
GRACE Ontology Integrating Process and Quality
Control

Paulo Leitão1,2, Nelson Rodrigues1, Claudio Turrin3, Arnaldo Pagani3, Pierluigi Petrali3

1 Polytechnic Institute of Bragança, Campus Sta Apolónia, Apartado 1134, 5301-857 Bragança, Portugal

{pleitao, nrodrigues}@ipb.pt
2 LIACC - Artificial Intelligence and Computer Science Laboratory, R. Campo Alegre 102, 4169-007 Porto, Portugal

3 Whirlpool Europe, Cassinetta di Biandronno, Italy, {Claudio_Turrin; Arnaldo_Pagani; Pierluigi_Petrali}@whirlpool.com}

Abstract- Multi-agent systems paradigm is a suitable
approach to implement distributed manufacturing systems
addressing the emergent requirements of flexibility, robustness
and responsiveness. In such systems, an ontology is a crucial
piece to provide a common understanding on the vocabulary
used by the intelligent, distributed agents during the exchange of
shared knowledge. This paper describes the design of an
ontology to define the structure of the knowledge that is used
within a multi-agent system integrating process and quality
control in production lines for home appliances, which is being
developed within the EU FP7 GRACE (inteGration of pRocess
and quAlity Control using multi-agEnt technology) project. The
ontology schema is validated by instantiating for a case study
derived from a washing machines production line.

I. INTRODUCTION

A collaborative network, enterprise or production system
comprises a set of interacting and heterogeneous hardware
and software applications. In such collaborative distributed
environments, a common understanding of the shared
knowledge is required to guarantee their interoperability. In a
similar way, in a multi-agent system (MAS) [1], characterized
to be a distributed and heterogeneous system, each agent
representing a factory, cell, device or application, has its own
knowledge and needs to communicate in order to achieve a
pre-defined goal or solve a problem. The interaction between
distributed agents requires the understanding of the messages
that are used to exchange the shared knowledge. This issue
becomes difficult if each agent has its own knowledge
structure, in analogy with a meeting with attendances coming
from different countries and speaking different native
languages.

The representation and organization of the shared
knowledge is not an easy task, as pointed out by the study
elaborated by the National Institute of Standards and
Technology (NIST) that refers that the automotive sector in
United States spends one billion dollars per year to solve
interoperability problems [2]. In fact, the knowledge sharing
may present several problems, namely due to:
 The lack of a common view related to conceptual and

terminological terms, leading to confusion and reduced
understanding.

 The inter-operability, reuse and sharing of the
knowledge for a particular domain.

The solution is to use proper mechanisms or techniques
that guarantee the common understanding and data semantics
among distributed entities, as well the capability to reuse and
share the knowledge. The concept of ontologies addresses
this challenge.

The term ontology is vague and not precise. In spite of the
several different definitions of ontology that can be found in
the literature, e.g. see [3-7], it is consensual that an ontology
creates shared understanding, enabling the exchange of
knowledge and the capability to reuse that knowledge. In
other words, an ontology defines the vocabulary and the
semantics that are used in the communication between
distributed entities, and the knowledge relating to these terms.
An ontology together with a set of individual instances of
classes constitutes a knowledge base.

The objective of this paper is the design of an ontology to
support the knowledge representation that will be used within
the multi-agent system integrating process and quality control
in production lines, which is being developed within the EU
FP7 GRACE (inteGration of pRocess and quAlity Control
using multi-agEnt technology) project [8]. The GRACE
ontology will provide the data structure to organize the
knowledge that is shared and exchanged between the agents
and enable the interoperability between them. In particular,
the GRACE ontology formalizes the structure of the
knowledge related to:
 The resources available in the production line.
 The product and process models that describe how to

produce the catalogue of products.
 The description of the production history, including the

results from the inspection tests and supporting the
traceability process.

The rest of the paper is organized as follows: section 2
overviews the related work, section 3 presents the proposed
ontology and section 4 discusses the validation of the
ontology by instantiating for a case study. Section 5 discusses
the integration of the designed ontology within the GRACE
multi-agent system. At last, section 6 rounds up the paper
with the conclusions.

