
Pedro Sernadela

D3S – A Distributed Storage
Service

Escola Superior de Tecnologia e de Gestão

Novembro 2012

D3S – A Distributed Storage
Service

Dissertação apresentada ao Instituto Politécnico de Bragança para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Sistemas de Informação, sob
a supervisão do Prof. Doutor Rui Pedro Lopes.

Pedro Sernadela
Novembro 2012

Abstract

In recent years, computing allowed an explosion of service provisioning in the cloud.
The main paradigm dictates the migration of user information, such as documents,
photos and others, from the desktop to the network, allowing anytime, anywhere
access through the Internet.

This paradigm provided a adequate environment to the emergence of online stor-
age services, such as Amazon S3. This kind of service allows storing digital data in
a transparent way, in a pay-as-you-go model.

On the other hand, peer-to-peer networks have been responsible for most Inter-
net traffic, mostly derived from the BitTorrent protocol. The inherent support to
resource sharing, scalability and fault-tolerance, have been making this approach
popular, particularly for file-sharing applications.

This thesis presents an implementation of an S3 compatible storage service based
on peer-to-peer networks, in particular, through the BitTorrent protocol. Several
measurements are discussed, to assess differences in access time and throughput.

iii

Agradecimentos

A minha sincera gratidão a todos os que me encorajaram e contribúıram neste per-
curso de realização da minha tese de mestrado.

Gostaria de agradecer em particular e principalmente ao meu orientador pela disponi-
bilidade e apoio prestado e também a todos pela paciência, compreensão e ajuda
prestada na etapa de realização de testes. À minha adorada famı́lia que esteve sem-
pre do meu lado ao longo desde percurso.

Agradeço também aos meus amigos, professores e ao IPB, pelas excelentes condições
de trabalho e recursos académicos que me foram proporcionados.

A todos muito obrigado!

“Innovation distinguishes between a leader and a follower.”
Steve Jobs

iv

Contents

Abstract iii

Agradecimentos iv

1 Introduction 1
1.1 Overview . 1
1.2 Goals . 2
1.3 Document structure . 3

2 State Of The Art 4
2.1 Cloud Computing . 5

2.1.1 Service Models . 6
2.1.2 Deployment Models . 7

2.2 Cloud Services Delivery . 9
2.2.1 Commercial Services . 9
2.2.2 Business model . 10
2.2.3 Service Level Agreement . 11
2.2.4 Data Security . 12
2.2.5 Cloud Storage Frameworks . 13

2.3 Peer-to-peer Networks . 14
2.3.1 Concepts and Definitions . 15
2.3.2 File Sharing . 17

2.4 BitTorrent . 17
2.4.1 Operation Model . 18
2.4.2 Main Components . 19

2.5 Summary . 22

3 Distributed Storage Service 23
3.1 Amazon Simple Storage Service . 24

3.1.1 Concepts and Architecture . 24
3.1.2 Data Access Protocols . 25
3.1.3 Authentication Model . 26

3.2 Amazon S3 Client . 28
3.3 Centralized S3 server . 31
3.4 D3S – The BitTorrent S3 server . 33

v

3.4.1 The Functionality . 33
3.4.2 Implementation . 34
3.4.3 The NAT Traversal problem 37

3.5 Summary . 38

4 Results and Discussion 40
4.1 Experimental Setup . 40
4.2 Amazon S3 . 42
4.3 Local server connection . 46
4.4 Network server connection . 49
4.5 D3S - BitTorrent Network . 52
4.6 Discussion . 56

5 Conclusion and future work 61

Bibliography 63

A Annex 67
A.1 Monitored network connection results 67

vi

List of Tables

2.1 Torrent metadata file structure. 19

3.1 HTTP operations with URI pattern that can be performed in S3. . . 26

4.1 Statistical metrics results at upload operation on S3. 43
4.2 Statistical metrics results at download operation on S3. 43
4.3 Statistical metrics results at upload operation on local WS. 46
4.4 Statistical metrics results at download operation on local WS. 46
4.5 Statistical metrics results at upload operation on network by the WS. 49
4.6 Statistical metrics results at download operation on network by the

WS. 50
4.7 Statistical metrics results at download operation on D3S with 1 seed. 53
4.8 Statistical metrics results at download operation on D3S with 2 seeds. 53
4.9 Statistical metrics results at download operation on D3S with 4 seeds. 54
4.10 Statistical metrics results at download operation on D3S with 16 seeds. 55

A.1 Statistical metrics results at download operation on D3S with 8 seeds
on a monitored network. 67

vii

List of Figures

2.1 Cloud Service Model. 6
2.2 Comparison model of P2P and Server based networks. 15
2.3 Comparison model of P2P non-structured based networks. 16
2.4 A tracker providing a list of peers with the required data. 20

3.1 Overall architecture implemented. 24
3.2 S3 architectural model. 26
3.3 Client authentication. 27
3.4 Server authentication. 28
3.5 Storage REST service class diagram. 29
3.6 Desktop S3 client. 30
3.7 FUSE Amazon S3 client. 30
3.8 Upload (left) and download (right) activity diagram of the D3S. . . . 34
3.9 D3S deploy model diagram. 35
3.10 BitTorrent S3 implementation. 36
3.11 Sequence diagram of the PUT object operation. 37
3.12 Sequence diagram of the GET object operation when file is locally

available. 38
3.13 Sequence diagram of the GET object operation by the BT network. . 39

4.1 Experiment script flowchart. 41
4.2 Rate range probabilities of different files at upload operation on S3. . 44
4.3 CDF of file upload on S3. 44
4.4 Rate range probabilities of different files at download operation on S3. 45
4.5 CDF of file download on S3. 45
4.6 Rate range probabilities of different files at upload operation on the

local WS. 47
4.7 CDF of file upload on local REST WS. 47
4.8 Rate range probabilities of different files at download operation on

the local WS. 48
4.9 CDF of file download on local REST WS. 48
4.10 Rate range probabilities of different files at upload operation on the

network by the WS. 50
4.11 CDF of file upload on the network REST WS. 51

viii

4.12 Rate range probabilities of different files at download operation on
the network by the WS. 51

4.13 CDF of file download on the network REST WS. 52
4.14 Rate range probabilities of different files at download operation on

D3S with 1 seed. 54
4.15 Rate range probabilities of different files at download operation on

D3S with 2 seeds. 55
4.16 CDF of download throughput of the D3S service – 1 seed VS 2 seeds. 56
4.17 Rate range probabilities of different files at download operation on

D3S with 4 seeds. 57
4.18 Rate range probabilities of different files at download operation on

D3S with 16 seeds. 58
4.19 CDF of download throughput of the D3S service – 4 seed VS 16 seeds. 59
4.20 D3S vs S3 – Average download throughput (logarithm scale) with

different files. 59
4.21 D3S vs S3 – Average download throughput with different files. 60

A.1 Rate range probabilities of different files at download operation on
D3S with 8 seeds on a monitored network. 68

A.2 CDF of download throughput of the D3S service with 8 seeds on a
monitored network. 68

A.3 D3S vs S3 – Average download throughput (logarithm scale) with
different files on a monitored network. 69

A.4 D3S vs S3 – Average download throughput with different files on a
monitored network. 69

ix

x

Chapter 1

Introduction

The Internet growth allowed an explosion of service provision in the cloud. Among
the multitude of services available in the cloud, storage services is one of the most
popular. This storage paradigm dictates the users information migration from the
desktop into the network allowing access everywhere, anytime.

Along with the security and privacy concerns that arise with this data shift,
Service Level Agreements (SLA) also play an important role, as it is needed to
increase the overall trust that the provider depends on and to guarantee the level
of productivity that consumers demand. Relying on a cloud storage service has a
broad set of challenges, that include security and privacy concerns but also capacity,
access speed, availability and cost. Nowadays, services such as Dropbox, Amazon
S3, Google Drive and others provide an easy to use, flexible way to store information
and easy access.

Following a different paradigm, peer-to-peer networks offers unique characteristics
that foster the adoption of alternatives to several existing client-server applications.
Peer-to-peer offers a radically new way of distributing information among a broad
number of symmetric nodes (or peers) instead of concentrating it at a single server.
This solves many issues, related to fault tolerance, load balancing and availability.

BitTorrent is one of many P2P file-sharing systems that has attracted millions of
users. In this protocol each peer is responsible for maximizing its own download rate
by contacting specifically chosen peers. High upload rates is a factor that contributes
to the choice of a peer to connect to, contributing to an overall high speed download.

Cloud services provisioning usually rely on a single connection, that, probably,
will affect the SLA. To assess connection characteristics between this two different
paradigms, we implemented an Amazon S3 cloud storage service over a peer-to-peer
network. This implementation is used to measure connection speed and throughput,
thus comparing both paradigms according to several scenarios.

1.1 Overview

Cloud storage services are provided by organizations that purchases storage capacity
over the time. This offers the ability to scale according to the demand, providing a

1

2 CHAPTER 1. INTRODUCTION

lower cost for cloud based services. This type of architectures are very scalable and
can easily manage huge amounts of data, whereas managing this much data with a
traditional database may involve unforeseen costs.

On the other hand, having data accessible to third parties, such as a service
provider, can represent security and compliance issues. And once it serves multiple
customers, various issues related to multiple customers sharing the same piece of
hardware can arise, e.g. if one user compromises the system with the malicious
data, it can also compromise the other users data that share the same system.
Above all, hosted cloud services are often remote and they can suffer from latency
and bandwidth related issues associated with any remote application.

In peer-to-peer (P2P) networks the participants are at the same time both suppli-
ers and consumers of resources (in contrast to the traditional client–server model).
Without the need of the direct connection to the central data unit repository, this dis-
tributed architecture allows good resource availability and high performance proved
by the file sharing environment.

In this way, our Distributed Simple Storage Service (D3S) seeks to delivery a
peer-to-peer based storage service functionally compatible with Amazon S3. This
system is based on BitTorrent and thus making use of features where each user
makes an information repository of files available for distribution. Combined with
the ability of others peers to join the network, leads to the fast growth of a network
composed of distributed information, constituting an high available system with
high transfers rates.

In order to achieve this peer-to-peer storage service based on the S3 interaction
model many challenges can hamper the final solution. The suitability of the BitTor-
rent operation model to working with the S3 functionality and the peers coordination
represent the main challenges discussed in this document. With the results mea-
surement analysis we intend to assess throughput of this alternative storage service
providing a study comparison with the S3 service.

1.2 Goals

This document manly focus in studying and comparing peer-to-peer to cloud file
storage services. In order to get some conclusions, some tasks were defined:

• Develop of a compatible Amazon S3 REST interface.

• Build a desktop application for accessing the S3 service.

• Implement a compatible S3 server, following the same authentication model
and functionality.

• Implement a compatible S3 server, backed by a BitTorrent network.

• Organize and measure transfer and access speeds for three different scenarios:
Amazon S3, local, centralized server and peer-to-peer.

1.3. DOCUMENT STRUCTURE 3

1.3 Document structure

This document is structured in five main chapters, as follows. Chapter 1 makes
an introduction to the scope of the document. Chapter 2 describes all technologies
involved on the implementation. Chapter 3 describes the overall architecture imple-
mented to develop the alternative Amazon S3 storage system over the BitTorrent
protocol. In the chapter 4 it can be found the measurement analysis and discussion
of all experiments. Finally, Chapter 5 concludes the paper.

Chapter 2

State Of The Art

Cloud computing is clearly one of today’s most appealing technology areas. It rep-
resents the result of evolution of different technologies that allowed more processing
capacity, virtualization of resources and the ability to store data relying in existing
bandwidth. This factors combined led to a new paradigm that responds to a set
of current problems as scalability, cost reduction, fast operation of applications and
solutions.

On the other hand, this new ecosystem leads us inevitably to new challenges of
integration, architecture, organization of resources and business models change. In
this way, the cloud provides more business agility and is used as a competitive sys-
tem through rapid deployment, parallel batch processing, use of compute-intensive
business analytics and mobile interactive applications that respond in real time to
costumer requirements [Marston et al., 2011]. For that, and others reasons, the
phenomenon has been widely adopted by the general public and by industry leaders
such as Microsoft, Google, IBM, Amazon,. . .

In a parallel approach, peer-to-peer networks are based on a model in which each
computer acts as a client and server to other computers, providing an infrastructure
for sharing resources, such as files, computing power, peripherals and others.

Many reasons arises to invest time and effort in a P2P system. Namely, it is a
vehicle to implement new concepts in networks or even economics. P2P technology
influences and demonstrates to have impact in many fields of human endeavor. The
bottom line is that P2P resumes itself to person-to-person (no central infrastructure
necessary) where people work together for a specific and usually common goal.

Many technologies are related to P2P, that provide the infrastructure to organize
peers, route requests and responses (Distributed Hash Table – DHT, . . .), as well
as providing a protocol, such as The BitTorrent1. In sum, P2P applications can be
used to share any type of digital asset in the form of packed information that can
be uniquely identified.

This chapter makes an overview of the main technologies involved in the final
solution, introducing terminology and describing typical architectures.

1http://www.bittorrent.org/beps/bep_0003.html

4

http://www.bittorrent.org/beps/bep_0003.html

2.1. CLOUD COMPUTING 5

2.1 Cloud Computing

According to NIST (National Institute of Standards and Technology), Cloud com-
puting is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction [Mell and Grance, 2011]. With
the evolution of Cloud Computing there are many definitions, but shortly it refers
to both the applications delivered as services over Internet and the hardware and
systems’ software in data centers that provide these services [Armbrust et al., 2009].

The term “Cloud” comes from the data center hardware and software association
and usually is based on a model of payment associated with the use of resources.

An application that works on cloud can use resources on a pay-as-you-go manner,
i.e., a customer can start the process on a small scale and dynamically adjust the
use of resources according to their needs. In this way, it is evident that the cloud
computing is regarded as an utility for businesses and is becoming prevalent in
organizations.

One of the great advantages of cloud computing is its resilience. In theory,
cloud computing services are built in such way that if a machine fails, the system
readjusts itself so that the user will never perceives that a machine has failed. Given
this characteristic, cloud computing is a promising technology to ensure a level of
stability that a single server cannot provide.

There are many issues to consider when an enterprise consider to move their
applications to the cloud environment. The majors benefits of this change are briefly
presented below:

Shared resource pooling: The infrastructure provider offers a pool of computing
resources that can be dynamically assigned to multiple resource consumers
providing more flexibility and reducing providers operating costs. Examples of
resources include storage, processing, memory, network bandwidth, and virtual
machines.

