is followed by all the ap-

proaches explored in this chapter: Data Partitioning. In this kind of parallelization stra-

tegy the problem data domain is divided in sub-domains, which are distributed across the

process/processor8 set, involved in the problem resolution. Then, each processor applies

the same algorithm to each sub-domain that was assigned to it. To maximize performance,

each processor should work independently on its sub-domains and synchronization points

or data exchanges among processors should be avoided/minimized.

8 In this chapter, the terms process and processor are interchangeable because there will be as much
worker processes as processors/devices (one process per processor/device).

49
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In the case of the Matrix Product, the Data Partitioning strategy is easily applicable

by performing a “sliced matrix product” (also called a “block matrix product”). This

means that, for the product AB, the matrix A is divided in horizontal sub-matrices subA

of the same height, and the matrix B is divided in vertical sub-matrices subB of the

same width; each subA must then be multiplied by each subB; the outcome is a set of

sub-matrices subC that, together, make up a result matrix C. Figure 4.1 represents this

approach for square matrices of order n× n (or, more simply, order n) and sub-matrices

(blocks) of height or width given by a parameter slice.

Figure 4.1: Sliced matrix product representation.

Let’s clarify this approach with an example. For instance, with square matrices A and

B of order n = 8K and slice = 1K, A and B will be divided, each one, into n/slice = 8

sub-matrices subA and subB, of order slice× n and n× slice, respectively. The product

of those sub-matrices results in (n/slice)2 = 64 sub-matrices subC, of order slice× slice,

which compose the final result: the matrix C, of order n.

In the parallel approaches discussed in this chapter, three values of slice were used:

1K, 2K and 4K. By taking into account that the order n of the matrices tested is 8K,

16K and 24K, the overall number of sub-matrices C (or tasks) is, for each combination

of slice and n, given by Table 4.1. The slice values were chosen to allow the generation

of different task amounts (i.e., a different number of sub-matrices products), allowing to
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balance the tasks by the processors as desired (i.e., more finely or more coarsely).

Table 4.1: Number of C sub-matrices.
Order n 8K 16K 24K

Slice 1K 2K 4K 1K 2K 4K 1K 2K 4K

Tasks 64 16 4 256 64 16 576 144 36

For each parallel approaches, only the evaluation results pertaining to the best per-

formance combinations of n and slice will be presented.

4.2 MPI-Only

In the pure MPI implementation – hereafter named MPI-Only – the sliced Matrix Product

is easy implemented resorting to a Master-Slave architecture – see Figure 4.2: there will be

one or more processes, of the Slave type, one per processor; one Master process will split

the data domain, dynamically distribute its portions by the Slaves and gather the partial

results in order to produce the final matrix. In each Slave, the product of sub-matrices

will use the ATLAS cblas sgemm function, a choice in accordance with the results of the

preliminary tests of Chapter 3 – see section 3.8.

Figure 4.2: Master – Slave Architecture.
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The Master process will begin by allocating and initializing the matrices A, B and

C. After this initial phase, the Master’s work can be divided in two phases: phase 1)

dynamic work distribution, while collecting the data results of the multiplication coming

from the Slaves; phase 2) Slaves termination, while collecting possible remaining results.

On a side note: initially the Slaves were responsible to hold the results until no more work

was available but, it was concluded that the application would not lose performance by

collecting already available results during the work distribution.

Code Excerpt 4.1 shows the implementation of phase 1 (the complete code is in Ap-

pendix A.2). There are two nested “for” cycles that ensure that all combinations of

sub-matrices of A and B (i.e., all tasks) are distributed to the Slaves. For example, if

the matrices A and B are of order 8K, and the slice value is 4K, matrices A and B

will be divided in 2 sub-matrices each, and there will be 22 = 4 sub-matrix products –

see Figure 4.3. Therefore, the Master will distribute, in order, the sub-matrices pairs

< subA1, subB1 >, < subA1, subB2 >, < subA2, subB1 > and < subA2, subB2 >, which

will result in the sub-matrices subC1, subC2, subC3 and subC4.

Figure 4.3: A specific sliced matrix product.

In each iteration of the inner “for” loop, the Master waits for a work request from the

Slaves, with possible “piggybacked” results (lines 11 to 17), meaning that a Slave can

be asking for work to perform having already executed the previous work received and so,
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at the same time, is giving back the previous work results to the Master; the Slave can

also be asking for work for the first time, which means that it has no results to return.

The Master then tests (lines 18 to 25) if the Slave has returned results (a subC),

in which case they are copied to the final matrix C. The offsets blockA and blockB are

fundamental to ensure that the results are set in the correct place on matrix C.

Right after, the Master sends work (a task) to the Slave, composed of work offsets, and

A and B sub-matrices (lines 26 to 36). Note that the sub-matrices of B are originated

from the matrix B transposed (BT ); as explained before (see section 3.2), the transposition

of matrix B allows to compute much more cache-friendly dot-products.

1 #define SIZE 8192 //16384 //24576

2 #define SLICE 1024 //2048 //4096

3 //...

4 if (taskId == 0) { // MASTER

5 //...

6 int numSlicesPerMatrix = SIZE / SLICE;

7 for(int sliceA = 0; sliceA < numSlicesPerMatrix; sliceA++)

8 {

9 for(int sliceB = 0; sliceB < numSlicesPerMatrix; sliceB++)

10 {

11 //

12 // receive work request from slave, with eventual piggybacked results

13 //

14 retCode = MPI_Recv(&dataSlaveMaster, 1, MPI_DATA_SLAVEMASTER, MPI_ANY_SOURCE, TAG_SLAVEMASTER, \

15 MPI_COMM_WORLD, &mpiStatus);

16 checkMpiError(retCode, "MPI_Recv", __LINE__);

17 mpiSlaveRank = mpiStatus.MPI_SOURCE;

18 //

19 // we have indeed received piggybacked results; copy them to the final destination in c

20 //

21 if (dataSlaveMaster.blockA != -1 && dataSlaveMaster.blockB != -1) {

22 for(int ii=0; ii<SLICE; ii++)

23 memcpy( &(c[(dataSlaveMaster.blockA*SLICE+ii)*SIZE+dataSlaveMaster.blockB*SLICE]), \

24 &(dataSlaveMaster.c2[ii*SLICE]), SLICE*sizeof(float) );

25 }

26 //

27 // send work data to slave

28 //

29 dataMasterSlave.blockA = sliceA; dataMasterSlave.blockB = sliceB;

30

31 memcpy(&(dataMasterSlave.a), &(a[sliceA*SLICE*SIZE]), SLICE*SIZE*sizeof(float));

32 memcpy(&(dataMasterSlave.b), &(bTrans[sliceB*SLICE*SIZE]), SLICE*SIZE*sizeof(float));

33

34 retCode = MPI_Send(&dataMasterSlave, 1, MPI_DATA_MASTERSLAVE, mpiSlaveRank, TAG_MASTERSLAVE, \

35 MPI_COMM_WORLD);

36 checkMpiError(retCode, "MPI_Send", __LINE__);

37 }

38 }

39 // PHASE 2 //

40 } // END MASTER

Code Excerpt 4.1: MPI-Only – Master Phase 1.
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The data exchanged between the Master and Slave processes fits into two data types:

dataMasterSlave t (for the direction Master→ Slave) and dataSlaveMaster t (for the

opposite direction). The definition and instantiation of these structures is in Code Ex-

cerpt 4.2: the first has a matrix A offset (blockA), a matrix B offset (blockB) and

sub-matrices of A and B (a and b); the last includes the offsets and a sub-matrix of C

(c2). Both structures were used to derive the MPI datatypes MPI DATA MASTERSLAVE and

MPI DATA SLAVEMASTER, in order to facilitate their exchange.