978-1-4673-2420-5/12/$31.00 ©2012 IEEE 4328

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153409347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

An ontology is designed taking into consideration the
domain particularities. The domain discussed in this work is
the manufacturing field, and particularly the production lines
for home appliances. In the literature, several ontologies
addressing the manufacturing domain were proposed by the
research community during the last years.

The EU FP6 PABADIS’PROMISE (Plant Automation
based on Distributed System Product Oriented Manufacturing
Systems for Re-Configurable Enterprises) project proposed a
reference meta-ontology for manufacturing [9]. This ontology
is generic, with each definition trying to be abstract covering
a bigger domain. ADACOR (ADAptive holonic COntrol
aRchitecture for distributed manufacturing systems) [10]
defines an ontology for manufacturing control domain, which
was formalized with the DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) language [11]. The
FP6 EUPASS project developed ontologies both to structure
the knowledge in assembly systems domain and lightweight
versions of those ontologies to be used in runtime [12].
MASON (Manufacturing's Semantics Ontology) introduces
an ontology with the same objectives, but is expressed with
the OWL (Web Ontology Language) language in order to
unify the ontologies using cognitive architectures, leading to
an implementation of a generic manufacturing ontology [13].

Other attempts to establish generic manufacturing
ontologies are the NIST’s description of shop data model
[14], the Automation Objects [15], the OOONEIDA proposal
focusing on the infrastructure of automation components by
applying the semantic web technologies [16], and TOVE
(Toronto Virtual Enterprise Ontology) that describes an
ontology for virtual enterprise modelling [17]. The ISO
15926 standard [18] aims to support the integration of
industrial automation systems, being supported by an
ontology taking into account diverse variables, including the
space and time.

Other ontologies addressing more specific domains in the
manufacturing field were proposed, such as the design of
ontologies for flexible manufacturing systems [19], for
transport systems [20], for assembly lines control [21], for
agent-based reconfiguration of production processes [22], for
rent-a-car business [23] and for supply chain and logistic
planning [24]. FRISCO is a manufacturing ontology reference
that supports the organization of knowledge in automotive
supply chains [25].

The problem here is to find an ontology that perfectly fits
on the pre-requisites established for the GRACE production
lines domain, since some described ontologies are generic
and others focusing specific application domains. The idea is
to take the insights of several manufacturing ontologies, and
particularly from PABADIS’PROMISE and ADACOR, and
design an ontology for the agent-based system integrating
process and quality control in production lines, that will be
generic enough within the boundaries of the problem
specifics.

III. GRACE ONTOLOGY

The proposed GRACE ontology aims to represent the
knowledge associated to the washing machines production
lines domain, which will be used in a MAS application to
integrate the production and quality control processes.

The design of an ontology requires the definition of the
vocabulary used by distributed entities, formalizing the
concepts, the predicates (relation between the concepts), the
terms (attributes of each concept), and the meaning of each
term (type of each attribute). For this purpose, the ontology
schema was edited using the Protégé framework
(http://protege.stanford.edu/), which is a free, open source
ontology editor and knowledge-base framework.

For an easy understanding, the GRACE ontology schema
has been initially built using a schema similar to the UML
(Unified Modelling Language) class diagram format, as
illustrated in Fig. 1.

Fig. 1. GRACE ontology schema

In the next sections, the several ontological components
will be analyzed.

A. Concepts

Concepts are expressions that indicate domain entities with
a complex structure that can be defined in terms of classes or
objects. The main concepts defined in the GRACE ontology
are informally described as follows:
 FailureType: unexpected event type, like machine

failure or delay, which degrades the execution of a
production plan.

 Material: entity used during the production process, e.g.
tubs, blocks of steel, bearings, nuts and bolts, according
to the Bill of Materials (BOM).

 MaterialFamily: family of the material used during the
production process, e.g. bearing or tub. (as an example
the material bearing SKF123 can belong to the material
family ball bearings).

4329

 ProcessPlan: the manufacturing process to produce a
product, i.e. the description of a sequence of operations
(for producing a product) with temporal constraints.