Broad network access: Any device with Internet connectivity is able to access
cloud services because the capabilities are available over the network.

Service oriented: In a cloud, each IaaS, PaaS and SaaS provider offers its service
according to the Service Level Agreement negotiated with its customers [Zhang
et al., 2010].

Dynamic resource provisioning: One great feature of cloud computing is that
computing resources can be purchased in any quantity at any time according
to consumer needs.

Utility based price: Cloud computing uses a pay-per-use pricing model that al-
lows customers pay only for the services resources that they use. Resource
usage can be monitored, controlled, and reported, providing transparency for
both the provider and consumer of the utilized service [Mell and Grance, 2011].

6 CHAPTER 2. STATE OF THE ART

2.1.1 Service Models

It is possible to distinguish two different architectural models for clouds [Dikaiakos
et al., 2009] (Figure 2.1). One is designed to expand providing additional computing
instances of demand like supply services in the form of Software-as-a-Service (SaaS)
and Platform-as-a-Service (PaaS) and the other model is designed to provide scal-
able resources such hardware, bandwidth and storage (Infrastructure-as-a-Service –
IaaS). According to this three fundamental models the IaaS is the most basic and
each higher model abstracts from the details of the lower models. The self-service
functionality of this cloud services allows users to obtain, configure and deploy au-
tonomously without requiring the assistance of IT.

Compute Compute Compute

App framework App framework

Biz logic

SaaSPaaSIaaS
Amazon
Rackspace
Others...

AppEngine
Azure
Force.com
Others...

Google Apps
Salesforce
Others...

Figure 2.1: Cloud Service Model.

Software-as-a-Service (SaaS)

SaaS is a software delivery method that provides access to software and its functions
remotely as a Web-based service. These applications are typically web applications
that run embedded in the browser. The users can use the applications without hav-
ing to install or run on their local machines, since the SaaS vendors offer software
as a service on the network. Also, the users does not manage or control the under-
lying cloud infrastructure including network, servers, operating systems, storage, or
even individual application capabilities, with the possible exception of limited user
specific application configuration settings [Mell and Grance, 2011].

Namely, on the customer side, it means no upfront investment in servers or soft-
ware licensing and on the provider side, costs are low compared to conventional
hosting [Knorr and Gruman, 2008].

Platform-as-a-Service (PaaS)

This type of platform provides a set of features that contains developer tools to
develop applications, web graphical interface, databases and others. This tools with

2.1. CLOUD COMPUTING 7

the providers API (Application Programming Interface) allows to create and deploy
new applications based on Cloud services. These help developers focus on business
logic, freeing them from concerns about infrastructure (because they do not need
to manage or control the underlying cloud infrastructure [Mell and Grance, 2011])
as well as getting advantages of PaaS quality of services available. But, in order
to protect the stability of the whole system and to ensure the QoS for real-time
interactive applications these systems restricted some functionality of the application
(e.g. only comunication by http/s, limited access to the file system, etc).

Many PaaS providers exist today such as Google AppEngine, Microsoft Azure,
Salesforce, Rackspace Sites, Bungee Connect, EngineYard, Heroku, Intuit, Cloud-
era, Aptana, VirtualGlobal, LongJump, AppJet, Wavemaker, Aprenda, and oth-
ers [Boniface et al., 2010].

Infrastructure-as-a-Service (IaaS)

Infrastructure as a Service (IaaS) is the delivery of hardware (server, storage and
network), and associated software (operating systems virtualization technology, file
system), as a service [Bhardwaj et al., 2010].

It is an evolution of traditional hosting that does not require long commitment
and allows users to provision resources on demand.

The IaaS supplies resources such as virtualized servers, network devices, and
many other resources, reducing management operations burden and without compro-
mising deployment and management of the software services, control operating sys-
tems, storage, applications, and networking components (e.g., host firewalls) [Mell
and Grance, 2011].

IaaS providers compete on the performance and pricing offered on their services
by delivering different hardware, bandwidth, memory and storage to their customers.
So, the equipment is owned by the provider and is responsible for housing, running
and maintaining it [Bhardwaj et al., 2010].

However, the key benefit of IaaS is to be flexible on the pricing, since the cus-
tomer only pay for the resources that their applications require. Other important
concept to take account is that PaaS/SaaS services usually work over the IaaS layer.
Examples of IaaS offerings are Amazon Web Services Elastic Compute Cloud (EC2)
and Secure Storage Service (S3).

2.1.2 Deployment Models

There are many considerations to be taken for migration and development of appli-
cations based on this new paradigm. There are three different type of clouds, each
with complementary benefits and drawbacks: private, public and hybrid. A cloud
might be restricted to a single organization or group (private clouds), available to
the general public over the Internet (public clouds), or a composition of two or more
clouds (hybrid clouds) [Dikaiakos et al., 2009, Mell and Grance, 2011, Ramgovind
et al., 2010,Zhang et al., 2010]. When a cloud is shared by groups or organizations
it can also be called community cloud [Mell and Grance, 2011].

8 CHAPTER 2. STATE OF THE ART

Private Cloud

Private clouds, also known as internal clouds, are designed for exclusive use by a sin-
gle organization. Data and processes are managed within the organization without
the restrictions of network bandwidth, security exposures and legal requirements [Ri-
mal et al., 2009].

This type of cloud offers the highest degree of control over performance, reliability
and security [Zhang et al., 2010]. Nevertheless, they are often criticized for being
similar to traditional server infrastructure.

Public Cloud

The public cloud infrastructure is made available to the general public or a large
industry group in a remote location and provides flexible means without high up-
front capital investment.

The public clouds key benefits is that they represent a structure much larger than
a private cloud, ensuring more flexibility and scalability. Likewise, public clouds are
less secure than the other models because any attacker with a credit card can estab-
lish an account on some virtual machine in the cloud, and begin hacking through
the hypervisor, a risk that does not apply in conventional systems [Rosenthal et al.,
2010]. This is an additional burden, ensuring that all applications and data ac-
cessed on the public cloud are not subjected to malicious attacks [Ramgovind et al.,
2010]. Generally, the maintenance becomes the responsibility of the organization
that selling Cloud Computing services.

Hybrid Cloud

The hybrid cloud infrastructure combines two or more clouds (private, community,
or public) in the same data center, centrally managed, provisioned as a single unit,
and circumscribed by a secure network [Ramgovind et al., 2010]. This association
tries to address the limitations of each approach offering more flexibility than both
public and private clouds.

Designing this cloud model requires carefully determining the best split between
public and private cloud components. [Zhang et al., 2010] Hybrid clouds may soon
associate a public cloud with a private cloud that hosts the most sensitive data
[Rosenthal et al., 2010].

Community Cloud

Community clouds are shared by several organizations. Normally, support a specific
community that has shared concerns (e.g., mission, security requirements, policy,
and compliance considerations) [Mell and Grance, 2011,Marinos and Briscoe, 2009].

To summarise, in the cloud services model, users can purchase services in the
form of Infrastructure-as-a-service (IaaS), Platform-as-a-service (PaaS), or Software-
as-a-service (SaaS), according their needs and the decision of which type of Cloud

2.2. CLOUD SERVICES DELIVERY 9

to deploy relies basically on security considerations of the enterprise architecture
[Ramgovind et al., 2010].

2.2 Cloud Services Delivery

The structure of cloud services (SaaS, PaaS and IaaS) contextualizes the providers’
position in the market. The trust on the cloud provider is one factor to take in
consideration. When a customer subscribes a service, usually there is a “mandatory
connection” with the provider, because in most cases there is no possibility for
service migration.

Recently, several groups have been appearing to focus on the interoperability
and compatibility problems. One example is the Cloud Computing Interoperability
Forum2 that “was formed in order to enable a global cloud computing ecosystem
whereby organizations are able to seamlessly work together for the purposes for wider
industry adoption of cloud computing technology and related services”. With this the
customers can change the provider with more flexibility because there is a framework
to do that, allowing information exchange between clouds.

Nowadays, there are several service providers that offers different types of services
and resources (e.g. storage, database, . . .), which contributes to market competition
and more and better services.

2.2.1 Commercial Services

The implementation of a cloud system requires one large investment on the in-
frastructure and a lot of experience in information technologies (IT). The industry
leaders like Amazon and Google took advantage of the fact that they already possess
large infrastructures and profit from their business.

Amazon is considered a leading provider of cloud services. The platform Amazon
Web Service (AWS) offers a wide range of services. Amazon EC2 is an IaaS ex-
ample of cloud computing service. EC2 provides access to different types of virtual
machine images using the open-source virtualization middleware Xen [Ostermann
et al., 2010].

It provides the flexibility to choose from a number of different instance types3.
Each instance provides a certain amount of dedicated computing capacity and is
charged per instance-hour consumed. Every instance of Amazon EC2 is a VM
(Virtual Machine), and there is no functionality to backup the modifications on the
virtual disk space. So in most cases, users need to purchase storage space.

The Simple Storage Service (S3) allows storing the modifications of customized
machine images registering the disk image for later use. The S3 provides a storage
service that enables persistent data and it also has mechanisms for redundancy and
disaster recovery.

2http://www.cloudforum.org/
3http://aws.amazon.com/ec2/instance-types/

http://www.cloudforum.org/
http://aws.amazon.com/ec2/instance-types/

10 CHAPTER 2. STATE OF THE ART

Some research work have pointed this service as a good start for a reasonable
scientific environment and for quick experiments from the poit of view of cost per-
formance [Ostermann et al., 2010,Akioka and Muraoka, 2010].

Google App Engine4 (GAE) is a PaaS which provides facilities for creating Web
based services and applications. This platform supports two widely known pro-
gramming languages, Java and Python, and allows users to run and host their web
applications on Google data centers.

Developers can use the GAE and server applications free of charge or obligation
with some restrictions like to 5 million page views per month (bandwith and cpu
usage) and can consume only 500mb of persistence storage. However, it is possible
to scale to whatever traffic and data storage is needed [Ciurana, 2009]. Applications
created are offered as SaaS, consumed directly from the end-users web browsers.

The Microsoft IaaS/PaaS platform is Windows Azure5, which also allows devel-
opers to run applications, storage data and rent some computing power over the
cloud. They offer an SDK (.NET), that allows the development of applications,
and SQLAzure, providing data storage services in the cloud. This platform can
be used by applications running in the cloud and by applications running on local
systems [Zhang et al., 2010]. The operation model price can be as a pay-as-you-go
manner or by six month plans.

Salesforce6 is an enterprise cloud computing company providing SaaS that sup-
plies a set of tools to model the client business data in its cloud service. The client
access a configurable interface, from the site of the cloud service, as well as through
Simple Object Access Protocol (SOAP). The operation model is associated with a
user/monthly subscription service.

They also provide a PaaS called Force.com that allows the developer to deploy
the application in the Salesforce cloud hosting using Apex programming language.

In short, the global tendency of cloud enterprises is not only offering SaaS plat-
forms of their products but also appearing in other levels like PaaS where develop-
ers build and launch their applications to bridge the gaps in their business. SaaS
replace some traditional software products but will not eliminate them anytime
soon [Cusumano, 2010].

2.2.2 Business model

There are many different potential pricing models such as a flat fee (usually monthly
or yearly), a pay-per-use fee (units with fixed price values), or a mix of both. Pay-
per-use is what customers usually prefer and it is the most popular business model
among cloud providers. Users and providers prefer simple, static models in which it
is easy to predict payments [Weinhardt et al., 2009]. Thus, an application that works
on cloud can use resources on a pay-as-you-go manner, i.e., a customer can start
the process on a small scale and dynamically adjust the use of resources according
to their needs without a long term contract with service providers.

4http://code.google.com/appengine/
5https://www.windowsazure.com
6http://www.salesforce.com

http://code.google.com/appengine/
https://www.windowsazure.com
http://www.salesforce.com

2.2. CLOUD SERVICES DELIVERY 11

These pricing policies should be analyzed in conjunction with capacity investment
decisions and QoS guarantees, to decide which of these policies are the best suited
for the organization/costumer in the particular market target.

In the cloud storage market the providers can improve the revenue by offering
customized forms of payment and products to achieve the customer satisfaction
level. However, penalty policies may be defined in the SLA.

2.2.3 Service Level Agreement

The existence of several providers offering the broad spectrum of cloud services and
resources (e.g. computing, storage, database, . . .) provides and adequate compe-
tition ecosystem, that is great for more and better services, since the quality and
reliability of the services constitutes important aspects at the time of the adoption.

There are many points that an organization or a customer really cares about when
choosing a cloud service. One of them is the possibility of almost immediate access
to hardware resources without needing significant initial capital expenditure. This
possibility paves the way to the small enterprises trying to benefit from large amounts
of computing power that was present only on the largest corporations [Marston et al.,
2011]. Typically this compute power involves short periods of time saving extreme
infrastructure that are really need. The opportunity to scale their services makes it
more easy and desirable, for example, it is very comfortable to increase the server
storage space at distance of a mouse click.

In a traditional computing setup, the main stakeholders are the providers and
consumers and as more and more consumers empower their duties to cloud providers,
Service Level Agreements (SLA) between consumers and providers become an im-
portant aspect. On the provider side it is difficult to meet all the customers ex-
pectations and the solution can be a balance preparation of their needs. At this
point the social perspective can be relevant [Demirkan et al.,]. The negotiation
process can start between the provider and client when the client wants to buy a
service. At the end of this negotiation the provider and the consumer committed
to an agreement. In Service Oriented Architecture (SOA) terms, this agreement is
referred to a SLA [Patel et al., 2009]. Therefore, an SLA is a formal contract used
to guarantee that consumers service quality expectation can be achieved [Wu and
Buyya, 2010].

Definition 1 A Service Level Agreement is a document that includes a description
of the agreed service, service level parameters, guarantees, and actions and remedies
for all cases of violations [Alhamad et al., 2010].

In cloud computing systems, different QoS (Quality of Service) attributes (such
as response time and throughput) have to be guaranteed and closely monitored by
the consumer. In this type of scenario resource availability continuously vary and the
assurance that service quality is kept at acceptable is one crucial factor (for example,
S3 is designed to provide 99.999999999% durability and 99.99% availability of objects
over a given year). A clear SLA includes both general and technical specifications
(i.e. business parties, pricing policy,. . .). Moreover, the concise contract helps

12 CHAPTER 2. STATE OF THE ART

parties to resolve conflicts more easily because they define the reward and penalty
policies of the service provision. In other words, consumers need an SLA before
they transfer their infrastructure to cloud data centers to ensure the desired level
of productivity, and cloud providers need an SLA to define the trust, quality and
reliability of services they provide.