1 //...

2 typedef struct {

3 int blockA;

4 int blockB;

5 float a[SLICE*SIZE];

6 float b[SIZE*SLICE];

7 } dataMasterSlave_t;

8 //...

9 typedef struct {

10 int blockA;

11 int blockB;

12 float c2[SLICE*SLICE];

13 } dataSlaveMaster_t;

Code Excerpt 4.2: MPI-Only – Datatype definition.

The phase 2) of the Master (Code Excerpt 4.3) begins when the Master has no more

work to distribute by the Slaves; thus, for each Slave, the Master needs to ensure that all

possible results still returned by the Slave are properly set in matrix C (lines 12 to 17);

then, the Master will inform the Slaves that there is no more work, by replying with both

work offsets set to “-1” and no sub-matrices attached (lines 18 to 25).

1 if (taskId == 0) { // MASTER

2 // PHASE 1 //

3 //...

4 for (int s=1; s <= numSlaves; s++)

5 {

6 // receive work request from slave, with eventual piggybacked results

7 retCode = MPI_Recv(&dataSlaveMaster, 1, MPI_DATA_SLAVEMASTER, MPI_ANY_SOURCE, TAG_SLAVEMASTER, \

8 MPI_COMM_WORLD, &mpiStatus);

9 checkMpiError(retCode, "MPI_Recv", __LINE__);

10 mpiSlaveRank = mpiStatus.MPI_SOURCE;

11 //

12 // we have indeed received piggybacked results; copy them to the final destination in c

13 if (dataSlaveMaster.blockA != -1 && dataSlaveMaster.blockB != -1) {

14 for(int ii=0; ii<SLICE; ii++)

15 memcpy( &(c[(dataSlaveMaster.blockA*SLICE+ii)*SIZE+dataSlaveMaster.blockB*SLICE]), \

16 &(dataSlaveMaster.c2[ii*SLICE]), SLICE*sizeof(float) );

17 }
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18 //

19 // send termination data to slave

20 dataMasterSlave.blockA = dataMasterSlave.blockB = -1;

21

22 retCode = MPI_Send(&dataMasterSlave, 1, MPI_DATA_MASTERSLAVE, mpiSlaveRank, TAG_MASTERSLAVE, \

23 MPI_COMM_WORLD);

24 checkMpiError(retCode, "MPI_Send", __LINE__);

25 }

26 //...

27 } // END MASTER

Code Excerpt 4.3: MPI-Only – Master Phase 2.

A Slave is simpler than the Master – see Code Excerpt 4.4. The Slave loop begins by

asking the Master for work (lines 6 to 10); at this stage it may already have executed

previous work and so, while asking for more, it sends “piggybacked” results to the Master;

or, it may be the first time it is asking for work and so it sends “-1” work offsets to inform

the Master of this situation. In line 15, the Slave receives the potential work coming from

the Master. Then, the Slave checks if what has received from the Master is indeed more

work or is a termination message (line 21). If it is not a termination message, the Slave

will submit the sub-matrices received to the ATLAS library (line 29), to be multiplied.

The next time the Slave asks the Master for work, the matrix product results and the

work offsets are sent back “piggybacked”. If it is a termination message coming from the

Master, then the Slave terminates its work (line 33).

1 else { // SLAVE

2 dataSlaveMaster.blockA = dataSlaveMaster.blockB = -1;

3

4 while (1) {

5

6 //

7 // ask work from master, with eventual piggybacked results

8 //

9 retCode = MPI_Send(&dataSlaveMaster, 1, MPI_DATA_SLAVEMASTER, 0, TAG_SLAVEMASTER, MPI_COMM_WORLD);

10 checkMpiError(retCode, "MPI_Send", __LINE__);

11

12 //

13 // receive work data from master

14 //

15 retCode = MPI_Recv(&dataMasterSlave, 1, MPI_DATA_MASTERSLAVE, 0, TAG_MASTERSLAVE, MPI_COMM_WORLD, \

16 MPI_STATUS_IGNORE);

17 checkMpiError(retCode, "MPI_Recv", __LINE__);
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18 //

19 // check if its actual work (not termination)

20 //

21 if (dataMasterSlave.blockA != -1 && dataMasterSlave.blockB != -1) {

22

23 dataSlaveMaster.blockA = dataMasterSlave.blockA;

24 dataSlaveMaster.blockB = dataMasterSlave.blockB;

25

26 //

27 // multiply, using ATLAS library

28 //

29 cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, SLICE, SLICE, SIZE, 1.0, \

30 dataMasterSlave.a, SIZE, dataMasterSlave.b, SIZE, 0.0, dataSlaveMaster.c2, SLICE);

31 }

32 else

33 break;

34

35 } // while(1)

36 } // END SLAVE

Code Excerpt 4.4: MPI-Only – Slave Code.

4.2.1 Test Deployment

The evaluation of the MPI-Only approach was done using all the 4 nodes of the IPB’s

cluster datacenter subset (characterized at section 2.6), each one with a Quad-core CPU,

for a total of 16 cores. It was decided to have, in each node, one MPI process per each

core, after preliminary tests that showed this configuration to be the most performant.

As such, the node compute-4-0 hosted the Master and 3 Slaves, and nodes compute-4-1

to compute-4-3 hosted 4 Slaves each, for a total of 1 Master and 15 Slaves.

4.2.2 Memory Issues

As already stated, all tests were done with matrices of order n ∈ {8K, 16K, 24K}. How-

ever, for n = 24K and slice ≥ 2K, the RAM of the cluster node that hosts the Master

process it’s simply not enough. This is explained next, for slice = 2K.

Each 24K matrix takes 2.25Gb of RAM (recall section 3.1). In addition to the 3

matrices A, B and C there is a structure dataMasterSlave t that demands 375Mb to take

a sub-matrix of A and a sub-matrix of B; there is also a structure dataSlaveMaster t that

requires roughly 16Mb to hold a sub-matrix of C. Thus, the memory space needed by the
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Master alone amounts to roughly 7.14Gb. A Slave only needs to allocate 375Mb for a stru-

cture dataMasterSlave t and approximately 16Mb for a structure dataSlaveMaster t;

however, these values must be tripled or quadrupled, depending on the number of Slaves

per node. Table 4.2 synthesizes the specific memory requirements of the individual Master

and Slave processes, as well as the overall memory consumption in the involved cluster

nodes, when n = 24K and slice = 2K.

Table 4.2: Memory Consumption for n = 24K and slice = 2K (Gb).

matrix matrix matrix structure structure
A B C dataMasterSlave t dataSlaveMaster t Total

Master 2.25 2.25 2.25 0.375 0.015625 7.140625

Slave - - - 0.375 0.015625 0.390625

compute-4-0 2.25 2.25 2.25 (1 + 3)× 0.375 (1 + 3)× 0.015625 8.3125

compute-4-[1-3] - - - 4× 0.375 4× 0.015625 1.5625

It thus becomes clear that, with 8Gb of RAM and only 1Gb for disk swap, the node

that hosts the Master has insufficient resources to execute our MPI-Only Matrix Product,

when n = 24K and slice = 2K. This scenario becomes worse when slice = 4K.