 Product: entity (finished or semi-finished) that is
produced by the enterprise in a value-adding process.

 ProductionOrder: entity obtained by aggregating
customer orders for the production of products.

 Property: an attribute that characterizes a resource (i.e. a
skill) or that a resource should satisfy to execute an
operation (i.e. a requirement). It includes a mathematical
operator associated to the property value, e.g. the speed
is equal to 2000 r.p.m..

 RecoveryProcedure: entity that describes the procedure
to recover from the occurrence of a failure.

 Resource: entity that can execute a certain range of
operations as long as its capacity is not exceeded, e.g. a
welding robot or a milling machine. Producer, quality
controller, transporter, operator and tool are
specializations of resource and inherit its characteristics.

 Setup: configuration that a resource should has to be
able to execute a range of operations.

Events or processes are actions that can be performed by
some agents. The proposed ontology comprises the following
process entities:
 Failure: description of an occurred disturbance.
 Operation: a job executed by one resource like drilling,

welding, assembly, inspection and maintenance, that
may add value to the product or may measure the value
of the product, e.g. the quality control.

Descriptions are a special kind of concepts, used as if they
form a separate class, avoiding possible confusions between
concepts and their description. In the proposed ontology,
there are the following descriptions:
 Journal: description of the production of a product

instance belonging to a production order executed in the
production line.

 JournalDetails: description of the execution of an
operation, including the time, participants and results.

B. Predicates

Relations or predicates establish the relationships among
the concepts. The main predicates established in the GRACE
ontology are:
 comprisesMaterial(x, y): material x uses material y.
 comprisesOperation(x,y): operation x contains operation

y.
 describesOperation(x , y): journal details x describes the

execution of the operation y.
 executedBy(x, y): operation described in the journal

details x was executed by the resource y.
 hasAppliedRecoveryProcedure(x,y): recovery procedure

y was applied to solve the failure x.
 hasExecuted(x, y): resource x has executed the operation

described in the journal details y.

 hasFailure(x, y, t): failure y occurred in resource x at
time t.

 hasFailureType(x, y): failure x belongs to the failure
type y.

 hasJournal(x, y): production order x comprises the
production of several product items, each one described
by the journal y.

 hasJournalDetails(x,y): journal x comprises the
description of the several operations to execute a
product item, each one described by journal details y.

 hasMaterial(x, y): product x has the material y.
 hasMaterialFamily(x , y): material x is from the material

family y.
 hasOperation (x, y): process plan x contains operation y.
 hasOperationPrecedence(x, y): execution of operation x

requires the previous execution of operation y.
 hasPossibleRecoveryProcedures(x, y): failure type x can

be solved by applying the recovery procedure y.
 hasPossibleResource(x , y): resource y is a candidate for

the execution of the operation x.
 hasProcessPlan(x, y): the production of product x

requires the process plan y.
 hasProperty(x, y): resource x has the property (skill) y.
 hasSetup(x , y): resource x has the setup y.
 hasTool(x, y, t): producer x has the tool y available in its

internal magazine at time t.
 isAssociatedWithProduct(x, y): production order x is

associated to the product y.
 materialUsed(x, y): journal details x describes that the

material y was used to execute the operation.
 requiresProperty(x, y): operation x requires the property

y to be executed.
 requiresSetup(x, y): operation x needs the setup y to be

executed.
 usesMaterialFamily(x, y): operation x uses material

family y.

C. Attributes

Attributes are values relative to properties of concepts. The
following examples are attributes of the Product concept:
 productID: a non-negative integer number that provides

the unique identification of the product.
 name: the designation of the product.
 description: a statement describing the product.

D. Restrictions

Restrictions are conditions that should be satisfied when
instantiating a class. The restrictions can be applied to the
predicates, defining the range, domain and cardinality of the
classes involved in the relation, and to the attributes of one
class, defining the range and domain.