The parties, when committed to an agreement, are bound to pay attention to
their rights and obligations related to notifications of breaches in security, data
transfers, creation of derivative works, change of control, and access to data by
law enforcement entities [Marston et al., 2011]. The contract clauses may deserve
additional review because of the cloud data storage nature: what happens if the
copyright law in the country where the data is stored allows legal copying of files?
– questions like this should have an answer in the SLA document.

Many languages and frameworks have been developed for SLA specification and
management. The WS-Agreement and Web Service Level Agreement (WSLA) are
examples of the most popular and widely languages used in research and industry
[Wu and Buyya, 2010].

Much of Cloud services providers offer predefined SLA documents. One example
is the Amazon EC2. The EC2 Service Level Agreement abides user compensation
if the resources are not available for acquisition at least 99.95% of the time in the
year [Ostermann et al., 2010]. So the customer is eligible to receive a service credit
equal to 10% of their bill.

In sum the SLA assurance is a critical objective for every provider and a aspect
key for the client adoption time.

Another factor that the client sometimes not given importance in case of not
sensible data dealing is its security. Anyway nobody likes that their data becomes
public aware.

2.2.4 Data Security

In a cloud data storage system, the users’ local data is stored on the distributed
cloud servers. Although the existence of encryption and access control systems
some organizations feel afraid when their proprietary data is switched to a public
access cloud. This fact is more relevant in the case of sensitive data. To ensure fast
access data and to prevent data loss the data must be mirrored on data centers that
are geographically far apart. Replication, in turn, makes it even more vulnerable
[Rewatkar and Lanjewar, 2010].

Examples of security breaches in IT systems appear from time to time and cloud
computing its not different. One of the key issues is to effectively detect any unau-
thorized data modification and corruption [Cong Wang et al., 2009]. Besides, in
the distributed systems when such inconsistencies are successfully detected, in most
cases, they are quickly recovered without the users perception.

Despite outsourcing data into the cloud is economically attractive for the cost
and complexity (large scale data storage) it does not offer any guarantee on data
integrity and availability [Cong Wang et al., 2010].

2.2. CLOUD SERVICES DELIVERY 13

Verify the correctness of outsourced cloud data without the local copy can be a
daunting task because traditional cryptographic cannot be applied. In order to save
the users cloud computing resources and ensure the data security one option may
be enable public auditability for the data storage [Cong Wang et al., 2010].

Summarizing, the advantages of using clouds are incontestable but as mentioned
above there are many risks sharing the data in a cloud system mainly due the
increased risk of loss of users privacy [Cachin et al., 2009].

2.2.5 Cloud Storage Frameworks

Many cloud providers offer a wide variety of data storage services, some relying on
WebServices for implementing additional functionalities. To ensure interoperability,
some SDKs have been created and many are progressively growing to cope with the
features that characterizes a cloud system.

The jclouds7 open-source library allows to use portable abstractions or cloud
specific features with the opportunity to reuse java developments skills. So without
dealing with REST-like APIs this framework provides drivers that allow operate
in restricted environments like Google App Engine. With stub connections that
simulate a cloud without creating network connections ensures the unit testability.
At the moment, the jclouds structure includes two abstraction APIs: Compute
and Blobstore. The Compute API helps bootstrap machines in the cloud and the
Blobstore API helps to manage key-value data. All of abstractions are location-
aware. This API support 30 cloud providers and cloud software stacks, including
Amazon, GoGrid, Ninefold, vCloud, OpenStack, and Azure.

The AWS Software Development Kit8 include libraries, documentation, tem-
plates, sample applications, and other developer tools prepared to build applications
in different technologies like Android, iOS, Java, .NET, PHP and Ruby, that tap into
the cost-effective, scalable, and reliable Amazon cloud. Using the AWS SDK, devel-
opers can build solutions for Amazon Simple Storage Service (Amazon S3), Amazon
Elastic Compute Cloud (Amazon EC2), Amazon SimpleDB, etc. The library pro-
vides APIs that hide much of the lower-level plumbing, including authentication,
request retries and error handling.

Apache Libcloud9 is a standard Python library that abstracts away differences
among multiple cloud provider APIs. This library currently supports more than
26 different providers. Example of Cloud Servers supported are Amazon EC2 and
Rackspace CloudServers (libcloud.compute.*) and for Cloud Storage are Amazon
S3 and Rackspace CloudFiles (libcloud.storage.*).

The Dasein Cloud10 is an open-source Java API made available by enStratus Net-
works LLC under the terms of the Apache License 2.0. It provides an abstraction
for applications that wish to be written independent of the clouds they are control-
ling. With this API the developers can write the calls against the Dasein Cloud
API without having to learn the specifics of the web services calls from different

7http://www.jclouds.org
8https://aws.amazon.com/code/
9http://libcloud.apache.org

10http://dasein-cloud.sourceforge.net

http://www.jclouds.org
https://aws.amazon.com/code/
http://libcloud.apache.org
http://dasein-cloud.sourceforge.net

14 CHAPTER 2. STATE OF THE ART

providers. This API specifies cloud-independent interfaces for enabling an applica-
tion to access resources across multiple clouds like Amazon, AT&T Synaptic Cloud
(Storage), Azure (Storage), Cloud Central, CloudSigma, GoGrid, Google (Storage),
Joyent, Rackspace, Tata, Terremark, etc.

JetS3t11 is a open-source Java toolkit and application suite for Amazon Sim-
ple Storage Service (S3), Amazon CloudFront content delivery network and Google
Storage. This toolkit provides to developers a powerful and simple API for interact-
ing with storage services and managing data stored there. In the JetS3t suite there
are too applications for managing the account contents (e.g. Cockpit, Synchronize,
etc.) and for mediated account access (e.g. Gatekeeper, Uploader, etc.).

2.3 Peer-to-peer Networks

The limitations of the client-server architecture became evident in the Internet dis-
tributed environment. Since the development of the original application and service
of Napster (the first P2P file sharing program) the use of P2P systems have increased
and nowadays multiple nearly clones emerged with millions of users sharing their
files. This only happened because these system proved its practical applicability.
The P2P in the scientific research community is a popular topic with many projects
exploring the characteristics of this type of networks. Today, this networks are used
on a large scale in order to share a number of features with a large number of users
and is currently wrapped in discussion due copyright and licensing issues.

The peer-to-peer term is generally assigned to a network architecture where all
nodes offer the same services and follow the same behavior making files available to
download as well as downloading them. Because this server and client approach, the
node is common called a servant. In this architecture the set of servants share re-
sources between them, which may include bandwidth, storage space, and computing
power. Allowing access to its own resources with resource sharing support requires
self organization, scalability properties and fault-tolerance. This last provide the
system stability because if one peer on the network fails the whole network is not
compromised.

In a typical client–server architecture, clients share only their demands with the
system, but not their resources. In this case, as more clients join the system, fewer
resources are available to each client, and if the central server fails, the entire network
is taken down. The peer-to-peer technology aims to solve that.

Furthermore, it can provide an infrastructure in which the desired information
can be located and downloaded preserving the anonymity of both requesters and
providers. Other great feature is the lack of a system administrator on this type
of networks providing a easier and faster setup running with efficiency and stability
without a full staff to control it.

In recent research and derived from these features the peer-to-peer networks
have accounted for roughly 43% to 70% (depending on geographical location) of all
Internet traffic [Schulze and Mochalski, 2009].

11http://www.jets3t.org

http://www.jets3t.org

2.3. PEER-TO-PEER NETWORKS 15

2.3.1 Concepts and Definitions

In short, a distributed network architecture may be called a Peer-to-Peer (P-to-P,
P2P,...) network, if the participants share a part of their own hardware resources
(processing power, storage capacity, network link capacity, printers,...). These shared
resources are necessary to provide the Service and content offered by the network
(e.g. file sharing or shared workspaces for collaboration): They are accessible by
other peers directly, without passing intermediary entities [Schollmeier, 2001].

Peer-to-peer systems often implement an abstract overlay network, built at the
application layer, on top of the native or physical network topology. Such overlays
are used for indexing and peer discovery and make the P2P system independent
from the physical network topology. Content is typically exchanged directly over
the underlying Internet Protocol (IP) network. This peer-to-peer overlay systems go
beyond services offered by client-server systems where a client may also be a server
(Figure 2.2).

Figure 2.2: Comparison model of P2P and Server based networks.

Currently, P2P systems can be classified into two main categories: unstructured
and structured [Wang et al., 2005]. The technical meaning of structured is that the
P2P overlay network topology is tightly controlled and content is placed at specific
locations that will make subsequent queries more efficient [Eng Keong Lua et al.,
2005].

Structured P2P systems (such as Chord, CAN, Tapestry and Pastry) use a Dis-
tributed Hash Table (DHT), in which data objects’ (or values) location information
is placed deterministically, at the peers with identifiers corresponding to the data
objects unique key. In contrast to the random overlay in unstructured systems, all
peers in structured systems are organized into a clear logical overlay that allows
DHTs to scale to extremely large numbers of nodes and to handle continual node
arrivals, departures, and failures.

For unstructured P2P systems (such as Gnutella and KaZaA) peers are organized
arbitrarily. Each peer connects with other peers randomly. An arbitrary overlay

16 CHAPTER 2. STATE OF THE ART

network is formed by those connections among peers.

Although, these systems are simple, they provide friendly keywords searching
models and powerful abilities to locate duplicated objects. Related with unstruc-
tured P2P architectures is normally associated the query flooding algorithm. In
flooding, the node who wants the file simply broadcast its search query to its im-
mediate neighbours. If the neighbours do not have the resource, they forward it to
its neighbours until a maximum number of hops. This mechanism generates a large
mount of messages per query, which difficulties the scalability when the number of
peers grows.

Other typical protocol used is gossiping. In this “epidemic” mechanism each
participating node chooses another random node to send the query. Then, each
node combines the information it receives from other nodes with information it
already has and propagate it in the next round [Zaharia and Keshav, 2008]. So each
member node is in charge of forwarding each message to a set of other, randomly
chosen, group members [Ganesh, 2003]. Normally, the gossip mechanism adds a
bandwidth overhead to the system.

Among the non-structured P2P networks, are considered the pure, the hybrid
and the centralized P2P networks (Figure 2.3).

Figure 2.3: Comparison model of P2P non-structured based networks.

In pure P2P networks, each peer acts as an equal, integrating the client and
server role. In such networks, there is not a central point for managing and routing
in the network. The most important characteristic of a pure P2P network is the fact
that any of the peers can be removed without suffering any loss in services provider.

In hybrid P2P networks nodes can assume different roles. A group of nodes or
a central node usually perform control tasks and information indexing. Others are
still free to communicate directly with each other.

In centralized P2P networks peers connect to a central node, where they publish
information and services. The central node when receive a solicitation, forwards it
to the peers of the list that can answer it. The rest of the operation is carried out
between two nodes without intervention of the central node. In case of failure of the
central node, the network cease to operate.

2.4. BITTORRENT 17

2.3.2 File Sharing

Peer-to-peer networks have become more influential since 1999 with the introduction
of Napster, a file sharing program that linked people who had files with those who
requested files.

In this system a connection is established from the user local machine to Napster’s
central servers, informing them of local files available for sharing. Thus, these servers
keep a complete list of the songs (only music files supported) shared on each machine
currently connected. When someone searched for a file, the server would find all of
the available copies of that file and present them to the user. The files would be
transferred between the two private computers.

After Napster shut down in 200112 because copyright infringement, Gnutella and
Kazaa rose as the most popular peer-to-peer service. While Napster connected users
through a centralized server, these new services connected users remotely to each
other. These services also allowed users to download files other than music.

Another protocol that emerged more recently is BitTorrent. BitTorrent allows
users to create an index file containing the metadata of the files they want to share,
and upload them to dedicated websites to make them available to downloaders.

BitTorrent became the third generation protocol of P2P networks13. The main
difference between BitTorrent and previous generations is that it creates a new
network for every set of files instead of trying to create one big network of files using
servers.

Nowadays it constitutes one of the most common protocols for transferring files,
counting over 150 million active users 14.

2.4 BitTorrent

The P2P overlay networks attempt to solve a long list of features as well as problems
[Eng Keong Lua et al., 2005]:

• selection of nearby peers;

• self-organization;

• load balancing;

• redundant storage;

• efficient search of data items;

• data guarantees;

• hierarchical naming;

• trust and authentication;

12http://www.businessweek.com/2000/00_33/b3694003.htm
13http://filesharingz.com/guides/filesharing-history.php
14http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users

http://www.businessweek.com/2000/00_33/b3694003.htm
http://filesharingz.com/guides/filesharing-history.php
http://www.bittorrent.com/intl/es/company/about/ces_2012_150m_users

18 CHAPTER 2. STATE OF THE ART

• anonymity;

• massive scalability;

• fault tolerance.

So peer-to-peer computing offers a radically new way of isolating and focusing
on the networking aspect. A P2P network distributes information among member
nodes instead of concentrating it at a single server and this paradigm offers exciting
advantages in information sharing [Parameswaran, 2001].

In a P2P model, each member node can make information available for distribu-
tion and can establish direct connections with any other member node to download
information.

The P2P networks widely known today engage primarily in sharing music, video
or gaming software not directly contributing to electronic commerce. This networks
are mostly using the BitTorrent protocol. However, the P2P paradigm, more par-
ticularly the BitTorrent Specification15 can be extended and enhanced productivity
in other areas.

2.4.1 Operation Model

BitTorrent16, a peer-to-peer file sharing protocol, is used for distributing large
amounts of data over the Internet. With BitTorrent, the task of distributing the file
is shared by those who want it, i.e. it is entirely possible for the peer to send only
a single copy of the file itself and eventually distribute it to an unlimited number of
peers. It is fundamentally different from all previous peer-to-peer applications (like
Napster and Gnutella) because it does not rely on a peer-to-peer network federating
content sharing users. Instead, it creates a new transfer session, called a torrent, for
each file.

Clients involved in a torrent, cooperate to replicate the file among each other
using swarming techniques. A user who wants to upload a file first creates a torrent
descriptor file (with the extension ‘.torrent’) that they distribute by conventional
means (web server, email, etc.) starting acting as a seeder.

Peers that want to download the file must first obtain a torrent file for it and
connect to the specified tracker, which tells them from which other peers to download
the pieces of the file (typically 256 KB but other piece sizes are possible too).