So, in order to solve this issue, the MPI implementation had to be slightly modified

to support the using of memory mapped files through mmap: a POSIX-compliant Unix

system call that maps files into memory (file contents are not entirely read from the disk;

the actual reads from disk are performed in a “lazy” manner, after a specific location is

accessed [Ker12]). The following section explains how the MPI-Only version uses mmap.

4.2.3 Using MMAP

The general algorithm is still the same as the one without mmap; only this time, instead of

allocating the matrices in the “usual” way (with malloc), they are created in files that are

mapped in main memory (refer to Appendix A.2 for the complete code implementation).

For instance, when using the mmap technique the allocation and initialization code of the
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matrix A turns from:

1 a=(float *)malloc(sizeof(float)*SIZE*SIZE);

2 if (a == NULL) { perror("malloc"); exit(errno); }

3 initMatrixA(a);

into

1 // alloc and initialize matrices

2 //

3 fd_a=open("/state/partition1/tmp/matrixA.bin", O_CREAT | O_TRUNC | O_RDWR, 00700);

4 if (fd_a < 0) { perror("open"); exit(errno);}

5 offset=lseek(fd_a, sizeof(float)*SIZE*SIZE-1, SEEK_SET);

6 if (offset != sizeof(float)*SIZE*SIZE-1) { perror("lseek"); exit(errno); }

7 retValue=write(fd_a, &dummy, 1);

8

9 if (retValue != 1) { perror("write"); exit(errno); }

10

11 a = mmap(0, sizeof(float)*SIZE*SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd_a, 0);

12 if (a == MAP_FAILED) { perror("mmap"); exit(errno); }

13

14 initMatrixA(a);

In the code above, a specific matrix file is created (“matrixA.bin”, at line 3); then,

the file is expanded to receive the matrix, setting its offset to the desired size (line 5) and

writing a single byte (line 7); next (line 11), the file is mapped in memory and bound to

a pointer; after this, the file can be accessed as a “normal” array, during its initialization

(line 14) and throughout the rest of the code; thus, the remaining of the code is exactly

the same as in the first MPI implementation.

Note that, for performance reasons, the matrices files are created in the local disk of

the node that hosts the Master (line 3), thus avoiding the usage of possible network file

systems exported by the frontend.

By exploring mmap it then becomes possible to evaluate the Matrix Product with

matrices of order n = 24K, and slice = 2K or slice = 4K. In fact this MPI version

was solely used for that purpose; the other (lighter) combinations of n and slice were

evaluated using the initial MPI version.
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4.2.4 Evaluation Results

The malloc based version was always used, except for order 24K and slices 2K and 4K, in

which case the mmap based version was used. It should be noted that the mmap version

doesn’t have a significant performance degradation (for the same combinations of order

and slice) when compared to the malloc version; thus it is not unfair to mix the results

of both versions.

The results are presented in Table 4.3, which restrains to the best results.

Table 4.3: MPI-Only Evaluation Results.

Order n 8K 16K 24K

Slice 2K 4K 4K∗

Time (s) 32, 55s 130, 51s 536, 34s
∗mmap results

The best results for orders 8K, 16K and 24K are obtained when using the slices 2K,

4K and 4K, respectively. This translates into 16, 16 and 36 tasks, in accordance to the

metric (n/slice)2 introduced in section 4.1. Note that these task numbers are those that

fit more closely to the number of slave processes (15), thus ensuring that all Slaves are as

evenly busy as possible, while minimizing message exchanges.

4.3 MPI-with-OpenCL

The MPI-with-OpenCL approach is a hybrid approach that uses: 1) MPI to spawn worker

(Slave) processes and to handle communications between them, and 2) OpenCL to allow

the workers to exploit the computing devices of their hosting nodes. This is one way to

surpass a limitation of the original OpenCL specification, by which an OpenCL program

is only able to access the computing devices of the node where its host component starts

(another way is using clOpenCL, to be discussed in section 4.4).
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Figure 4.4 shows how the Master-Slave architecture already used in the MPI-Only

approach, may now be deployed to fully exploit the OpenCL devices offered by the testbed

cluster. Thus, there’s a MPI Slave process for each device used, in each node; a Slave

will interact with its specific local device through OpenCL. Therefore, it is as if many

OpenCL applications (the Slaves) were launched and executed at the same time. The

Slaves are given tasks by the Master that, like in the MPI-Only approach, shares a node

with some Slaves.

Figure 4.4: Master-Slave Architecture of the MPI-with-OpenCL approach.

For this approach a matrix multiplication OpenCL kernel is needed instead of a matrix

multiplication function. The kernel will be executed by all OpenCL devices, with different

input data (following the Single Program Multiple Data (SPMD) model). Two different

OpenCL kernels were used, with a strong influence on the evaluation results – see section

4.3.3.

In the implementation of the MPI-with-OpenCL approach (see the complete code in

Appendix A.2) several things had to be done differently from the MPI-Only approach.
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To start with, when using OpenCL in a cluster environment, it is necessary to collect

information about the platforms and devices available in the cluster in order to select those

to be exploited. For this purpose a query operation was implemented, being triggered by

the command line argument“-q” of the developed test application – see Code Excerpt 4.5.

The full code of the clQueryPlatformsAndDevices function invoked in line 4 is available

in Appendix A.2 (it is standard OpenCL code for platforms and devices querying).

1 //...

2 if ( !strcmp(argv[1], "-q") ) {

3 if (taskId > 0) // SLAVE

4 clQueryPlatformsAndDevices(processorName);

5 }

6 //...

Code Excerpt 4.5: MPI-with-OpenCL – Slave OpenCL Platform and Devices Querying.

This querying procedure is done only by the Slaves, since these are the MPI processes

that are going to interact with the devices. The local (Slave specific) results of the queries

are formatted and appended to a device file (named “Devicefile”, by default). In our

testbed cluster, when using all OpenCL devices available with a Slave per device, the

content of this file is as follows:

1 compute-4-0.local:0:0:AMD Accelerated Parallel Processing: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz

2 compute-4-0.local:1:0:NVIDIA CUDA: GeForce GTX 460

3 compute-4-0.local:1:1:NVIDIA CUDA: GeForce GTX 460

4 compute-4-1.local:0:0:NVIDIA CUDA: GeForce GTX 460

5 compute-4-1.local:1:1:AMD Accelerated Parallel Processing: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz

6 compute-4-2.local:0:0:AMD Accelerated Parallel Processing: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz

7 compute-4-2.local:1:0:NVIDIA CUDA: GeForce GTX 460

8 compute-4-3.local:0:0:AMD Accelerated Parallel Processing: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz

9 compute-4-3.local:1:0:NVIDIA CUDA: GeForce GTX 460

Thus, for each cluster node, there are as much lines in the file as slaves running in the

node. Each line is a sequence of 5 fields (separated by “:”) whose name is self-explanatory:

processorName:platformID:deviceID:platformName:deviceName.

When not in query mode the Slaves will react based on the supplied device file, and

the Master will operate exactly in the same manner as in the MPI-Only approach9: the

Master allocates and initializes the matrices A, B and C, and then the two same phases

9 In fact, the Master code is exactly the same as before.
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follow (phase 1 - dynamic work distribution by the Slaves, while collecting results from

them; phase 2 - Slaves termination, while collecting (possible) remaining results).