In the presented work, several restrictions were established
for predicates and attributes. As an example, the predicate
hasJournalDetails, between the classes Journal and
JournalDetails, has the following specific restriction in terms

4330

of cardinality: ∀푥(퐴(푥) → |	{푦	|	푅(푥,푦)}| ≥ 1) , i.e. the
cardinality is more than 1 (note: following the OWL
formalism described in [26]). Other predicates have different
restrictions in terms of cardinality, for example the predicate
isAssociatedtWithProduct between the ProductionOrder and
Product classes establishes the cardinality equal to 1.

In terms of restrictions for the attributes, it was established
several restrictions for domain and range. As an example, the
journalID attribute has the following restrictions:

 Domain: ∀푥∃푦 푅(푥,푦) → 퐶	(푥) , where 푥 is Journal.
 Range: ∀푥, 푦 푅(푥,푦) → 퐶	(푦) , where 푦 is Integer.

The fulfilment of the identified restrictions is crucial to
preserve the consistency of the ontology. Since the OWL is a
more expressive language than the Resource Description
Framework (RDF), the GRACE ontology is described in
OWL.

IV. VALIDATION BY INSTANTIATING FOR A CASE STUDY

At this stage, the ontology for production lines integrating
quality and process control, was designed (and edited in the
Protégé framework). An important step before its
implementation and usage is the verification of its correctness
and the adjustment of some ontological entities.

Several verifications can be performed, namely by using
the Java framework for building Semantic Web (JENA) that
provides several reasoning tools, like Pellet
(http://pellet.owldl.com), to check the consistency and
characteristics of the ontology, and by submitting the
ontology to an OWL Validator to check the ontology
compliance with the W3C standard. The GRACE ontology
has passed with success the set of checking tests.

A manual validation can be performed by instantiating the
ontology concepts for a particular case study, to support the
verification of the ontology correctness and the detection of
missing or misunderstanding ontological components. In fact,
it allows illustrating the relevance of the proposed concepts,
relations, and to improve, add, modify or remove some of the
proposed concepts, relations, attributes or restrictions.

This section describes the manual verification performed
by instantiation for a case study derived from a washing
machine production line. Aiming a better understanding, the
instantiation will be presented by analysing separately two
different fragments of the ontology model.

Fig. 2 illustrates the validation of the fragment of the
ontology comprising the “ProcessPlan”, “Operation” and
“Resource” concepts. Here, it is possible to verify that the
process plan “FrontLoader”, that defines the process to
execute the product “_859201049010_0000”, comprises the
execution of three operations:
 “BearingInsertion-Program1”, which uses components

from the “ABearing”, “BBearing” and “RearTub”
material families.

 “SealInsertion-Program1”, which should only be
executed after the execution of the operation
“BearingInsertion-Program1”, and uses components
from the “RearTub” and “ShaftSeal” material families.

 “Marriage-RearTub-Drum-Program1”, which should
only be executed after the execution of the operation
“SealInsertion-Program1”, and uses components from
the “ABearing”, “BBearing” and “CrossPiece” material
families.

Also in this fragment, it is possible the possible resources
to execute each operation. In this way:

Fig. 2. Fragment for the “ProcessPlan”, “Operation” and “Resource” classes and their instances

4331

 The operation “BearingInsertion-Program1” can be
executed by the resources “Bearing_Insertion1” and
“Bearing_Insertion2”.

 The operation “SealInsertion-Program1” can be
executed by the resources “Seal_Insertion1” and
“Seal_Insertion2”.

 The operation “Marriage-RearTub-Drum-Program1”
can be executed by the resources “Marriage1” and
“Marriage2”.

Another perspective of the ontology is related to the classes
that describe the dynamic data related to the execution of
production orders in the production line, i.e. the classes
“ProductionOrder”, “Journal” and “JournalDetails”, Fig. 3.

Fig. 3. Fragment for the “ProductionOrder”, “Journal” and
“JournalDetails” classes and their instances

Here, it is considered a production order to produce a batch
of 2 items of the product “_859201049010_0000”. The order
leads to the production of the two appliances described by the
instances “Journal_411142011153” and
“Journal_411142011154” from the Journal class. Since the
production of this product model requires the execution of
three operations, as described in the process plan, each one of
the two referred instances has three instances of the
JournalDetails class, related to the description of the
execution of each operation. For example, for the appliance
described with the “Journal_411142011153”, the details are:
 “Journal_Details1”: the operation “BearingInsertion-

Program1” was performed by the resource
“Bearing_Insertion1” with an overall result of OK.