BitTorrent distinguishes between two kinds of peers depending on their download
status: clients that have already a complete copy of the file and continue to serve
other peers are called seeds ; clients that are still downloading the file are called
leechers.

The tracker is not involved in the distribution of the file. It only coordinates the
file distribution by keeping track of the peers currently active in the torrent. The
tracker is the only centralized component of BitTorrent.

Pieces are typically downloaded non-sequentially and are rearranged into the
correct order by the BitTorrent client. Peers download each piece by connecting to

15http://wiki.theory.org/BitTorrentSpecification
16http://www.bittorrent.com

http://wiki.theory.org/BitTorrentSpecification
http://www.bittorrent.com

2.4. BITTORRENT 19

the seed and/or other peers that has the file, thus acting a a leecher. Peers that
previously downloaded some of the pieces act as seeders too.

Due to the nature of this approach, the download of any file can be halted at any
time and be resumed later, without the loss of previously downloaded information.
This makes BitTorrent particularly useful for exchanging large files.

Active clients report their state to the tracker. When joining a torrent, a new
client obtains from the tracker a list of IP addresses of active peers to connect to
and cooperate with (typically 50 peers chosen at random in the list of active peers).

Interactions between clients are primarily guided by two principles. First, a peer
preferentially sends data to peers that reciprocally sent data to him. This “tit-for-
tat” strategy is used to encourage cooperation and ban “free-riding”. Altruism is
enforced during the download phase by the tit-for-tat policy, as a selfish client will
be served with a very low priority.

Each time a client obtains a new piece, it informs all the peers it connects to.
Interactions between clients are based on two principles [Legout et al., 2005]: first,
the choke algorithm that encourages cooperation among peers and limits the number
of peers a client is sending simultaneously data to; second, the rarest first algorithm
that controls the pieces a client will actually request in the set of pieces currently
available for download.

As more peers join the swarm, the complete successful and rate download by any
particular node increases resulting in more efficient content delivery.

2.4.2 Main Components

To work properly the BitTorrent network depends on several components. It de-
pends on a torrent file and a tracker and on the peers connectivity.

Every torrent file must contain two fields, or keys: the info (information) and
announce. The info ensures that any modification of the piece can be reliably
detected, and thus prevents both accidental and malicious modifications of any of
the pieces. On the other side, the announce stores the location of the tracker. The
others keys are optional (Table 2.1).

Keys Description

info A dictionary which describes the file(s) of the torrent
including the number of pieces and the SHA-1 hash values of each piece

announce The announce URL of the tracker
announce-list List backup trackers
creation date The creation time of the torrent
comment Any comments by the author
created by Author and/or Name and Version of the programme
encoding String encoding format used to generate the pieces part

Table 2.1: Torrent metadata file structure.

Instead of transmitting the keys in plain text format, the keys contained in the
torrent file are encoded before they are sent. Encoding is done using BitTorrent

20 CHAPTER 2. STATE OF THE ART

specific method known as “Bencoding”17.
A tracker is used to manage peers that participate in a torrent (Figure 2.4). It

stores statistics about the torrent, but its main role is to allow peers to find each
other and to start the communication.

Figure 2.4: A tracker providing a list of peers with the required data.

The tracker is one HTTP/HTTPS service that typically works on port 6969 and
one tracker can manage multiple torrents. BitTorrent clients communicate with the
tracker using HTTP GET requests. This consists of appending a parameters to the
URL. The parameters accepted are:

• info hash: 20-byte SHA1 hash of the info key from the metainfo file.

• peer id: 20-byte string used as a unique ID for the client.

• port: The port number the client is listed on.

• uploaded: The total amount uploaded since the client sent the ‘started’ event
to the tracker in base ten ASCII.

• downloaded: The total amount downloaded since the client sent the ‘started’
event to the tracker in base ten ASCII.

17http://wiki.theory.org/BitTorrentSpecification

http://wiki.theory.org/BitTorrentSpecification

2.4. BITTORRENT 21

• left: The number of bytes the client till has to download, in base ten ASCII.

• compact: Indicates that the client accepts compacted responses. The peer list
can then be replaced by a 6 bytes per peer. The first 4 bytes are the host, and
the last 2 bytes are port.

• event: If specified, must be one of the following: started, stopped, completed.

• ip: (optional) The IP address of the client machine, in dotted format.

• numwant: (optional) The number of peers the client wishes to receive from
the tracker.

• key: (optional) Allows a client to identify itself if their IP address changes.

• trackerid: (optional) If previous announce contained a tracker id, it should be
set here.

The tracker then responds with a “text/plain” document with the following keys:

• failure message: If present, then no other keys are included. The value is a
human readable error message as to why the request failed.

• warning message: Similar to failure message, but response still gets pro-
cessed.

• interval: The number of seconds a client should wait between sending regular
requests to the tracker.

• min interval: Minimum announce interval.

• tracker id: A string that the client should send back with its next announce.

• complete: Number of peers with the complete file.

• incomplete: number of non-seeding peers (leechers)

• peers: A list of dictionaries including: peer id, IP and ports of all the peers.

Peers

Peers communicate using TCP (Transport Control Protocol) that guarantees reliable
and in-order delivery of data from sender to receiver. It uses ports 6881-6889 to send
messages (that are made up of a handshake) and data between peers.

When a peer receives a request for a piece from another peer, it can opt to refuse
to transmit that piece. If this happens, mostly because it is busy, the peer is said
to be choked.

The tracker allows peers to query which peers have what data, and allows them
to begin communication. Peers communicate with the tracker via the plain text via
HTTP (Hypertext Transfer Protocol).

BitTorrent does not have restrictions on file size or type. Data is only split into
smaller pieces to be sent between peers using the BitTorrent protocol. These pieces

22 CHAPTER 2. STATE OF THE ART

have a fixed size (the most common piece sizes are 256kb, 512kb and 1mb). Pieces
with large size can cause download inefficiency. Every piece is of equal length except
for the final piece, which is irregular. The number of pieces is thus ceil(length

piecesize
).

2.5 Summary

Nowadays, sharing resources on the Internet rely, essentially, on a couple of ap-
proaches. Cloud computing has become a commodity for service provisioning, such
as processing power, virtualized hardware, storage space and others. Organizations
take advantage of their hardware and knowledge resources to make them available,
through a business model, to customers.

On the other hand, peer-to-peer has been evolving independently from enter-
prises, providing a familiar and reliable infrastructure for resource sharing. Despite
several copyright issues, it managed to evolve into a robust, resilient, service.

Chapter 3

Distributed Storage Service

The low-level usage pattern of Amazon S3 is, essentially, storing, updating and
retrieving sequence of bytes through SOAP, REST WS or BitTorrent, having in mind
the durability and availability defined in the SLA. Off course, the SLA parameters
reflects on the client budget. In this pattern, the access speed depends on the
end-to-end throughput to where the buckets are stored (in Amazon’s data centers).
As stated above, S3 has also support the BitTorrent protocol. This allows users to
further save on bandwidth costs for popular pieces of data by letting users download
from Amazon and other users simultaneously, in addition to the default client/server
delivery mechanism. With this system Amazon thrive to reduce costs.

Peer-to-peer networks do not depend on a specific companies to provide a service.
Their distributed nature makes them democratic, in the sense that the clients that
require a specific service also have to give back to the network. The importance
of P2P is evident on the traffic it generates. In other words, clients can use and
access resources, e.g. storage space, if they are also available to share some resources
to the P2P community. Privacy and security is also an issue although possible to
overcome [Cong Wang et al., 2010,Rewatkar and Lanjewar, 2010]. Due to its nature,
P2P networks do not provide SLAs to ensure access speed, redundancy, scalability,
capacity, and others. Many of these characteristics, if not all, are dependent on the
number of peers the network have and on the probability of peer availability.

This section describes the overall architecture, going through three scenarios. We
started to develop a REST SDK to support connection to the Amazon S3 server.
This SDK was specifically build in order to assess compatibility with our own im-
plementations. The SDK was further used to develop two client applications: a java
desktop application, with visual controls, and a FUSE1 (File System in User-Space)
driver. This app allows the user to upload, list, delete and retrieve regular files
through Amazon’s REST service. With the clients in place, we proceeded to build
a local, centralized server.

This was used to ensure a compatible server-side REST service as well as to
compare access speed between a networked and local servers (see chapter 4). By
changing the server address and the user credentials, it is possible to configure
the above mentioned clients to choose to connect to Amazon’s S3 or to the local

1http://fuse.sourceforge.net

23

http://fuse.sourceforge.net

24 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

server in order to retrieve, delete or make others operations on the service. Finally,
a BitTorrent based, distributed “server” was developed. In this implementation,
buckets and objects are stored in BT nodes.

The overall architecture is depicted in Figure 3.1 where it is possible to verify
that the clients connects to different service implementations by the SDK.

Figure 3.1: Overall architecture implemented.

3.1 Amazon Simple Storage Service

The Amazon S3 is a web service that enables storing data in the cloud. It gives
access to the same data storage infrastructure that Amazon uses to run its own
global network of web sites.

At the end of the first quarter of this year, there were 905 billion objects in
Amazon S3 and routinely handle 650,000 requests per second2 for those objects
with occasional peaks substantially above that number. That numbers showed that
S3 has been constantly growing along the users satisfaction. This service is designed
to provide 99.999999999% durability and 99.99% availability of objects over a given
year3. In sum, the S3 design aims to provide scalability, high availability, and low
latency at commodity costs.

3.1.1 Concepts and Architecture

The data stored in Amazon S3 is organized in two levels. At the top level resides the
bucket, similar to folders which have a unique global name. Buckets are needed to
organize the Amazon S3 namespace at the highest level and to identify the account
responsible for storage and data transfer charges. They can be created in a specific
region with a specific role in access control. They can serve as the unit of aggregation
for usage reporting too.

Each bucket can store an unlimited number of data objects. Objects are the fun-
damental entities stored in Amazon S3. Objects consist of data (blob) and metadata.

2http://aws.typepad.com/aws/2012/04/amazon-s3-905-billion-objects-and-650000-requestssecond.html
3http://aws.amazon.com/s3/

http://aws.typepad.com/aws/2012/04/amazon-s3-905-billion-objects-and-650000-requestssecond.html
http://aws.amazon.com/s3/

3.1. AMAZON SIMPLE STORAGE SERVICE 25

The data portion is opaque to Amazon S3. The metadata is a set of name-value
pairs that describe the object (Content-Type, Date,..). An object is uniquely identi-
fied within a bucket by a key (name) and a version ID. A key is the unique identifier
for an object within a bucket. Every object in a bucket has exactly one key. Users
can create, modify and read objects, subject to access control restrictions.

In the creation of a bucket the choice of the geographical region can be important,
in order to optimize latency, minimize costs, or address regulatory requirements. By
default is used the US-Standard region.

Other functionality is that every object contained in a bucket is accessible by
URL. For example, if the object named “2006-03-01/AmazonS3.wsdl” is stored in
the “doc” bucket, then it is addressable using the URL “http://doc.s3.amazonaws.
com/2006-03-01/AmazonS3.wsdl”.

S3 stores arbitrary objects up to 5 terabytes in size, each accompanied by up to
2 kilobytes of metadata. Thus, objects are organized into buckets (each owned by
an Amazon Web Services or AWS account), and identified within each bucket by a
unique, user-assigned key.

This service is well characterized by the flexibility it presents. This cloud storage
system allows incrementing or decrementing available space according to the business
needs, even for short periods of time.

S3 also has a more affordable service, with lower levels of redundancy. The Re-
duced Redundancy Storage (RRS) is geared towards storing non-critical information,
for example organizations’ centrally managed data backups.

Amazon S3 adopts the pay-per-use model4: the prices are based on the data
location (region) and the amount of requests (GET, PUT, COPY, POST, and LIST),
as well as the data transfers into and out of an Amazon S3 region. The amount of
storage is accounted as well and relies on the number and the size of objects stored
in buckets.

For example, 1,000 PUT, COPY, POST or LIST requests cost $0.01; 10,000 GET
requests cost $0.01. Fairly, data transfer prices can vary from $0.120 per GB (up to
10 TB/month) at $0.050 per GB (next 350 TB / month). The first 1 GB/month is
not charged. The storage price lies between $0.125 ($0.093 for RSS) per GB for the
first 1 TB/month up to $0.055 ($0.037 for RSS) per GB for over 5000 TB/month.
This values match with the US-Standard region.

3.1.2 Data Access Protocols

Many cloud providers offer a wide variety of flexible data storage services and some
of them offer their services through WebServices. For example, DropBox allows users
to synchronize data between computers and all data is persisted in Amazon S3 stor-
age service5. The S3 architecture is designed to be programming language-neutral
providing REST and a SOAP interfaces to store and retrieve objects (Figure 3.2).

REST web services were developed largely as an alternative to some of the per-
ceived drawbacks of SOAP-based web services [Hamad, 2010]. With REST, standard

4http://aws.amazon.com/s3/pricing/
5https://www.dropbox.com/help/7/en

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://aws.amazon.com/s3/pricing/
https://www.dropbox.com/help/7/en

26 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

Figure 3.2: S3 architectural model.

HTTP requests are used to create, fetch, and delete buckets and objects (Table 3.1).
So, this interface work with standard HTTP headers and status codes to allow the
communication in S36.

Operations Description

GET / get a list of all buckets
PUT /{bucket} create a new bucket
GET /{bucket} list the contents of the bucket
DELETE /{bucket} delete the bucket
PUT /{bucket}/{object} create/update an object
GET /{bucket}/{object} get the contents of the object
DELETE /{bucket}/{object} delete the object

Table 3.1: HTTP operations with URI pattern that can be performed in S3.

Thus, the REST architecture is fundamentally client-server architecture and aims
to be simple by limiting the types of operations that can perform on a resource.

Currently, S3 also supports the BitTorrent data access protocol. This popular
file-sharing protocol enables efficient cooperative data distribution: data is initially
distributed at one or more seed sites that are pointed to by a tracker. As clients begin
to download a BitTorrent file, those clients register themselves with the tracker and
make portions that they have downloaded available to other clients. S3 can provide
both tracker and seed functionality, allowing for substantial bandwidth savings if
multiple concurrent clients demand the same set of object.