However, a Slave now operates differently. Before asking the Master for work (as it

did on the MPI-Only approach), a Slave needs to select and bind to a device of its own.

A Slave does this based on the device file previously created, whose path is passed to the

hybrid MPI executable through the command line. A Slave will select the device whose

line (in the device file) matches its MPI rank (note that both file line numbers and MPI

slave ranks start at 110). For this to be effective, the MPI machine file must be created

accordingly. For instance, in our cluster the following machine file matches the device file

previously shown:

1 compute-4-0:3

2 compute-4-1:2

3 compute-4-2:2

4 compute-4-3:2

The processing of the device file by a Slave is shown in Code Excerpt 4.6. In line 4,

readDeviceFile(taskId, &argc file, &argv file, argv[2]) will read the taskID’th

line of the device file given in argv[2], returning the full tokenized line in argv file (note

that taskID is the Slave rank). The Slave then grabs the platform id and the device id

(lines 10 and 11), that are needed for the initialization of its OpenCL device (line 12).

This initialization also includes the usual OpenCL proceedings, like creating a context

and buffers, and setting the kernel and its arguments.

1 else { // SLAVE

2 // read my platform and device from device file

3 int argc_file=0; char **argv_file=NULL;

4 readDeviceFile(taskId, &argc_file, &argv_file, argv[2]);

5

6 if (argc_file == 0){

7 printAlways3("[SLAVE %d]: aborting: file %s absent, empty or malformed\n", taskId, argv[2]);

8 }

9 else {

10 int p = atoi(argv_file[1]);

11 int d = atoi(argv_file[2]);

12 clInitPlatformsAndDevices(processorName,p,d);

Code Excerpt 4.6: Slave device file processing and OpenCL initialization.

10 The Master rank is zero.
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The next steps (Code Excerpt 4.7) are exactly the same as in the MPI-Only approach,

except this time the multMatrix function (line 32) doesn’t perform the actual multipli-

cation; instead, it contains the necessary host-side OpenCL code to send the input data

to the device, to trigger the kernel execution, and to collect the output data (see Code Ex-

cerpt 4.8). The result of the sub-matrices multiplication is sent back to the Master in the

next work request (line 18 in Code Excerpt 4.7), again like in the MPI-Only approach.

13 dataSlaveMaster.blockA = dataSlaveMaster.blockB = -1;

14 while (1)

15 {

16 // ask work from master, with eventual piggybacked results

17 retCode = MPI_Send(&dataSlaveMaster,1,MPI_DATA_SLAVEMASTER,0,TAG_SLAVEMASTER,MPI_COMM_WORLD);

18 checkMpiError(retCode, "MPI_Send", __LINE__);

19

20 // receive work data from master

21 retCode = MPI_Recv(&dataMasterSlave, 1, MPI_DATA_MASTERSLAVE, 0, TAG_MASTERSLAVE, \

22 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

23 checkMpiError(retCode, "MPI_Recv", __LINE__);

24

25 // check if its actual work (not termination)

26 if (dataMasterSlave.blockA != -1 && dataMasterSlave.blockB != -1){

27

28 dataSlaveMaster.blockA = dataMasterSlave.blockA;

29 dataSlaveMaster.blockB = dataMasterSlave.blockB;

30 // multiply

31 mulMatrix(dataMasterSlave.a, dataMasterSlave.b, dataSlaveMaster.c2);

32 }

33 else

34 break;

35 } // while (1)

36 } // else (argc_file > 0)

37 } // else SLAVE

Code Excerpt 4.7: MPI-with-OpenCL – Slave main loop.

38 void mulMatrix(float *a, float *b, float *c){

39 cl_int result; cl_event event[3];

40 result = clEnqueueWriteBuffer(GLOBAL_command_queue, GLOBAL_bufferA, CL_FALSE, 0, sizeof(float)*SLICE \

41 *SIZE, a, 0, NULL, &event[0]);

42 clTestSuccess("clEnqueueWriteBuffer", result);

43

44 result = clEnqueueWriteBuffer(GLOBAL_command_queue, GLOBAL_bufferB, CL_FALSE, 0, sizeof(float)*SIZE \

45 *SLICE, b, 0, NULL, &event[1]);

46 clTestSuccess("clEnqueueWriteBuffer", result);

47

48 result = clEnqueueNDRangeKernel(GLOBAL_command_queue, GLOBAL_kernel, 2, NULL, GLOBAL_global_work_size,\

49 GLOBAL_local_work_size, 2, event, &event[2]);

50 clTestSuccess("clEnqueueNDRangeKernel", result);

51

52 result = clEnqueueReadBuffer(GLOBAL_command_queue, GLOBAL_bufferC, CL_TRUE, 0, sizeof(float)*SLICE \

53 *SLICE, c, 1, &event[2], NULL);

54 clTestSuccess("clEnqueueReadBuffer", result);

55 }

Code Excerpt 4.8: MPI-with-OpenCL – Host-side code of the matrix product.
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4.3.1 Test Deployment

Figure 4.4 shows all OpenCL devices usable in the testbed cluster, and how MPI and

OpenCL may be combined to fully exploit them. As mentioned at section 2.6, compute-4-0

has 3 devices available (1 CPU and 2 GPUs) while the rest of the cluster nodes have 2

devices each (1 CPU and 1 GPU). Therefore a total of 9 OpenCL devices are available to

support this approach. However, as explained in section 4.3.3, two different configurations

were evaluated.

4.3.2 Memory Issues

The same insufficient memory issues that emerged in the MPI-Only approach, with ma-

trices of order 24K, and slice 2K or 4K, were also faced in this approach. The solution

was again to create the matrices in the file system and then use the mmap primitive to

map them in RAM, following the same method as in the MPI-Only approach.

4.3.3 Evaluation Results

The evaluation of the MPI-with-OpenCL approach was done with two different matrix

multiplication kernels: a naive kernel, and an optimized one. At the same time, two

different deployment configurations were tested: one fully utilizing the OpenCL devices

of the cluster (4 CPUs and 5 GPUs, requiring 9 Slaves), and another one using solely the

GPU devices (thus requiring 5 Slaves). This unfolding (both in kernels and deployments)

was done in order to assess the possible influence that a set of “slow” devices (the CPUs)

could have when operating in conjunction with “fast” devices (the GPUs).

In the next section the kernels are discussed and their evaluation results presented.
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Naive Kernel

Code Excerpt 4.9 shows the kernel used to perform the first evaluation of the MPI-with-

OpenCL approach. It is a simple/naive kernel, easy to understand.

In this kernel, subA and subB are the A and B sub-matrices to be multiplied, subC

will store the results, size is the order n of the original A and B square matrices and

slice is the parameter introduced in the begining of this chapter (section 4.1).

1 __kernel void matrix_mult(const int size, const int slice, __global float *subA, \

2 __global float *subB, __global float *subC){

3

4 int i, j, k; float v=0;

5

6 i = get_global_id(0); j = get_global_id(1);

7 for(k=0; k<size; k++)

8 v += subA[i*size+k] * subB[j*size+k];

9 subC[i*slice+j] = v;

10 }

Code Excerpt 4.9: Naive Kernel for sliced matrix multiplication.