 “Journal_Details2”: the operation “SealInsertion-
Program1” was performed by the resource
“Seal_Insertion1” with an overall result of OK.

 “Journal_Details3”: the operation “Marriage-RearTub-
Drum-Program1” was performed by the resource
“Marriage1” with an overall result of OK.

The manual validation of the ontology allowed a better
understanding of the domain and the correction of some
misunderstanding issues in the design of the ontological
concepts, predicates, attributes and restrictions.

At this stage, the designed ontology is ready to be used, i.e.
integrated within the GRACE multi-agent system.

V. IMPLEMENTATION OF THE GRACE ONTOLOGY

The designed ontology plays a crucial role in the GRACE
multi-agent system to enable a common understanding among
the agents when they are communicating, namely to
understand the message at the syntactic level (to extract the
content correctly) and at the semantic level (to acquire the
exchanged knowledge).

Since the GRACE multi-agent system is being developed
using the Java Agent Development Framework (JADE) [27],
which uses Java, a pertinent question is how to translate the
ontology edited in Protégé to be used by the agents developed
in JADE. Several options can be considered for this purpose.

The first option is to express the ontology in an OWL file.
For this purpose, agents should be able to read OWL files and
extract knowledge, communicating with small pieces of the
ontology through FIPA (Foundation for Intelligent Physical
Agents) protocols, e.g. using the Jena Framework [28] and
Protégé OWL.

The second option is to use the Protégé plug-in,
OntologyBeanGenerator, which allows generating Java files
representing an ontology that can be used with the JADE
framework. In this way, the ontology edited and validated in
Protégé is exported to Java classes, being the knowledge
represented by the instances of each class. The agents
communicate by using java objects (classes) to share the
knowledge between them. The major disadvantage of this
solution is the loss of flexibility when the agents want to
reason new facts and new rules to be included in the ontology
(applying learning mechanisms). Additionally, the extraction
process provided by this plug-in presents a malfunction that
requires fixing the errors in the generated classes by hand.

Fig. 4. Agents using ontologies to exchange knowledge

4332

In this work, the integration of the ontology within the
GRACE MAS system adopts the second approach, i.e. the use
of the Protégé plug-in to generate the Java classes used by
agents. Fig. 4 illustrates the use of the ontology (generated
from the ontology schema edited in Protégé using the plug-in)
to support the interaction among distributed agents, where the
agents use the same ontology (but different fragments of the
ontology) to express the shared knowledge that is exchanged.

The use of Java classes by the agents closes the several
phases of the development of the GRACE ontology, started
with the conceptualization, passing by the specification of the
ontology schema and followed by its validation.

VI. CONCLUSIONS

The GRACE project intends to develop a collaborative
multi-agent system which operates at all stages of a
production line, integrating process control with quality
control at local and global level. Ontologies play a crucial
role in the development of such multi-agent system to provide
the representation of the shared knowledge.

This paper describes the ontology designed to be used by
the multi-agent system integrating process and quality
control, and the validation of the ontology by instantiating for
a case study derived from a washing machine production. It
also discusses how the proposed ontology, edited and
validated in Protégé, can be integrated in the multi-agent
system that is being developed using the JADE agent
development framework.

As future work, some effort will be dedicated to the
implementation of the ontology schema within the multi-
agent system.

ACKNOWLEDGMENT

This work has been partly financed by the EU Commission,
within the research contract GRACE coordinated by Univ.
Politecnica delle Marche and having partners SINTEF, AEA
srl, Instituto Politécnico de Bragança, Whirlpool Europe srl,
Siemens AG.

REFERENCES
[1] Wooldridge, M., “An Introduction to Multi-Agent Systems”, John

Wiley & Sons, 2002.
[2] Szykman, S., Fenves, S.J., Keirouz, W., Shooter, S.B., “A Foundation

for Interoperability in Next-Generation Product Development
Systems”, Computer-Aided Design, vol. 33, n. 7, pp. 545-559, 2011.