3.1.3 Authentication Model

When users register an Amazon Web Services (AWS) account, AWS assigns one
Access Key ID (a 20-character, alphanumeric string) and one Secret Access Key
(a 40-character string). The Access Key ID uniquely identifies an AWS Account.
AWS uses a typical implementation that provides both confidentiality and integrity

6http://www.oreillynet.com/pub/wlg/3005

http://www.oreillynet.com/pub/wlg/3005

3.1. AMAZON SIMPLE STORAGE SERVICE 27

(through server authentication and encryption).
The S3 REST API7 uses a custom HTTP scheme based on a keyed-HMAC (Hash

Message Authentication Code) for authentication. The standard HTTPAuthoriza-
tion header is used to pass authentication information.

To authenticate a request, selected elements of the request are concatenated to
form a string with the following form: “AWS AWSAccessKeyId:Signature”. In
the request authentication, the first “AWSAccessKeyId” element identifies the user
that originated the request and the secret key that was used to compute the “Sig-
nature”. The “Signature” element is the SHA1 hash of the request selected el-
ements [Krawczyk et al., 1997]. In the Amazon S3 Request authentication this
algorithm takes as input two byte-strings: a key and a message. The key corre-
spond to the AWS Secret Access Key and the message is the UTF-8 encoding of one
string that represents the request. This string includes parameters like the HTTP
verb, content MD5, content type, date that will vary from request to request. The
output of HMAC-SHA1 is also a byte string, called the digest. The final “Signature”
(Figure 3.3) request parameter is constructed by Base64 encoding this digest.

Figure 3.3: Client authentication.

When the system receives an authenticated request, it fetches the AWS Secret
Access Key and uses it in the same way to compute a “Signature” for the message
it received. It then matches signatures to authenticate the message (Figure 3.4). If
they are equal the user is authenticated by the system.

To summarize, this REST architecture implemented by the AWS offers to the

7http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAuthentication.html

http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAuthentication.html

28 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

Figure 3.4: Server authentication.

register users access to theirs files. Essentially it also allows developers to create
new applications to interact with.

This S3 survey provided an overview of the system functionality to better under-
stand the sections below.

3.2 Amazon S3 Client

Amazon made available a Java API that can be used by client applications to connect
to its REST service. However, we decided to develop our own REST client to better
understand the server interfaces and to be able to use them in the role of the client
as well as in the role of a server. It was validated through a client applications and,
after that, used to build an S3 compatible server.

Our implementation is based on the IStorage interface, which encapsulates the
methods that can be called in order to interact with the service (Figure 3.5).

The StorageRestAccess class implements the interface and is responsible to
make the requests and consequent connection to the service. To make the con-
nection a host and a port is needed, in the case of the S3 service is located on
s3.amazonaws.com at port 80 (or at port 443 with SSL support).

For the authentication process an Access Key Id and a Secret Key must be
provided as explained on section 3.1.3. With all of this parameters the class is able
to process the requests.

The next code represents an example of a GET request sent to the S3 REST
service:

3.2. AMAZON S3 CLIENT 29

Figure 3.5: Storage REST service class diagram.

GET

Sun , 14 Oct 2012 13 : 27 : 21 GMT
/BUCKETAKIAIRJLQ2KQRXLQM3OQ/16MB. z ip
Author i zat ion : AWS AKIAIRJLQ2KQRXLQM3OQ:2w15rVHKA6WCFUZ4DcRPkQzy6rU=
http :// s3 . amazonaws . com:80/BUCKETAKIAIRJLQ2KQRXLQM3OQ/16MB. z ip

The first line represents the action operation. The next represents the timestamp
of the request. Following is represented the object path (i.e., the bucket location plus
the object key name) and the string included in the authorization header. Finally,
is showed the accessible url, composed with the host and port and object path, to
connect with.

Based in this class, a desktop client application was used to invoke the operations
developed (Figure 3.6). This generic client receives the file through the user action
(drag-and-drop). It then reads the file contents and uploads the file content to
the bucket. The bucket is created by the application if not existing. The desktop
application provides a GUI to the user, which allows listing, retrieving, removing or
uploading files. This application is configured, in a preferences panel, with the user
credentials and connection parameters, for a correctly authentication and connection
to the S3 server.

Another application, a FUSE8 driver, was also developed to better understand
the influence of different connection scenarios. This driver mounts an S3 bucket in

8http://fuse.sourceforge.net

http://fuse.sourceforge.net

30 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

Figure 3.6: Desktop S3 client.

the local file system, along regular files, thus providing an unified view to the local
and remote files (Figure 3.7).

Figure 3.7: FUSE Amazon S3 client.

Amazon built the S3 service without much care about the GUI applications
provision that help users to organize S3 files more easily. It particular worries
with the storage service provision leaving the creation GUI task to the developers.
Indeed the only way to access S3 resources official is by the AWS Management
Console9, where all of Amazon Web Services (EC2, EBS, S3, ..) are administered.
Also caring about the service provision the next implementation was the replication
of the S3 REST server locally for also working with the client application. This
implementation are discussed in the section below.

9http://aws.amazon.com/console/

http://aws.amazon.com/console/

3.3. CENTRALIZED S3 SERVER 31

3.3 Centralized S3 server

After having the client application working with Amazon S3, a local, S3 compatible,
server was built. This server will be used as a reference for an access speed test. It is
network accessible, based on Jetty10, and implements the operations through REST
WS. Naturally, due to the centralized nature, it does not cope with the durability
and availability users expect for the Amazon S3 service. However, access speed is
limited only by the local host processing speed and operating system, thus having
the best throughput possible.

The developed WS implement basic service operations:

public interface I S e r v i c e {

@GET
@Path(”/”)
@Produces (” app l i c a t i o n /xml”)
public ListAl lMyBucketsResult getAllMyBuckets () ;

@GET
@Path(”/{bucket }/”)
@Produces (” app l i c a t i o n /xml”)
public ListBucketResu l t getBucketObjects (@PathParam(”bucket ”)

S t r ing bucket) ;

@GET
@Path(”/{bucket }/{ ob j e c t }”)
public Response getObject (@PathParam(”bucket ”) S t r ing bucket ,

@PathParam(” ob j e c t ”) S t r ing ob j e c t) ;

@DELETE
@Path(”/{bucket }/{ ob j e c t }”)
public Response de l e t eObj ec t (@PathParam(”bucket ”) S t r ing bucket ,

@PathParam(” ob j e c t ”) S t r ing ob j e c t) ;

@PUT
@Path(”/{bucket }/{ ob j e c t }”)
public Response putObject (@PathParam(”bucket ”) S t r ing bucket ,

@PathParam(” ob j e c t ”) S t r ing object , InputStream inputStream) ;

@HEAD
@Path(”/{bucket }/”)
public Response checkBucketExists (@PathParam(”bucket ”) S t r ing bucket) ;

@PUT
@Path(”/{bucket }/”)
public Response createBucket (@PathParam(”bucket ”) S t r ing bucket) ;
}

These operations also provide a good starting point for a simple storage service
implementation. The first operation getAllMyBuckets retrieve all the buckets cre-
ated by the user and in this implementation the buckets are in simple terms local
user folders. When the operation getBucketObjects is called it returns the object

10http://www.eclipse.org/jetty/

http://www.eclipse.org/jetty/

32 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

list in that bucket and with the getObject call the object is returned. As expected,
deleteObject removes the object. When is necessary to upload some object, the
putObject operation is called and if the object already exists, it is replaced by the
new one. The operations on buckets createBucket and checkIfBucketExists are
only for the bucket creation but if already exist the operation fails for not running
the risk of any information loss in the that bucket.

In order to know what buckets belong to a certain user, it is recorded in the
server’s database a bucket-user registry. It is also recorded the creation date of the
bucket for S3 compatibility purpose. All about the repository file and their DB
transaction is managed in the code by the RepositoryManager class.

The main challenge at this point was to develop a secure RESTful web API
compatible with the S3 REST authentication model:

1. The server and the client know a public and private key but only them know
the private key. The public key identifies the user information (User ID) and
anyone can know about the public key but never the private key.

2. Before making the REST API call, the client creates a unique hash (HMAC-
SHA1), hashing request data (all request parameters and values) with the pri-
vate key assigned by the system, representing the request to the server (as
shown in Figure 3.3).

3. The server receives the request and using the user-identifying data sent along
with the request (User ID) look the user up in the DB and load their private
key. After, it generates the unique hash based on the submitted values using
the same methods that the client used (as shown in Figure 3.4). To hinder
replay attacks the current server timestamp is compared to the timestamp of
the client making sure that the difference between them matches an acceptable
time range (e.g. 15min).

4. It then compares the two hash and if they are equal the server trusts the
client and runs the request. If not it drops the request and submit a forbidden
response to the client.

The authentication call on local Jetty server has been implemented by a security
request handler. This security handler is always called on every request sent to the
server. So, before the request processing is always attended first the security handler
to verify if the user has access to the service, i.e. if he is a registered user.

In this implementation, buckets correspond to directories in the local server
filesystem. Objects, on the other hand, are stored as files, with the metadata being
stored in a local database.

We then proceeded to building an S3 compatible server backed by a BitTorrent
network.

3.4. D3S – THE BITTORRENT S3 SERVER 33

3.4 D3S – The BitTorrent S3 server

Peer-to-peer protocols, such BitTorrent, provide a storage service by sharing and
replicating data over several peers. Storage systems depend on redundancy to
achieve availability and resilience, natural in P2P networks [Pamies-Juarez, 2011].
On the other hand, storage space is proportional to the number of peers.

Thus, the REST S3 server interface is local although files are stored in a BT net-
work where each bucket objects are segmented, replicated and scattered by several
nodes. In this proof of concept, files are replicated only to the peers that belong to
a given user, thus requiring that at least one owned peer has to be online for the file
to be accessible in other peers. This drawback is easily solved by scattering buckets
objects through several “random” peers.

There are several challenges to this implementation:

• How to authenticate users;

• How to provide a .torrent file to relevant peers;

• How to remove the file from the replicas.

The sections below aims to clarify the D3S functionality model and the challenges
of this implementation.

3.4.1 The Functionality

Taking advantage of the S3 functionality, i.e., the interaction model with the objects,
it was used the local REST server referred in section 3.3. With this implementation
is achieved one structure capable to support the interaction model similar to the S3
storage system. Instead of storing objects in a local server only, they are sent to a
BT network, taking advantage of replication and different throughput patterns.

After the user complete the preferences windows in the client app with the correct
credentials he is able to make the connection with the system. This connection is
only for testing the user credentials because in every request this authentication is
repeated. So when an user uploads a file to the D3S service he invokes a PUT object
operation. If he is authenticated with the system he continues with the process of
upload. This process includes the insertion of a bucket if not existing in order to
save the file.

For every object, a .torrent is generated. During this .torrent file creation the
system also sends this metafile to the tracker and finishes the operation launching
a peer for seeding the file (Figure 3.8). On the right side of the figure, the GET
operation is represented. In this operation the system must firstly check if the file
is locally available. If not, the system retrieves the .torrent file from the tracker and
starts downloading it until completed.

The last user scenario is when the user wants to delete a file. At a DELETE
operation call the system remove the files (i.e., the .torrent and real file) from the
local repository. During this process the .torrent file is also removed from the tracker
repository.

34 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

Figure 3.8: Upload (left) and download (right) activity diagram of the D3S.

To allow all of this specific transactions it was necessary to implement additional
features that are discussed in the section below. So the next section provide a
more information of the implemented architecture represented in the Figure 3.9. As
shown, the tracker is the only centralized entity with the responsibility to coordinate
the system operation. The other modules are located on the user side.

3.4.2 Implementation

Instead of extending the BitTorrent protocol we chose to provide a specific service to
authenticate users and another to install the .torrent file in the tracker (Figure 3.10).
We opt for using RMI (Remote Method Invocation) to implement these mechanisms.

RMI is Java mechanism for supporting distributed object based computing [Maassen
et al., 1999]. It allows client/server based distributed applications to communicate
by invoking remote objects the same way as local objects. So the use of RMI
provided a mechanism by which the tracker and the client communicate and pass
information.

In particular, the client running at a node can access a remote service in the
tracker by invoking a method of the object that implements the service. Thus, the
RMI framework enables applications to exploit distributed object technology rather
than low level message passing (e.g., sockets) to meet their communication needs.

The RMI distributed application uses the RMI registry to obtain a reference to

3.4. D3S – THE BITTORRENT S3 SERVER 35

Figure 3.9: D3S deploy model diagram.

a remote object. The server in the tracker calls the registry to associate (or bind) a
name with a remote object. The client looks up the remote object by its name in
the server’s registry and then invokes a method on it.

The following code shows the remote interface methods that can be invoked by
the User Manager and the Torrent Manager to interact with the tracker:

public interface Compute extends Remote {

// UserManager RMI invoca t i on s :
public boolean addUser (UserServ i ce n) ;
public boolean updateUser (S t r ing userId , UserServ i c e n) ;
public void removeUser (UserServ i ce u) ;
public List<UserServ ice> getUsers () ;
public UserServ i ce getUser (S t r ing id) ;
public List<ListEntry> getUserObjects (S t r ing use r Id) ;

// TorrentManager RMI invoca t i on s :
public boolean putTorrent (S t r ing name , byte [] data , S t r ing use r Id) ;
public byte [] getTorrent (S t r ing name) ;
public List<Str ing> getTorrents () ;
public boolean i sTorrentUser (S t r ing userId , S t r ing t o r r en t) ;
public boolean removeTorrent (S t r ing t o r r en t) ;

}

36 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

Figure 3.10: BitTorrent S3 implementation.

About the overall system functionality, BT peers contact the tracker when needed,
to manage the overlay network. In this implementation, each peer will also contact
the User Manager, which maintains a database of user credentials, to authenticate
each user’s peers. The User Manager also maintain a relation of each user’s .torrent
files, residing in the .torrent repository.

The .torrent Manager receives the .torrent files from the peers and associates
them with the user that originated the request. The .torrent files are generated
when the user uploads a file to the service through the client application. So when
a user uploads a file to the service the putObject operation is called and the object
file is locally saved by the Repository Manager (Figure 3.11). The BT Manager
deals with the creation of the .torrent file through the Torrent Manager. This last is
responsible to send the file to the tracker repository. Finally, the BT Manager only
create a peer client (BTClient) that share the object file to others peers.

In the GET operation case can be found 2 different scenarios. The first is when the
file is locally available (Figure 3.12). In this case the Repository Manager just returns
the file available on the File Repository. The other case is when the system needs
to contact the BT Manager to download the file through the BitTorrent network
(Figure 3.13). The BT Manager is responsible for the download of the .torrent file
through the Torrent Manager in order to download the file (BTClient). When the
file is complete its returned to the Service but the BT Client stills sharing the file
with the BT network.