The kernel works as follows: the kernel qualifier indicates that the function matrix

mult is to be run on an OpenCL device; when this function is called from the host

code, it will generate a grid of threads on the device; the keyword global desig-

nates that the input matrices are in global memory; the keywords get global id(0)

and get global id(1) refer to the indices of a thread inside the running kernel (since all

threads execute the same kernel code, there needs to be a mechanism to allow them to

differentiate themselves and determine what part of the data structure they are supposed

to work on); each invocation of the kernel uses the two thread indices to 1) identify the

row of subA and the column of subB that are going to be targeted by a dot product

operation in the “for” loop, and 2) to set the result element in matrix subC.

The evaluation results with the naive kernel are shown in Table 4.4.

The best results for orders 8K, 16K and 24K are obtained when using the slices 2K,

4K and 4K, respectively like in the MPI-Only approach (the same number of tasks is

involved – 16, 16 and 36, respectively – and this number still provides the best matching
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Table 4.4: MPI-with-OpenCL Evaluation Results – naive kernel.
Order n 8K 16K 24K

Slice 2K 4K 4K∗

9 Devices - Time (s) 42, 45s 236, 94s 840, 03s
5 GPUs - Time (s) 25, 01s 212, 77s 563, 50s

∗ mmap results

(in excess) with the number of Slaves).

The results are not better than the MPI-Only results (except for order 8K and slice 2K

with 5 GPUs) and the differential between the two approaches is bigger when using CPU

devices mixed with GPUs. However, it should be stressed that the MPI-Only approach

uses the ATLAS matrix multiplication function, which was tuned to the particular CPUs

of the cluster. Thus, for the comparison to be fair, the results of the MPI-with-OpenCL

approach with the naive kernel should be compared to a MPI-Only version with a naive

matrix multiplication function. An alternative is to improve the performance of the MPI-

with-OpenCL approach by using another, more optimized kernel (see below).

Optimized Kernel

One way to increase the execution speed of an OpenCL kernel is to take advantage of

faster memory types available in the OpenCL memory hierarchy. The memory used in

the naive kernel is global memory, the slowest level of OpenCL memory. However, global

memory is shared by all device threads, which leads to simpler kernels (like the naive).

The fastest OpenCL memory level is local memory that is only visible to the threads of

the same work-group (Appendix B.1.2 describes these concepts) and thus usually requires

more sophisticated kernels to be properly exploited.

Code Excerpt 4.10 shows a matrix multiplication kernel that explores local mem-

ory. Since local memory has limited size, it is necessary to implement yet another level

of sliced matrix multiplication in the kernel, to address subsets (blocks) of the original
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slices. The work-item threads must explicitly fill local memory before it can be used,

being this the first task of the kernel (lines 10 to 26). A thread loads one element

of the block from global memory and then a synchronization barrier waits for all the

other threads to do the same (line 29). The memory write pattern is heavy on lo-

cal memory and only writes once to the global memory at the end (line 40). The

value 16 for the constant BLOCK SIZE was defined to be the same as the local work

size parameter of the clEnqueNDRangeKernel (see Code Excerpt 4.8). In turn, this

value was chosen in accordance with the slice parameter (which must be multiple of the

local work size) and the hardware characteristics of the GPUs used (NVIDIA GTX460).

1 #define BLOCK_SIZE 16

2 __kernel void matrix_mult(int size, int slice, __global float *subA, __global float *subB, \

3 __global float *subC) {

4 int wA=size; int wB=slice;

5 int bx = get_group_id (0); // 2D Thread ID x

6 int by = get_group_id (1); // 2D Thread ID y

7 int tx = get_local_id (0) ; // 2D local ID x

8 int ty = get_local_id (1) ; // 2D local ID y

9

10 // first and last sub-matrix of A and B for this block

11 int aBegin = wA * BLOCK_SIZE * by ;

12 int aEnd = aBegin + wA - 1 ;

13 int aStep = BLOCK_SIZE ;

14 int bBegin = BLOCK_SIZE * bx ;

15 int bStep = BLOCK_SIZE * wB;

16

17 float Csub = 0.0 ;

18 // Iterate over all sub-matrices of A and B

19 for(int a = aBegin , b = bBegin ; a <= aEnd ; a+=aStep, b+=bStep){

20 // Static work-group local allocations

21 __local float As[BLOCK_SIZE][BLOCK_SIZE] ;

22 __local float Bs[BLOCK_SIZE][BLOCK_SIZE] ;

23

24 // Each thread loads one element of the block from global memory

25 As[ty][tx] = subA[ a + wA * ty + tx] ;

26 Bs[ty][tx] = subB[ b + wB * ty + tx] ;

27

28 // Barrier to synchronize all threads

29 barrier (CLK_LOCAL_MEM_FENCE) ;

30 // Now the local sub-matricies As and Bs are valid

31

32 // Multiply the two sub-matrices. Each thread computes one element of the block sub-matrix

33 for( int k = 0 ; k < BLOCK_SIZE ; ++k )

34 Csub += As[ty][k] * Bs[k][tx] ;

35

36 // Barrier to synchronize all threads before moving

37 barrier (CLK_LOCAL_MEM_FENCE) ;

38 }

39 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx ;

40 subC[ c + wB * ty + tx ] = Csub ; // write to global memory

41 }

Code Excerpt 4.10: Kernel taking advantage of the varying speeds in memory hierarchy.
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Table 4.5 shows the execution times with the new kernel for the best combinations of

order and slice (the same combinations used with the naive kernel). The speedups relative

to the naive kernel are also shown.

Table 4.5: MPI-with-OpenCL Evaluation Results – optimized kernel.

Order n 8K 16K 24K

Slice 2K 4K 4K∗

9 Devices - Time (s) 124, 89s 443, 65s 2735, 28s

Speedup to Naive 0, 34 0, 53 0, 31

5 GPUs - Time (s) 16, 64s 65, 99s 236, 71s

Speedup to Naive 1, 50 3, 22 2, 38
∗ mmap results

As may be observed, the performance impact of the new kernel is completely different

between the two device deployments. When CPUs are involved, the execution time dete-

riorates to the point that they become significantly worse than the times produced by the

naive kernel; this is clearly shown by the speedup values (< 1). With GPUs only, the new

kernel brings improvements, as shown by the speedup values attained. The improvements

are stronger with bigger matrices and slices: the sub-matrices produced from matrices

A and B are also bigger, thus more blocks are created inside the optimized kernel; since

these blocks are transferred to local memory, it is faster to work on these big local sets

than it is to write several fine grained subsets to the local memory.

The results achieved with both the naive kernel and the optimized one, seem to imply

that the CPU devices are too slow when compared to GPUs, thus delaying the parallel

execution. This is aggravated with the last kernel, which is particularly optimized for the

GPUs used.

4.4 clOpenCL

As mentioned before (see sections 2.3.4 and 2.4), the clOpenCL approach is a hybrid ap-

proach that allows multi-threaded (POSIX threads) based OpenCL applications to surpass
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the limitations imposed by the original OpenCL specification, allowing local OpenCL de-

vices to be complemented by external devices (e.g., scattered across cluster nodes) in

order to increase performance.

Figure 4.5 shows a deployment of the clOpenCL architecture in the testbed cluster:

the host application component (Host APP) launches as much threads as devices available

(both local and external); each thread interacts with its own device via the clOpenCL

library; interaction with local devices is direct, through the local OpenCL routine; for

remote nodes the clOpenCL library uses OpenMX to handle communication with proxy

daemons that will interact with their own local OpenCL devices.