Peers will periodically pool the .torrent Manager to check for new additions, so
that each one of them can replicate the file, thus making it available to the other
peers as well as locally. Anytime that the user requests a file, it is already available

3.4. D3S – THE BITTORRENT S3 SERVER 37

Figure 3.11: Sequence diagram of the PUT object operation.

locally. If the file is not available locally, it is downloaded from several replicas
simultaneously, increasing the access speed and only becoming available to the user
when the download has finished.

In sum, BT networks natively supports resource sharing, which requires self orga-
nization, load balancing, redundant storage, efficient search of data items, data guar-
antees, trust and authentication, massive scalability properties and fault-tolerance
(i.e., if one peer on the network fails the whole network is not compromised) [Eng
Keong Lua et al., 2005]. These characteristics are thus imported to this implemen-
tation, meeting many of the requirements of cloud storage services. Moreover, it
intrinsically copes with scalability, redundancy and availability: the more replicas
there are, the higher the redundancy, access speed and availability.

3.4.3 The NAT Traversal problem

Network Address Translation (NAT) [Egevang and Francis, 1994] allows a single
device, such as a router, to act as an agent between the Internet (public network)
and a local (private) network. This means that only a single, unique IP address is
required to represent an entire group of computers what is very useful to build a
small private network. However, NAT creates a private IP address realm behind
NAT translators and according to common firewall and NAT rules, hosts in private
address realm cannot be reached directly from public Internet. This built-in privacy
and security benefits of NAT represent a trouble because it is hard to locate and
communicate with the private hosts behind a NAT gateway.

Thus, NAT causes well-known difficulties for peer-to-peer communication, since
the peers involved may not be reachable at any globally valid IP address. Several
NAT traversal techniques are known [Hu, 2005], but are not standardized and their

38 CHAPTER 3. DISTRIBUTED STORAGE SERVICE

Figure 3.12: Sequence diagram of the GET object operation when file is locally available.

robustness or relative merits are slim. So, in peer-to-peer networks, hosts behind
NAT gateway have to be reached directly by some way in order to be reachable by
other peers.

UPnP is an open standard for flexible connectivity of intelligent both wired and
wireless devices. Currently, almost all Internet gateways are UPnP NAT devices
and the automatic service discovery, addressing, without configuration are suitable
for P2P applications. UPnP specification is based on TCP/IP and when a new host
needs a connection, the UPnP device can automatically configure network address
translating, announce its presence on a local network, and permit the exchange of
device and service descriptions.

We decided to add UPnP functionality to the D3S peer, to foster wider adoption
and to facilitate installing peers in domestic networks. Each peer detects if it is is
behind an UPnP-enabled NAT device and then learn the shared, globally IP address,
and configure UDP and TCP port mappings to forward packets from the external
ports of the NAT to the internal ports of the client application.

This allowed a flexible connectivity where the application traverse a NAT gateway
by dynamically opening and closings ports for communication with other peers.

3.5 Summary

This section described the implementation of the infrastructure required to assess
and compare throughput in several scenarios. Starting with the Amazon S3 cloud
storage service, two different clients where developed. An additional server, based
on Jetty, was developed, allowing local and LAN access. Moreover, a BT based
implementation of the server interface was also implemented, allowing taking ad-
vantage of peer-to-peer networks characteristics, namely, replication, resilience and
availability.

Next chapter describe several experiments that where performed, to compare
access speed and latency of several scenarios.

3.5. SUMMARY 39

Figure 3.13: Sequence diagram of the GET object operation by the BT network.

Chapter 4

Results and Discussion

BitTorrent has become a standard for scalable content distribution over the Internet
with the ability to efficiently achieve high scalability during peak demands. At the
other side of the spectrum, cloud storage services like Amazon Simple Storage Ser-
vice (S3) has been growing providing “low-cost”, highly available, storage services.
Similarly, at opposite sides of the spectrum, the former depends on the openness
of the protocol and the users’ volunteerism in sharing, and the latter depends on
commercial rules. In the end, both provide a means to store information and make
it available anytime, anywhere.

In terms of availability, Amazon’s S3 is bound to an SLA, typically in the order
of the 99.99%. Availability in a BitTorrent network will depend on the number of
seeds. On the other hand, transfer speed depends on the local connection speed,
remote connection speed and overall network traffic flows. BitTorrent, besides local
connection speed, depends heavily on the number of seeds.

This chapter describe some experiments to try to assess the differences between
both scenarios as well as to infer the relation between the number of seeds and the
throughput.

4.1 Experimental Setup

As stated above, we expect to measure the throughput in four different scenarios:
Amazon S3, local S3, local network S3 and D3S. Access speed depends on the data
size as well as network conditions. We defined 5 objects with different sizes that will
be used in all experiments: 1 Byte, 1 KByte, 1 MByte, 16 MBytes and 100 MBytes.
The 1 Byte object is intended to measure the service latency, or the minimum
time the server takes to respond. In contrast, the 100 MByte object represents the
maximum data throughput.

To automate the experiments, we developed a script which measures the elapsed
time to upload these different sized objects sequentially to the server in each scenario
using the currentTimeMillis java system call. In other words, the program uploads
the 1B, 1K, 1M, 16M and 100M in sequence to the server. Next, the program
downloads the previously uploaded objects, in the same sequence, again measuring

40

4.1. EXPERIMENTAL SETUP 41

the elapsed time. After finishing this interaction, the program waits for 15 minutes
and repeats the experiment. We expect that this approach will clear cache influence
(Figure 4.1). It should be highlighted that the script requires that each transference
be successfully resolved before the next was initiated.

Figure 4.1: Experiment script flowchart.

All the presented results were made with a wired connection to the Foundation
for National Scientific Computing1 (FCCN).

We started with the Amazon S3 REST Web Service experiment on the 21 of
September and finished on the 26, in a total of 342 samples (for each file).

The S3 local Web Service experiment was performed on 24 of September during
3h30, in a total of 1532 samples (for each file). We also tested the same server
but through a local network connection. It ran for 24 hours and gathered a total
of 708 samples (for each file). With the WS running locally and with the same
program test it was tested the WS performance. In this scenario, was measured
the iterations with no delay between them. Without delay allows a performance
“stress test” to this implementation. The next experiment was to test the REST
WS implementation in a network system, i.e., the service run on a machine that is
network accessible. With this experiment is mainly intended to show the variations
of the service on a network system.

To assess the relative influence, the D3S service requires some variability in the
number of seeds, so we conducted 4 experiments for D3S alone with 1 (58 samples), 2
(65 samples), 4 (62 samples) and 16 (48 samples) peers. These tests were performed
from 14 to 21 of October.

There are several approaches to measure BitTorrent networks’ performance. Some
of them use log traces from trackers, while others rely on crawling techniques to re-
trieve the information from the system [Kaune et al., 2009]. We intend to make

1www.fccn.pt

www.fccn.pt

42 CHAPTER 4. RESULTS AND DISCUSSION

D3S transparent to the user, acting as Amazon S3. We then decided to take the
measures on the user side. In this way, the measurement software consists is the
same program that was used above. The script essentially recorded the times of user
experience depending on the number of seeds and the file size. This user experience
consisted in aggregating the time necessary to:

• download the .torrent file by RMI invocation;

• download all the pieces from the BT network;

• “transcoding” pieces into the real file;

• and finally the download time of the GET operation on the local server.

Another point to consider is that, because of polling that the D3S performs, some
times the file will be locally available when the user requests it. Other times it does
not exist locally and has to be downloaded. In the latter, the access speed will be
considerably lower.

The list of samples that were obtained in each experiment where statistically
processed. First, the outliers where identify and removed. Outliers can be a major
source of skewness in any data set so its important to exclude them. The method
used is commonly referred as the Quartile2 method. Essentially, boundaries are
identified for each of the quartiles in the data set, measure the fourth-spread that
is the distance between the lower quartile (lowest 25% of data) and upper quartile
(highest 25% of data), and set the upper and lower outlier boundaries as a function
of fourth-spread.

After excluding outliers, standard deviation and mean values where calculated
and the normality test was performed. We concluded that in almost every exper-
iment, values could not be modeled by a normal distribution and we decided to
proceed with histogram analysis.

Histograms where built around 8 classes, which where afterwards accumulated to
build a cumulative chart, similar to a CDF (Cumulative Distribution Function). The
different experiments scenarios are analysed and discussed in the following section.

4.2 Amazon S3

The Amazon Simple Storage Service (S3) service makes REST and SOAP access
available. This allows storing data through “objects”, that are grouped in “buckets”,
as stated before. The REST API essentially supports PUT, GET, HEAD and
DELETE operations, having no way to copy or rename an object or move an object
to a different bucket.

Now the focus is on the evaluation speed of the Amazon S3 service, one of the
most well known storage services. The S3 requires a high-speed network to provide
connection between the end user and the service infrastructure to achieve an satis-
factory user experience. The network traffic latency and the physical distance (from
user to infrastructure) are factors that can influence throughput.

2http://en.wikipedia.org/wiki/Quartile

http://en.wikipedia.org/wiki/Quartile

4.2. AMAZON S3 43

This experiment conducted sequential transference for the upload and the down-
load operations for each object test file. The test was made with a bucket in the
US-Standard Region.

From the user perspective, the upload speed of the S3 depicts the speed of saving
a file to the Amazon data centers. The download represents a connection to Amazon
data centers in order to save the file on the local disk.

For each object size, we measured the upload (Table 4.1) and download (Ta-
ble 4.2) speed.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 1,31 5,55 0,70 2,62 2,71
Stdev 0,07 0,39 0,03 0,46 0,41
Max 1,43 6,25 0,74 3,89 3,38
Min 1,09 4,55 0,62 1,35 1,53

Sample size 297 319 296 285 278

Table 4.1: Statistical metrics results at upload operation on S3.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 6,53 6,24 0,44 0,84 0,92
Stdev 0,23 0,24 0,01 0,01 0,01
Max 7,04 6,80 0,45 0,85 0,93
Min 5,99 5,59 0,42 0,82 0,88

Sample size 295 292 243 267 261

Table 4.2: Statistical metrics results at download operation on S3.

The tables rates values comply with the file size, i.e., for 1 Byte file the rates are
in Bytes per second, for the 1 KB file are in Kilobyte per second and for the 1, 16 and
100 MB files are in Megabytes per second. Excluding the last line that represents the
number of transactions (sample size) done all values represent throughput values.
Both tables show that the average upload transfer rate increases with the file size.

The observed throughput for the 1 byte scenario represent the direct measurement
of S3 speed [Simson L. Garfinkel,]. So, in average terms, the observed upload
throughput of 1,31 bytes per seconds and the 6,53 bytes per seconds on download,
shows that a client could execute a maximum of 1,31 transactions-per-second (TPS)
on the server in the upload situation and a maximum of 6,53 transactions-per-second
(TPS) when download.

The data was processed and charted in histogram charts (Figure 4.2).
Each chart represents data from a single file, namely, 1B, 1K, 1M, 16M and 100M.

These histograms represents the range rates of PUT requests. Figure 4.3 represent
the cumulative distribution function for the previous histograms.

We are using logarithmic scale to visually enhance the CDF. Likewise, GET re-
quests are plotted in histograms (Figure 4.4) and the CDF chart is built (Figure 4.5).

In the PUT request (upload) for the small file (1 Byte) the higher probability

44 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.2: Rate range probabilities of different files at upload operation on S3.

Figure 4.3: CDF of file upload on S3.

(around 30%) lies between the range of 1,26-1,3 bytes per second. For the greater
file (100 MB) about 40% is located between the 2,93-3,17 (MB/S) range. In the
GET request (download) the higher probability of the 1 Bytes file is located at
the 6,52-6,65 (B/S) range rate and for the 100 MB file in the 0,92-0,93 (MB/S)

4.2. AMAZON S3 45

Figure 4.4: Rate range probabilities of different files at download operation on S3.

Figure 4.5: CDF of file download on S3.

range. Looking at the ranges rate in the two figures of histograms it can be stated
that the speeds of PUT requests are lower than the GET requests for the small
files (1 B and 1 KB) but higher for the big files (1, 16 and 100 MB). Thus, in
this test, can be asserted that the upload operation achieved higher rates that the

46 CHAPTER 4. RESULTS AND DISCUSSION

download only for MB sized files. Finally, its important to recall that the results can
be influenced by the provider Internet connection speed. This experiment results
provides a comparison point for the following tests.

After the S3 measures, the focus migrates for the speed analysis of the REST
server built.

4.3 Local server connection

In the Representational State Transfer (REST) architecture, clients and servers
exchange representations of resources using a standardized interface and protocol
and these principles encourage REST applications to be simple, lightweight, and
have high performance. In this way, it was been implemented a RESTful web service,
a web application built upon the REST architecture, that provide compatibility with
the Amazon S3 REST WS structure. In other words, this Web Service implements
the same architecture model to interact with objects and buckets. In virtue of
testing the performance speed of this Web Service (WS), we installed this server
locally and recorded the throughput for each transaction. This probe expressed the
best performance of all tests, as expected, since network influence was not an issue
– both WS and the client app were in the same machine.

As the previous experiment we measured the upload (Table 4.3) and download
(Table 4.4) speed for each object size.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 86,78 112,75 39,92 60,98 37,28
Stdev 13,36 20,78 4,90 9,19 19,18
Max 111,11 142,86 50,00 80,81 68,54
Min 50,00 62,50 27,03 36,36 2,68

Sample size 1337 1435 1436 1439 1532

Table 4.3: Statistical metrics results at upload operation on local WS.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 169,95 167,15 59,32 113,31 45,63
Stdev 20,63 17,67 4,03 10,71 6,33
Max 200,00 200,00 66,67 135,59 59,88
Min 125,00 142,86 50,00 83,33 29,26

Sample size 1455 1359 1320 1344 1382

Table 4.4: Statistical metrics results at download operation on local WS.

In average terms, the observed upload throughput is about 87 bytes per seconds
(or TPS) and 170 bytes per seconds (or TPS) on download case with 1 Byte data
object. Obviously, this values are more higher than the values of S3.

The data was processed and charted in histogram charts (Figure 4.6). Each
chart represents data from a single file, namely, 1B, 1K, 1M, 16M and 100M. These

4.3. LOCAL SERVER CONNECTION 47

histograms represents the range rates of PUT requests.

Figure 4.6: Rate range probabilities of different files at upload operation on the local WS.