Figure 4.5: A deployment of the clOpenCL Architecture.

To evaluate the matrix multiplication in this kind of deployment, it was first necessary

to fit the test application to the POSIX threads framework. The host component of the

test application thus became multi-threaded, following a dynamic model of work (auto-)-

assignment: a thread is created for each OpenCL device involved in the matrix product;

while there is work available, each thread selects mutually exclusive sub-matrices pairs



70 CHAPTER 4. PARALLEL APPROACHES

(< subA, subB >), queues them to its device, triggers the kernel execution and de-queues

the results (a sub-matrix subC). Figure 4.6 represents this non-hierarchical operation

model (in opposition to the hierarchical Master-Slave model of the previous MPI-Only

approach).

Figure 4.6: Host application execution method.

Similarly to the MPI-with-OpenCL test application, the clOpenCL instance also has

a query option to discover all local and remote OpenCL platforms and devices available.

This mechanism takes advantage of the special platform attribute CL PLATFORM HOSTNAME,

a specific extension of OpenCL introduced by clOpenCL (see section 2.4.2). So, while in

the MPI-with-OpenCL approach each Slave queries its own local platforms and devices,

in clOpenCL only the main thread of the Host APP does the querying, since the OpenCL

primitives invoked (clGetPlatformIDs and clGetDeviceIDs) are now cluster-aware. Af-

terwards, the specific set of platforms and devices to be used are passed to the application

explicitly through the command line or via a properly formatted file. These platforms and

devices are initialized by the main thread (in order to collect their platform and device

IDs) and then a worker thread will be created for each device – see Code Excerpt 4.11.
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1 //...

2 num_threads=GLOBAL_num_devices;

3 //...

4 for(d=0; d<GLOBAL_num_devices; d++){

5 //...

6 if(pthread_create(&GLOBAL_dev_thread[d], NULL, dev_thread_routine,(int *)(long)d) != 0){

7 perror("pthread_create");

8 exit(1);

9 }

10 }

11 //...

Code Excerpt 4.11: clOpenCL – Host App Thread creation.

Each worker thread will execute the same routine (dev thread routine, line 6),

where it will start by creating the usual OpenCL objects (a context specific to the thread’s

platform and device, a command queue and buffers), compiling the matrix multiplication

kernel and setting the kernel arguments. Right after, a worker thread enters a work auto-

assignment loop (see Code Excerpt 4.12), where it picks up sub-matrices of A and B yet

to be multiplied and invokes the OpenCL code necessary to do so (lines 4 to 23). Tests

are made in order to check if the sub-matrices that were last sent to the devices can be

reused (lines 4 to 16), improving the overall application performance.

The OpenCL code inside the loop is very similar to the one used in the MPI-with-

OpenCL approach (see code Excerpt 4.7), a good indication about the transparency of

the clOpenCL approach.

1 get_work(&i, &j);

2 while((i != -1) && (j != -1)){

3

4 if(i != last_i){

5 result = clEnqueueWriteBuffer(command_queue, bufferA, CL_FALSE, 0, \

6 sizeof(float)*GLOBAL_size*GLOBAL_slice, GLOBAL_A+GLOBAL_size*i, 0, \

7 NULL, &event[0]);

8 cclTestSuccess("clEnqueueWriteBuffer", result);

9 }

10

11 if(j != last_j){

12 result = clEnqueueWriteBuffer(command_queue, bufferB, CL_FALSE, 0, \

13 sizeof(float)*GLOBAL_slice*GLOBAL_size, GLOBAL_B+GLOBAL_size*j, 0, \

14 NULL, &event[1]);

15 cclTestSuccess("clEnqueueWriteBuffer", result);

16 }

17 result = clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL, global_work_size, local_work_size, \

18 2, event, &event[2]);

19 cclTestSuccess("clEnqueueNDRangeKernel", result);

20

21 result = clEnqueueReadBuffer(command_queue, bufferC, CL_TRUE, 0, \

22 sizeof(float)*GLOBAL_slice*GLOBAL_slice, C2, 1, &event[2], NULL);

23 cclTestSuccess("clEnqueueReadBuffer", result);
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24 for(i2=0; i2<GLOBAL_slice; i2++)

25 for(j2=0; j2<GLOBAL_slice; j2++)

26 GLOBAL_C[(i+i2)*GLOBAL_size+j+j2] = C2[i2*GLOBAL_slice+j2];

27

28 last_i = i;

29 last_j = j;

30 get_work(&i, &j);

31 } // while

Code Excerpt 4.12: clOpenCL – Host App Thread main loop.

4.4.1 Test Deployment

Figure 4.5 shows all OpenCL devices available in the testbed cluster, and how clOpenCL

is able to fully exploit them. A total of 9 OpenCL devices are available. However, like

with MPI-with-OpenCL, two distinct configurations were evaluated – se section 4.4.3.

4.4.2 No Memory Issues

The memory issues that occurred in the previous approaches (MPI-Only and MPI-with-

OpenCL) when using matrices of order 24K and slice >= 2K, are now absent. The

Host App still need to reserve memory for the matrices A, B and C; however, the sub-

matrices exchanged with clOpenCL daemons are passed by reference, between the Host

App threads and the Open-MX communication layer; this is enough to allow the RAM

working-set of the Host App to fit in the 8Gb of RAM of the hosting node.

4.4.3 Evaluation Results

The evaluation of the clOpenCL approach was done with the same two different matrix

multiplication kernels used on the MPI-with-OpenCL approach: a naive kernel and the

GPU-optimized one (see Code Excerpt 4.9 and Code Excerpt 4.10, respectively). Also,

the same two different deployment configurations were tested: one with all the OpenCL

devices of the cluster (4 CPUs and 5 GPUs, requiring 9 worker threads), and another

with all GPU devices (thus requiring 5 worker threads).
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Naive Kernel

Table 4.6 presents the evaluation results when using the naive kernel.

Table 4.6: clOpenCL Evaluation Results – naive kernel.

Order n 8K 16K 24K

Slice 1K 2K 4K

9 Devices - Time (s) 21, 78s 156, 76s 489, 22s

9 GPUs - Time (s) 25, 83s 197, 77s 575, 87s

The best results for orders 8K, 16K and 24K are now obtained when using the slices

1K, 2K and 4K, respectively. Thus, for order 8K and 16K the best slices (1K and

2K) are different from those of MPI-Only and MPI-with-OpenCL (where the best slices

were 2K and 4K). This seems to imply that with faster communications (Open-MX) a

finer grain distribution of work (smaller slices) pays off, by preventing slower devices (the

CPUs) from getting too much tasks (which delays the overall execution).

In comparison with MPI-with-OpenCL (naive kernel), the execution times improved

significantly for the 9 devices scenario, but are very similar with GPUs only; the late

alternative seems to imply that, with less efficient kernels, the computation time is dom-

inant over the communication time and so, it is less relevant to use fast communications

for work distribution.

Optimized Kernel

Table 4.7 shows the execution times with the optimized kernel and the speedups in re-

lation to the naive kernel. The best combinations of order and slice are the same of the

naive kernel. The considerable performance improvements, over the naive kernel, are im-

mediately noticeable, specially with the GPUs-only deployment, which is from ≈ 4 to ≈ 5

times as fast as with the naive kernel.
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Table 4.7: clOpenCL Evaluation Results – optimized kernel.

Order n 8K 16K 24K

Slice 1K 2K 4K

9 Devices - Time (s) 13, 06s 99, 63s 511, 53s

Speedup to Naive 1, 67 1, 57 0, 96

5 GPUs - Time (s) 6, 53s 39, 63s 111, 53s

Speedup to Naive 3, 96 4, 99 5, 16

A quick comparison with MPI-with-OpenCL results (Table 4.5) also allows to conclude

that clOpenCL improves on the performance of that approach (a global comparison is

provided in the next section).

4.5 Results Discussion

With all parallel approaches evaluated, it is now possible to make a general comparison,

bringing also into this discussion the previous evaluation on Matlab (from Chapter 3).

Figure 4.7 shows the best execution times obtained by using these parallel approaches,

on the testbed cluster of this dissertation. Figure 4.8 also shows the speedups over the

“classical” MPI-Only approach.

The MPI-Only approach, that only uses CPUs, it’s clearly the slowest approach, de-

spite using the ATLAS BLAS matrix product implementation. This is expected since

CPUs are slower than GPUs when performing the Matrix Product, which is why MPI-

with-OpenCL is faster (though with GPUs only and a GPU-optimized kernel). When us-

ing OpenCL, the clOpenCL is clearly superior performance-wise (again assuming GPUs

only and a GPU-optimized kernel). Comparing only the three developed parallel ap-

proaches, the performance doubles from MPI-Only to MPI-with-OpenCL, and increases

≈ 3 to ≈ 5 times with clOpenCL – see Figure 4.8.
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Figure 4.7: Parallel Matrix Product – best execution times (s).

Figure 4.8: Parallel Matrix Product – speedups relative to MPI-Only.
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Matlab is a special case. Although it uses only CPUs, its performance is hand-in-hand

with clOpenCL (except with small order (8K) matrices). However, Matlab is a highly

optimized commercial product and so, judging the merits of clOpenCL (in a prototype

level (at best) in its current stage) against Matlab is not entirely fair11.

To complete the picture, the speedups of all parallel approaches against the refer-

ence serial implementation (ATLAS based) are also provided in Figure 4.9. As may be

observed, clOpenCL is able to out-perform the serial implementation in one order of

magnitude (≈ 10×).

Figure 4.9: Speedups relative to the ATLAS implementation.

11 It would be of no surprise if using Matlab with GPUs (a scenario that was not tested) produced
better results than clOpenCL.



Chapter 5

Conclusions

Computing devices that take advantage of multi-core and many-core technology, are be-

coming pervasive. With the utilization of GPUs and other co-processors as accelerators,

new levels of processing capabilities are added, capable of providing, in many situations,

significant performance gains in relation to CPUs. In this context there is a need for

algorithms, models and frameworks that are adapted to take advantage of the new het-

erogeneous parallel environments.

OpenCL is an industry standard that targets the heterogeneity of parallel environ-

ments by providing an uniform programming and execution model. It is, however, re-

strained to the set of parallel devices of a single isolated system.

clOpenCL extends OpenCL to allow the execution of OpenCL-based applications in

devices scattered across heterogeneous cluster nodes. While using a Matrix Product

application for evaluation purposes, clOpenCL demonstrated its capacity of significant

performance increases in comparison to serial and other parallel approaches. At the same

time, porting “classical” OpenCL applications to clOpenCL proved to be a transparent

and straightforward process.

Other projects have also focused on the same objective, but clOpenCL has two main

advantages: it is able to take full advantage of commodity networking hardware through

77
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Open-MX, and programmers/users do not need special privileges or exclusive access to

scarce resources to deploy the desired running environment.

5.1 Future Work

The work described in this dissertation was evaluated using a Matrix Product application,

a well known embarrassingly parallel case study. clOpenCL should also be evaluated with

other (more irregular) tests, covering both performance and OpenCL compliance issues,

like the Rodinia [oV12] and Vienna CL [Rup12] benchmark suites, or Image Processing/

Computer Graphics tests (e.g., the pathtracer tool developed in the R&D project that

hosted this dissertation). Also, adding BSD sockets (Berkeley sockets) [Inc12] as an

alternative communication layer to Open-MX will allow clOpenCL to be used in a broader

set of parallel/distributed scenarios.
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Appendix A

Source Code

A.1 Preliminary Experiments

See https://beta.estig.ipb.pt/~perform/Preliminary_Experiments.

A.2 Parallel Approaches

See https://beta.estig.ipb.pt/~perform/Prallel_Approaches.
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Appendix B

OpenCL Details

B.1 OpenCL Terminology

Knowing the OpenCL terminology helps to understand the definition of the terms used

to characterize OpenCL functioning, its standard and specification, alongside its archi-

tecture. Following are the main terms used throughout this document.

Buffer: a memory object that stores a linear collection of bytes. Buffer objects

are accessible using a pointer in a kernel executing on a device. Buffer objects can be

manipulated by the host using OpenCL API calls. A buffer object encapsulates the

following information:

� Size in bytes.

� Properties that describe usage information and which region to allocate from.

� Buffer data.

Command-queue: an object that holds commands that will be executed on a specific

device. The command-queue is created on a specific device in a context. The commands
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are collected in-order, but their execution can be performed in in-order or out-of-order

way.

Context: the environment within which the kernels execute, and the domain in

which synchronization and memory management is defined. The context includes a set

of devices, the memory accessible to those devices, the corresponding memory properties

and one or more command-queues used to schedule execution of a kernel(s) or operations

on memory objects.

Device: a device is a collection of compute units. A command-queue is used to queue

commands to a device. Examples of commands include executing kernels, or reading and

writing memory objects. OpenCL devices typically correspond to a GPU, a multi-core

CPU, and other processors.

Event: an event object encapsulates the status of an operation such as a command.

It can be used to synchronize operations in a context.

Image: a memory object that stores a two-dimensional or three-dimensional struc-

tured array. Image data can only be accessed with read and write functions. The read

functions use a sampler.

Kernel: a kernel is a funtion declared in a program and executed on an OpenCL

device. A kernel is identified by the kernel qualifier applied to any function defined in

a program.

Platform: it comprises the host plus a collection of devices managed by the OpenCL

framework that allow an application to share resources and execute kernels on devices in

the platform.

Program: an OpenCL program consists of a set of kernels. Programs may also

contain auxiliary functions called by the kernel functions and constant data.

Sampler: an object that describes how to sample an image when the image is read

in the kernel. The image read functions take a sampler as an argument. The sampler



B.1. OPENCL TERMINOLOGY 91

specifies the image addressing-mode, i.e., how out-of-range image coordinates are handled,

the filter mode, and whether the input image coordinate is a normalized or unnormalized

value.

B.1.1 OpenCL Standard

Developing a programming standard that satisfies a range of necessities and requirements

is not an easy task. Nevertheless the Khronos consortium made it happen, addressing

these concerns with OpenCL. They developed an API that is general enough to run

on significantly different architectures while being capable of adapting to each hardware

platform and still obtaining high performance.

If a developer correctly follows the OpenCL specification (see section B.1.2), any pro-

gram previously designed for one vendor will execute on another’s hardware. This way,

OpenCL, creates portable, vendor and device independent programs.