Figure 4.7 represent the cumulative distribution function for the previous his-
tograms.

Figure 4.7: CDF of file upload on local REST WS.

48 CHAPTER 4. RESULTS AND DISCUSSION

In the same way, GET requests are plotted in histograms (Figure 4.8) and the
CDF chart is built (Figure 4.9).

Figure 4.8: Rate range probabilities of different files at download operation on the local WS.

Figure 4.9: CDF of file download on local REST WS.

4.4. NETWORK SERVER CONNECTION 49

Each CDF graph contains five traces showing the distribution of observed band-
widths for transactions of 1 Byte, 1 KByte, 1 MByte, 16 MBytes and 100 MBytes.

Not surprisingly, the local WS performs better with larger transaction sizes. How-
ever, there is little discernible difference in the 100 MBytes transactions on download,
indicating that the 1 and 16 MBytes objects gained face to 100 MBytes data object.
In upload this difference is present too.

As expected, the speed rates are approximately the same in both CDF plots that
are in the same scale, but a more variation can be found looking at the range rates
probabilities histograms. So, comparing the Figure 4.6 and Figure 4.8 is denoted
that the download operation (GET) gains face to the upload operation (PUT). In
this scenario was expected that both operation on the service had more smaller
variations because both operations had the same processing tasks in the machine
(read file from the disk and write to the same disk – copy). This variations can be
justified by the influence of the machine disk – read/write speeds and caches.

In sum, it is evident that the speeds reached in this implementation do not affect
the user experience because it can achieve high transfers data much better than S3.
In order to provide more tests about this implementation we change the connection
scenario discussed in the section below.

4.4 Network server connection

The same server we used in the previous section was installed in a local network
connection, to provide a networked best case scenario. This section depicts the
experience with the same previous implementation but it changes the user local
access to the network. It is expected lower throughput than in the previous test
because the nature of the connection in this environment.

About the experiment method its the same as the previous. For each object size,
we measured the upload (Table 4.5) and download (Table 4.6) speed.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 35,77 46,24 1,86 1,95 1,96
Stdev 14,03 14,35 0,31 0,28 0,27
Max 71,43 83,33 2,51 2,43 2,42
Min 5,95 12,82 1,14 1,37 1,43

Sample size 689 618 688 683 677

Table 4.5: Statistical metrics results at upload operation on network by the WS.

Both tables show that the average upload transfer rate increases with the file size
as the S3 experiment.

In average values, the observed bandwidth for 1 byte transaction in the upload
case is about 35 TPS and almost 60 TPS in the download case. Values much better
than S3 (1,31 for upload and 6,53 for download). With this values it can be assert
that the GET operation is more faster than the PUT operation.

50 CHAPTER 4. RESULTS AND DISCUSSION

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 59,95 63,37 2,08 2,14 2,14
Stdev 4,60 5,16 0,23 0,24 0,24
Max 66,67 71,43 2,51 2,45 2,40
Min 50,00 52,63 1,50 1,56 1,60

Sample size 565 585 658 671 669

Table 4.6: Statistical metrics results at download operation on network by the WS.

After the data was processed and depicted in histogram charts (Figure 4.10).
These set of histograms represents the range rates of PUT requests for each single
file, namely, 1B, 1K, 1M, 16M and 100M.

Figure 4.10: Rate range probabilities of different files at upload operation on the network by the
WS.

The next graph (Figure 4.11) shows the CDF of the previous histograms.

Equally, GET requests are plotted in histograms (Figure 4.12) and the CDF chart
is built (Figure 4.13).

Both CDF plots are on the same scale, making it easy to compare the performance
differences between them. In the same plots can be seen that the representation of
the function in the files of 1, 16 and 100 MB are practically identical.

4.4. NETWORK SERVER CONNECTION 51

Figure 4.11: CDF of file upload on the network REST WS.

Figure 4.12: Rate range probabilities of different files at download operation on the network by
the WS.

Looking at Figures 4.10 and 4.12 its showed the probabilities histogram of differ-
ent files where is represent the ranges rates. For the upload case, if the range rates
probabilities are compared with the S3 case it is visible that this server has more

52 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.13: CDF of file download on the network REST WS.

high chances and high speed values only for the 16 an 100 MB files. In the download
case this server has always much high values than the S3 service.

This experiment intended to show some performance aspects about the WS de-
veloped on the network connection environment. Next section focus on the D3S
implementation with the analysis of the BitTorrent network environment.

4.5 D3S - BitTorrent Network

This last experiment aims to get some insight on the throughput in the BitTorrent
scenario. Mainly, it is investigated the influence that the number of seeders have.
We expect that with increasing number of seeds, throughput will be higher, because
of the nature of BitTorrent protocol.

BitTorrent was designed to provide better results with large files. Peers are
constantly joining the swarm with time and as more peers are available better per-
formance is achieved. Other important aspect is the piece length used. The piece
length specifies the nominal piece size, and is usually a power of 2. The piece size
is typically chosen based on the total amount of file data in the torrent, and is con-
strained by the fact that too-large piece sizes cause inefficiency, and too-small piece
sizes cause large .torrent metadata file. So current best-practice is to keep the piece
size to 512 KB or less between the common sizes (256, 512, and 1024 KB) and with
this size is achieved one intermediate solution.

In this scenario, all peers were installed behind a NAT gateway and limited by
the Internet provider connection (upload rates). This can influence the final results
providing a worst case scenario overview.

Starting with one seeder and up to 16 seeders we measured the elapsed time
of the download action on D3S, using the same methodology from the previous
experiments.

4.5. D3S - BITTORRENT NETWORK 53

This download action includes:

• getting the .torrent file through RMI to make it available in the local peer;

• authenticating the peer;

• downloading the file through the BT network;

• returning the file to the S3 client.

This download action represents the user experience time when the user download
his own file that are replicated by the several peers. In this experiment the file upload
time is ignored because it was already tested in the local connection scenario. So
when a user uploads a file in the D3S it is the same as uploading it to the local
server. The main difference is that in the D3S system a BT client its launch to seed
the file for the others peers.

The first measure attempt was to provide only one seed. With one replica of each
file the throughput was low (about 0,2 TPS) reaching the maximum average value
of the 0,05 MBps in the 100 MB file (Table 4.7).

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 0,203 0,274 0,023 0,045 0,049
Stdev 0,187 0,173 0,018 0,006 0,002
Max 0,677 0,664 0,048 0,054 0,053
Min 0,001 0,003 0,003 0,032 0,044

Sample size 59 47 59 53 52

Table 4.7: Statistical metrics results at download operation on D3S with 1 seed.

We advanced to a new test with 2 seeders. In this situation, the values for the
small files (1 Byte and 1 KB) remain very low relatively to the one seeder case (Table
4.8). But the average values are growing along the seeders size if it is compared the
two tables.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 0,276 0,574 0,043 0,062 0,073
Stdev 0,298 0,462 0,014 0,024 0,023
Max 0,944 1,783 0,078 0,098 0,099
Min 0,0004 0,0001 0,017 0,002 0,033

Sample size 62 64 45 62 62

Table 4.8: Statistical metrics results at download operation on D3S with 2 seeds.

For both cases histograms charts were built (Figure 4.14 and 4.15). Each chart
represents data from a single file, namely, 1B, 1K, 1M, 16M and 100M. These his-
tograms represents the range rates of GET requests.

From the histograms of Figure 4.14 and 4.15 we represented the CDF of both
situations in the Figure 4.16.

54 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.14: Rate range probabilities of different files at download operation on D3S with 1 seed.

Looking at a more seeders injection scenario with 4 seeds the the small sized files
(1 Byte and 1 KB) remain at very lows values (Table 4.9).

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 0,021 0,295 0,071 0,107 0,195
Stdev 0,023 0,327 0,030 0,055 0,076
Max 0,086 1,181 0,142 0,231 0,291
Min 0,002 0,003 0,012 0,032 0,044

Sample size 51 55 55 57 61

Table 4.9: Statistical metrics results at download operation on D3S with 4 seeds.

At this time, it can be assert that this system is not appropriated for this files (1
Byte and 1 KB) due to the nature of the BitTorrent protocol. So the time of the
download process in this case not offset the size file hindering the high transfer rates
and showing, such others studies [Wei et al., 2005], that BitTorrent suffers from a
high overhead when transmitting small files . Relatively to the others files (1, 16
and 100 MB) is visible that the transfer rate increase substantially with the file size.

Figure 4.17 represents the histograms charts for the 4 seeds. Each chart represents
the range rates of GET request from a single file, namely, 1B, 1K, 1M, 16M and
100M.

4.5. D3S - BITTORRENT NETWORK 55

Figure 4.15: Rate range probabilities of different files at download operation on D3S with 2 seeds.

With the 16 seeds last experiment is notable that the service sometimes can
achieve high transfers rates up to 0,782 MB/S in the 100 MB file case (Table 4.10).
In average terms, the performance grew along with the file size hitting 0,02 TPS
with the 1 Byte file, a very low value comparatively with the others tests (S3 for
example).

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 0,021 0,038 0,061 0,122 0,248
Stdev 0,029 0,044 0,070 0,101 0,212
Max 0,149 0,171 0,218 0,395 0,782
Min 0,001 0,002 0,003 0,021 0,049

Sample size 36 37 41 38 39

Table 4.10: Statistical metrics results at download operation on D3S with 16 seeds.

In the Figure 4.18 are represented the range rate probabilities for each file and is
perceptible that most of the results are at low ranges.

These probability histograms charts of GET request of both scenarios (Figure
4.17 and 4.18) supported the creation of the CDF plot (Figure 4.19) that represents
the differences of the speed rates in the 4 vs 16 seeds case. This both CDF provided
an better overview of the different files throughput and the last scenario of 16 seeds

56 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.16: CDF of download throughput of the D3S service – 1 seed VS 2 seeds.

(bottom CDF) represent the biggest seeds case that we analyse. Comparatively with
the S3 service this last scenario not provided enough transfers rates to confront with.
Sometimes achieved similar transfer rates if we compared the maximum values but
still not be enough in constant values face to the cloud service. In the section below,
we discussed all of this results presenting the main reasons that might be concerned
to obtain such values.

4.6 Discussion

Previously, we described the performance results of all the scenarios implemented.
In this section we intend to discuss all of this results with a especial focus in our
final solution (D3S) and the S3 service.

Making an overall overview to all different files in the GET experiment it is vis-
ible that the D3S system is not suitable for the small files (1 Byte and 1 KB). As
mentioned, the main reason of this values is the nature of BitTorrent protocol that
causes inefficiency with small files but other reason that hampers this performance
results is the huge time (for this files) of the download process structure. As stated,

4.6. DISCUSSION 57

Figure 4.17: Rate range probabilities of different files at download operation on D3S with 4 seeds.

the download process consists in a variety of tasks. This tasks includes the time of
the .torrent file download and the peers authentication and connection (peer hand-
shake). We point this last as the main reason of this low values. In all experiments
the 1 Byte file tested the direct measurement of the server speed rate. But in the
BitTorrent network case this file tested the REST server measure plus the whole
process that the our BitTorrent structure requires. So the problem is that the file
is not sufficiently large to address the time download process and to exploit the
high transfers of the BitTorrent protocol. For a better visualization of this huge
differences between the different sized files we represented, with a logarithmic scale,
a bar plot of the D3S case in contrast with a S3 line plot (Figure 4.20).

In Figure 4.20 it can be shown the difference in scale between D3S and S3,
particularly for large files. It is evident that the number of seeders influence the
performance of the D3S system – more seeds represents more performance. As can
been seen, the S3 throughput line is always higher than any combination of seeds in
the D3S which was unexpected. Through such figure and looking at the best score
of the D3S (16 seeds with the 100 MB file) we can affirm that the S3 service is about
three times faster.

The first attempt is to state that the seeders must grow beyond to the sixteen
to achieve the S3 results. This is not so evident. This only happens because all
of peers are beyond a NAT gateway (firewall), like general home networks. This

58 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.18: Rate range probabilities of different files at download operation on D3S with 16 seeds.

NAT environment hampers the peers connection being responsible in most cases for
the connection timeout warning displayed in the system logs. This warn was only
displayed when the leecher cannot contact some of the seeders. In reality only a few
part of the seeders contributing to the system throughput despite the sixteen seeds.
This results in a evident loss of performance.

This was not happened in a monitored private/corporate network connection.
This scenario is not reported in this document because the aim is to provide only
a real scenario overview. Although, this monitored network connection scenario is
reported in the appendix section A.1. With them we intended to show the initial
performance results that overcome the S3 service changing only the seeders location,
i.e., instead of using the seeders geographical apart beyond a NAT gateway we used
Amazon EC2 instances to install the D3S seeders. However, this not represent a real
user experience scenario once the EC2 machines (peers) are fully available (without
firewall) to the leecher peer (located at the FCCN) with high upload transfers rates.

Returning to the previous scenario the upload rates of each peer connected are,
in almost cases, very low because are limited by the Internet service provider which
might have influenced the leecher performance. So if the peers connected could
increase the upload rate will provide better results of course. This dependency of
the upload rate represent a critical element for whole system throughput.

Other important observation which complicates the system performance is the

4.6. DISCUSSION 59

Figure 4.19: CDF of download throughput of the D3S service – 4 seed VS 16 seeds.

Figure 4.20: D3S vs S3 – Average download throughput (logarithm scale) with different files.

BitTorrent choking algorithm. In the BitTorrent environment peers continuously
download pieces from all peers which they can attempting to maximize its own

60 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.21: D3S vs S3 – Average download throughput with different files.

download rate. They of course cannot download from peers they are not connected
to. To cooperate the peers upload and when do not cooperate they “choke”. This
choking algorithm, known by temporary refusal to upload, uses all available re-
sources, providing reasonably and consistent download rates for everyone. This
consisted download rates influence the the peers that only download and not up-
load. And in this experiment the leecher is affected by this algorithm since it only
downloads the content.

Chapter 5

Conclusion and future work

The emergence of cloud computing made several cloud storage services available to
users. The pay-per-use economic model is proving to be an interesting alternative
to traditional storage (e.g. RAID) solutions. Cloud storage services allow storing
data with high level of availability and scalability, with controlled costs and anytime,
anywhere access. Because it is a client-server architecture the main power is located
on the server side, with the corresponding high installation and maintenance costs.
However, several companies already possess such infrastructure to power their main
business, such as Microsoft, Amazon or Google. Little effort is then required to
make this infrastructure available to users, through cloud computing services.