Talking about the standard it makes sense to refer that, OpenCL is a C with a C++

wrapper API, defined in terms of the C language API. As what happens on CUDA, there

are third-party bindings for other languages, such as Java, Python, and .NET. The code

that executes on an OpenCL device, called kernel, is written in the OpenCL C language.

OpenCL C, as mentioned previously, is a restricted and adapted version of C99, that has

appropriate extensions specifically for executing data-parallel code on a variety of hetero-

geneous devices. OpenCL C was the language used throughout the development of this

project.

B.1.2 OpenCL Specification

The OpenCL specification is set in four parts, termed models. Below follows a shortened

overview of each of these models.
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Platform Model

It defines a high-level representation of any heterogeneous platform used with OpenCL.

This model consists of a single host (a processor coordinating execution) connected to one

or more OpenCL devices (processors capable of executing OpenCL C code). A device is

divided into compute units (CUs), being these further divided into one or more processing

elements (PEs). It is on the device where streams of instructions (namely kernels) execute.

The PEs within a compute unit execute a single stream of these instructions as SIMD

(Single Instruction, Multiple Data) units or as SPMD (Single Program, Multiple Data)

units. This model is shown in Figure B.1.

Figure B.1: OpenCL platform

Execution Model

This model defines how the OpenCL environment is configured on the host and how

kernels are executed on the devices. Execution of an OpenCL program occurs in two

parts, namely a collection of one or more kernels that execute on the devices and a

host program that executes on the host. The host program defines the context for the

kernels and manages their execution, providing mechanisms for host-device interaction,
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and defining a concurrency model used for kernel execution on devices.

When a kernel is submited for execution by the host, an index space is defined. An

instance of the kernel executes for each point in this index space. This instance of an

executing kernel is called a work-item and is identified by its “coordinates” in the index

space, which provides a global ID for the work-item. When a kernel is submitted for

execution, by its respective primitive, a collection of work-items is created, each of which

uses the same sequence of instructions defined by the kernel. While the sequence of

instructions is the same, and each work-item executes the same code, the behaviour of

each work-item can vary because of branch statements within the code or data selected

through the global ID.

Work-items are organized into work-groups. Work-groups provide a more coarse-

grained decomposition of the index space. Work-groups are assigned with a unique work-

group ID having the same dimensionality as the index space used for the work-items.

Also, work-items are assigned a unique local ID within a work-group so that a single

work-item can be uniquely identified by its global ID or by a combination of its local ID

and work-group ID. The work-items in a given work-group execute concurrently on the

processing elements of a single compute unit. This is very important in understanding the

concurrency in OpenCL; OpenCL only assures that the work-items within a work-group

execute concurrently and share processor resources on the device. Hence, one can never

assume that work-groups or kernel invocations execute concurrently.

In OpenCL the supported index space, mentioned above, is called NDrange. NDRange

is an N-dimensional index space, where, currently, N can be 1, 2 or 3. This index space

is defined by an integer array of length N specifying the extent of the index space in each

dimension starting at an offset of zero, by default. Each work-item’s global ID and local

ID are N-dimensional tuples. See Figure B.2 for a better understanding on the NDRange

concept [Gro11, MGM+11].
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Figure B.2: Representation of the NDRange where Work-items (WI) are grouped in
Work-groups (WG).

Memory Model

This model defines the abstract memory hierarchy used by the kernels, regardless of the

actual primary memory architecture. It defines four distinct memory regions (see Figure

B.3 for a visual representation), being them:

� Global Memory – All work-items in all work-groups have permission for read

/write access on this memory region. In global memory, work-items can read from

or write to any memory object element. Reads and writes to global memory can be

cached depending on the capabilities of the device. Whenever data is transferred

from the host to the device, the data will reside in global memory. When data is to

be transferred back from the device to the host it must also reside in global memory.

In order to specify that the data resides in global memory, the keyword global is

added to a pointer declaration;

� Constant Memory – During the execution of a kernel, this memory region of

global memory remains constant. The host allocates and initializes memory objects

placed into constant memory. Work-items have read-only access to these objects.

Data is mapped to constant memory by using the constant keyword;
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� Local Memory – This memory region is local to a work-group, as such, accesses

may have much shorter latency and much high bandwidth than global memory.

Local memory can be used to allocate variables that are shared by all work-items

in that work-group. This memory region may be implemented as dedicated regions

of memory on the OpenCL device, or alternatively, the local memory region may

be mapped onto sections of the global memory. The keyword to specify this region

is local;

� Private Memory – This memory region is private to a work-item. Variables

defined in one work-item’s private memory are not visible to other work-items.

Local variables and nonpointer kernel arguments are private by default.

Figure B.3: Memory Model representation.
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Programming Model

Specifies how the concurrency model is mapped to the physical hardware: processing

elements, memory regions, and the host. Despite the primary model, that drives the

design of OpenCL, being the data parallel programming model, the OpenCL execution

model supports also task parallel programming model, and, also, a hybrid of these two

models: tasks that contain data parallelism.

B.1.3 Framework

The OpenCL framework enables OpenCL applications to use a host and one or more

devices as a single heterogeneous parallel computer system. The framework is divided

into the following components:

� OpenCL Platform Layer: defines functions used by the host program to find

OpenCL devices and their respective capabilities, as well as to create the context

for the OpenCL application.

� OpenCL Runtime: allows the host program to manipulate contexts to create

command-queues and other operations that occur at runtime, for example, the func-

tions that submit commands to the command queue come from this component.

� OpenCL Compiler: it creates program executables that contain OpenCL ker-

nels. The compiler supports a subset of the ISO C99 language with extensions for

parallelism.

B.2 OpenCL API Supported Data Types

In the following table B.1, are presented, amongst others (i.e. built-in vector data types,

reserved data types, other built-in data types), some of OpenCL supported built-in scalar
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data types and the syntax alterations made by the API.

Table B.1: Built-in Scalar Data Types.

OpenCL Type API Type Description
bool – true (1) or false (0)
char cl char 8-bit signed

unsigned char, uchar cl uchar 8-bit unsigned
short cl short 16-bit signed

unsigned short, ushort cl ushort 16-bit unsigned
int cl int 32-bit signed

unsigned int, uint cl uint 32-bit unsigned
long cl long 64-bit signed

unsigned long, ulong cl ulong 64-bit unsigned
float cl float 32-bit float
half cl half 16-bit float (for storage only)

size t – 32- or 64-bit unsigned integer
ptrdiff t – 32- or 64-bit signed integer
intptr t – signed integer

uintptr t – unsigned integer
void – void





Appendix C

Scientific Contributions

C.1 Published Paper

Abstract. Clusters that combine heterogeneous compute device architectures, coupled

with novel programming models, have created a true alternative to traditional (homoge-

neous) cluster computing, allowing to leverage the performance of parallel applications.

In this paper we introduce clOpenCL, a platform that supports the simple deployment

and efficient running of OpenCL-based parallel applications that may span several clus-

ter nodes, expanding the original single-node OpenCL model. clOpenCL is deployed

through user level services, thus allowing OpenCL applications from different users to

share the same cluster nodes and their compute devices. Data exchanges between dis-

tributed clOpenCL components rely on Open-MX, a high-performance communication

library. We also present extensive experimental data and key conditions that must be

addressed when exploiting clOpenCL with real applications.

The complete paper can be consulted at http://pm.bsc.es/heteropar12/papers/

30_dOpenCL.pdf.
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