On the other side of spectrum, peer-to-peer networks also provide interesting
file-sharing services, although following a completely different commercial and tech-
nological model. In particular, the BitTorrent protocol has made a big impact on
the file sharing community, and nowadays, it is one of the most used protocols in
the Internet. The advantages of this protocol for file sharing are mainly related to
the ability to easily deal with flash-crowd situations as well as speedy transfer of
large files.

The work described in this document focus on cloud storage services, in particu-
lar, Amazon Simple Storage Service (S3). The study of such service allowed a survey
of how it works in the marker as well as technologically.

To assess this service, two client applications were developed: a desktop based
GUI file repository in the cloud and a FUSE driver, where the files stored in the
cloud are mounted side-by-side with regular files. Two S3 compatible servers where
also developed. The first is a standalone instance, that can be accessed locally and
through a network connection. Finally, a Distributed Simple Storage Service (D3S)
was also developed, which allowed storing files in a cloud backed by BitTorrent peer-
sets. In other words, we implemented a cloud storage service compatible with S3
over a peer-to-peer BitTorrent network.

The most complicated part of a BitTorrent storage scheme implementation lies
in the distribution of the .torrent file. We approached this problem through Java
RMI, which allows each peer to distribute, download and eliminate .torrent files.

To achieve the required level of data availability, the simplest scheme is to store

61

62 CHAPTER 5. CONCLUSION AND FUTURE WORK

data redundantly – where the same object is stored in different locations. This re-
dundancy is also used generally to protected data on unreliable servers. In D3S, the
redundancy was generated by replicating data between the peers. This also con-
tributes to increase throughput, because BitTorremt allows simultaneous download
of different file pieces.

With the developed clients and servers we structured several experiments, aiming
at measuring the throughput and latency of these storage services. We started by
measuring Amazon S3, a local installed S3 server and a LAN installed S3 server.
Among these, the results were as expected, increasing throughput with the file size,
although uploading to Amazon S3 revealed to be higher than downloading.

We also performed several experiments to the D3S, varying the number of peers.
As expected, the number of peers influenced the throughput. However, we did
expected to have more throughput for 16 peers than we were able to measure.
NATed peers contributed to connectivity difficulties, that led to lower than expected
throughput.

About the file size variation it was clear that larger files presented higher through-
put, until a specific limit.

The bottom line is that D3S did not managed to overcome the Amazon S3 in
throughput. On the other hand, D3S achieves reasonably good performance because
it typically accesses data items directly (i.e. it only uses replication for both main-
tenance and data access) and achieves very high data availability at a reasonable
level.

In short, the results suggest a distributed storage system with few maintenance
costs, good access time, desired high availability, and reasonable storage overhead.

In future efforts, we intend to improve the solution in order to obtain higher
throughput, closing on or exceeding that of Amazon S3.

We also expect to replace the Java RMI based indexer with a Distributed Hash
Table (DHT), to further eliminate centralized modules.

The other functionally that is intended to add is the file encryption. With this
the files can travel through the BitTorrent network with privacy despite it will result
in a addiction of time because the time of the client encryption file during uploads
and downloads calls.

Bibliography

[Akioka and Muraoka, 2010] Akioka, S. and Muraoka, Y. (2010). HPC Benchmarks
on Amazon EC2. pages 1029–1034. IEEE.

[Alhamad et al., 2010] Alhamad, M., Dillon, T., and Chang, E. (2010). Conceptual
SLA framework for cloud computing. In 4th IEEE International Conference on
Digital Ecosystems and Technologies, pages 606–610. IEEE.

[Armbrust et al., 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Others (2009).
Above the clouds: A berkeley view of cloud computing. Technical report, Tech-
nical Report UCB/EECS-2009-28, EECS Department, University of California,
Berkeley.

[Bhardwaj et al., 2010] Bhardwaj, S., Jain, L., and Jain, S. (2010). Cloud com-
puting: A study of infrastructure as a service (IAAS). International Journal of
engineering and information Technology, 2(1):60–63.

[Boniface et al., 2010] Boniface, M., Nasser, B., Papay, J., Phillips, S. C., Servin, A.,
Yang, X., Zlatev, Z., Gogouvitis, S. V., Katsaros, G., Konstanteli, K., Kousiouris,
G., Menychtas, A., and Kyriazis, D. (2010). Platform-as-a-Service Architecture
for Real-Time Quality of Service Management in Clouds. 2010 Fifth International
Conference on Internet and Web Applications and Services, pages 155–160.

[Cachin et al., 2009] Cachin, C., Keidar, I., and Shraer, A. (2009). Trusting the
cloud. SIGACT News, 40(2):81–86.

[Ciurana, 2009] Ciurana, E. (2009). Developing with Google App Engine. Springer.

[Cong Wang et al., 2009] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou
(2009). Ensuring data storage security in Cloud Computing. pages 1–9. IEEE.

[Cong Wang et al., 2010] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou
(2010). Privacy-Preserving Public Auditing for Data Storage Security in Cloud
Computing. pages 1–9. IEEE.

[Cusumano, 2010] Cusumano, M. (2010). Cloud computing and SaaS as new com-
puting platforms. Commun. ACM, 53(4):27–29.

63

64 BIBLIOGRAPHY

[Demirkan et al.,] Demirkan, H., Goul, M., and Soper, D. Service Level Agreement
Negotiation: A Theory-based Exploratory Study as a Starting Point for Identify-
ing Negotiation Support System Requirements. In Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, pages 37b–37b. IEEE.

[Dikaiakos et al., 2009] Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., and
Vakali, A. (2009). Cloud Computing: Distributed Internet Computing for IT and
Scientific Research. IEEE Internet Computing, 13(5):10–13.

[Egevang and Francis, 1994] Egevang, K. and Francis, P. (1994). The IP Network
Address Translator (NAT). RFC 1631 (Informational). Obsoleted by RFC 3022.

[Eng Keong Lua et al., 2005] Eng Keong Lua, Crowcroft, J., Pias, M., Sharma, R.,
and Lim, S. (2005). A survey and comparison of peer-to-peer overlay network
schemes. IEEE Communications Surveys & Tutorials, 7(2):72– 93.

[Ganesh, 2003] Ganesh, A. (2003). Peer-to-peer membership management for
gossip-based protocols. . . . , IEEE Transactions on.

[Hamad, 2010] Hamad, H. (2010). Performance evaluation of restful web services
for mobile devices. International Arab Journal of e-Technology.

[Hu, 2005] Hu, Z. (2005). NAT traversal techniques and peer-to-peer applications.
. . . and Multimedia Laboratory, Helsinki University of

[Kaune et al., 2009] Kaune, S., Rumin, R. C., Tyson, G., Mauthe, A., Guerrero, C.,
and Steinmetz, R. (2009). Unraveling BitTorrent’s File Unavailability: Measure-
ments, Analysis and Solution Exploration. arXiv:0912.0625.

[Knorr and Gruman, 2008] Knorr, E. and Gruman, G. (2008). What cloud comput-
ing really means. InfoWorld, 7.

[Krawczyk et al., 1997] Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC:
Keyed-Hashing for Message Authentication. RFC 2104 (Informational). Updated
by RFC 6151.

[Legout et al., 2005] Legout, A., Urvoy-Keller, G., and Michiardi, P. (2005). Under-
standing bittorrent: An experimental perspective. INRIA Sophia Antipolis/IN-
RIA

[Maassen et al., 1999] Maassen, J., van Nieuwpoort, R., and Veldema, R. (1999).
An efficient implementation of Java’s remote method invocation. ACM Sigplan
. . . .

[Marinos and Briscoe, 2009] Marinos, A. and Briscoe, G. (2009). Community cloud
computing. Cloud Computing, pages 472–484.

[Marston et al., 2011] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghal-
sasi, A. (2011). Cloud computing — The business perspective. Decision Support
Systems, 51(1):176–189.

BIBLIOGRAPHY 65

[Mell and Grance, 2011] Mell, P. and Grance, T. (2011). The NIST definition of
cloud computing (draft). NIST special publication, 800:145.

[Ostermann et al., 2010] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R.,
Fahringer, T., and Epema, D. (2010). A performance analysis of EC2 cloud
computing services for scientific computing. Cloud Computing, pages 115–131.

[Pamies-Juarez, 2011] Pamies-Juarez, L. (2011). Towards the design of optimal data
redundancy schemes for heterogeneous cloud storage infrastructures. Computer
Networks.

[Parameswaran, 2001] Parameswaran, M. (2001). P2P networking: an information
sharing alternative. Computer.

[Patel et al., 2009] Patel, P., Ranabahu, A., and Sheth, A. (2009). Service Level
Agreement in cloud computing.

[Ramgovind et al., 2010] Ramgovind, S., Mm, E., and Smith, E. (2010). The Man-
agement of Security in Cloud Computing. Security.

[Rewatkar and Lanjewar, 2010] Rewatkar, L. and Lanjewar, U. (2010). Implementa-
tion of Cloud Computing on Web Application. International Journal of Computer
Applications IJCA, 2(8):28–32.

[Rimal et al., 2009] Rimal, B. P., Eunmi Choi, and Lumb, I. (2009). A Taxonomy
and Survey of Cloud Computing Systems. pages 44–51. IEEE.

[Rosenthal et al., 2010] Rosenthal, A., Mork, P., Li, M. H., Stanford, J., Koester,
D., and Reynolds, P. (2010). Cloud computing: A new business paradigm for
biomedical information sharing. Journal of Biomedical Informatics, 43(2):342–
353.

[Schollmeier, 2001] Schollmeier, R. (2001). A definition of peer-to-peer networking
for the classification of peer-to-peer architectures and applications. Peer-to-Peer
Computing, 2001. Proceedings.

[Schulze and Mochalski, 2009] Schulze, H. and Mochalski, K. (2009). Internet Study
2008/2009. IPOQUE Report.

[Simson L. Garfinkel,] Simson L. Garfinkel, S. L. G. An Evaluation of Amazon’s
Grid Computing Services: EC2, S3, and SQS.

[Wang et al., 2005] Wang, H., Zhu, Y., and Hu, Y. (2005). To unify structured and
unstructured P2P systems. Parallel and Distributed Processing

[Wei et al., 2005] Wei, B., Fedak, G., and Cappello, F. (2005). Scheduling indepen-
dent tasks sharing large data distributed with bittorrent. Grid Computing, 2005.
The 6th

[Weinhardt et al., 2009] Weinhardt, C., Anandasivam, A., Blau, B., and Stosser, J.
(2009). Business Models in the Service World. IT Professional, 11(2):28–33.

66 BIBLIOGRAPHY

[Wu and Buyya, 2010] Wu, L. and Buyya, R. (2010). Service Level Agreement
(SLA) in Utility Computing Systems. arXiv:1010.2881.

[Zaharia and Keshav, 2008] Zaharia, M. and Keshav, S. (2008). Gossip-based search
selection in hybrid peer-to-peer networks. Concurrency and Computation: Prac-
tice

[Zhang et al., 2010] Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud comput-
ing: state-of-the-art and research challenges. Journal of Internet Services and
Applications, 1(1):7–18.

Appendix A

Annex

A.1 Monitored network connection results

This scenario represents the private/corporate network connection experience with
the D3S system. With this monitored scenario we intended to show the performance
results modifying only the seeders side location. So instead of using the seeders
beyond a NAT gateway we use Amazon EC2 instances to run the D3S seeders. This
experiment aims to demonstrate the throughput performance of the D3S without a
firewall in a controlled system with high upload transfers rates.

To not provide an exhaustive overview of the seeders variations we only focus
on the 8 seeders download case because with this seeds number we already achieve
better results that S3 with some files. However, it was proved that the seeders play
an important role in the performance aspect.

File size 1 Byte (Bps) 1 KB (KBps) 1 MB (MBps) 16 MB (MBps) 100 MB (MBps)
Average 0,101 0,029 0,095 0,652 1,226
Stdev 0,170 0,035 0,125 0,756 0,917
Max 0,543 0,135 0,389 2,021 2,659
Min 0,001 0,001 0,001 0,039 0,100

Sample size 61 62 66 69 68

Table A.1: Statistical metrics results at download operation on D3S with 8 seeds on a monitored
network.

Looking at Table A.1 the observed download throughput is 0,1 bytes per seconds
(TPS) in the 1 Byte file size. As can be seen, the small files remain at low values.
But if we look at the big files, in particular the 100 MB file, it can achieve about
1,23 MB/S a value much higher than S3 (0,92 MB/S).

The data was processed and charted in histogram charts which represents the
range rates of GET requests (Figure A.1) like the others experiments reported in
the document.

The Figure A.2 represent the cumulative distribution function for the previous
histograms. Observing the figure is denoted that the performance grow with the file
size.

67

68 APPENDIX A. ANNEX

Figure A.1: Rate range probabilities of different files at download operation on D3S with 8 seeds
on a monitored network.

Figure A.2: CDF of download throughput of the D3S service with 8 seeds on a monitored network.

In order to compare the D3S in a monitored network to the S3 service was plotted
the Figure A.3. This figure has a logarithm scale for enable the small files speed
visualization. The S3 gains face to the D3S in the small files but loses when the file
size grow.

A.1. MONITORED NETWORK CONNECTION RESULTS 69

Figure A.3: D3S vs S3 – Average download throughput (logarithm scale) with different files on a
monitored network.

The Figure A.4 shows better that difference where the D3S system gains in the
huge sized file case. The 8 seeders are the minimal seeds number in order to achieve
better results with the 100 MB file.

Figure A.4: D3S vs S3 – Average download throughput with different files on a monitored network.

	Abstract
	Agradecimentos
	Introduction
	Overview
	Goals
	Document structure

	State Of The Art
	Cloud Computing
	Service Models
	Deployment Models

	Cloud Services Delivery
	Commercial Services
	Business model
	Service Level Agreement
	Data Security
	Cloud Storage Frameworks

	Peer-to-peer Networks
	Concepts and Definitions
	File Sharing

	BitTorrent
	Operation Model
	Main Components

	Summary

	Distributed Storage Service
	Amazon Simple Storage Service
	Concepts and Architecture
	Data Access Protocols
	Authentication Model

	Amazon S3 Client
	Centralized S3 server
	D3S – The BitTorrent S3 server
	The Functionality
	Implementation
	The NAT Traversal problem

	Summary

	Results and Discussion
	Experimental Setup
	Amazon S3
	Local server connection
	Network server connection
	D3S - BitTorrent Network
	Discussion

	Conclusion and future work
	Bibliography
	Annex
	Monitored network connection results