[3] Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T. and
Swartout, W.R., “Enabling Technology for Knowledge Sharing”, AI
Magazine, vol. 12, n. 3, pp. 36-56, 1991.

[4] Gruber, T., “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing” International Journal of Human and Computer
Studies, vol. 43, n. 5/6, pp. 907-928, 1995.

[5] Guarino, N., “Formal Ontology and Information Systems”, Proceedings
of the First International Conference on Formal Ontologies in
Information Systems, Trento, Italy, pp. 3-15, 1998.

[6] Fensel, D., “Ontologies: a Silver Bullet for Knowledge Management
and Electronic Commerce”, Springer-Verlag, Berlin 2004.

[7] Lai, L.F., “A Knowledge Engineering Approach to Knowledge
Management”, Journal of Information Sciences, vol. 177, n. 19, pp.
4072-4094, 2007.

[8] Leitão P., Rodrigues, N., “Multi-Agent System for On-demand
Production Integrating Production and Quality Control”, V. Marík, P.
Vrba, and P. Leitão (eds.): HoloMAS 2011, LNAI 6867, Springer,
Heidelberg, pp. 84-93, 2011.

[9] Ferrarini, L., Veber, C., Luder, A., Peschke, J., Kalogeras, A., Gialelis,
J., Rode, J., Wunsch, D., Chapurlat, V., "Control Architecture for
Reconfigurable Manufacturing Systems: the PABADIS'PROMISE
Approach", Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation (ETFA'06), pp.545-552, 2006.

[10] Leitão, P., Restivo, F., “ADACOR: A Holonic Architecture for Agile
and Adaptive Manufacturing Control”, Computers in Industry, vol. 57,
nº 2, pp. 121-130, Elsevier, 2006.

[11] Borgo, S., Leitão, P., “The Role of Foundational Ontologies in
Manufacturing Domain Applications”, On the Move to Meaningful
Internet Systems: 2004: CoopIS, DOA and ODBASE, R. Meersman
and Z. Tari (eds.), Lecture Notes in Computer Science, vol. 3290,
Springer-Verlag, pp. 670-688, 2004.

[12] Lohse, N., “Towards an Ontology Framework for the Integrated Design
of Modular Assembly Systems”, PhD thesis, University of Nottingham,
2006.

[13] Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A., “MASON: A
Proposal for an Ontology of Manufacturing Domain”, Proc. of the
IEEE Workshop on Distributed Intelligent Systems, pp. 195-200, 2006.

[14] McLean, C., Lee, Y., Shao, G., Riddick, F., “Shop Data Model and
Interface Specification”, NISTIR 7198, 2005.

[15] Lopez, O., Martinez Lastra, J.L., “Using Semantic Web Technologies
to Describe Automation Objects”, International Journal of
Manufacturing Research, vol. 1, n. 4, pp. 482-503, 2006.

[16] Vyatkin, V., Christensen, J., Lastra, J., “OOONEIDA: An Open,
Object-Oriented Knowledge Economy for Intelligent Industrial
Automation”, IEEE Transactions on Industrial Informatics, vol. 1, n. 1,
pp. 4-17, 2005.

[17] Fox, M.S., “The TOVE Project: Towards A Common-sense Model of
the Enterprise”, Enterprise Integration Laboratory Technical Report,
1992.

[18] Batres, R., West, M., Leal, D., Priced, D. and Nakaa, Y., “An Upper
Ontology based on ISO 15926”, Computers & Chemical Engineering,
vol. 31, n. 5-6, pp. 519-534, 2007.

[19] Vrba, P., Rakovic, M., Obitko, M., Marík, V., “Semantic Technologies:
Latest Advances in Agent-based Manufacturing Control Systems”,
International Journal of Production Research, vol. 49, n. 5, pp. 1483-
1496, 2011.

[20] Merdan, M., Koppensteiner, G., Hegny, I., Favre-Bulle, B.,
“Application of an Ontology in a Transport Domain”, Proc. of the IEEE
International Conference on Industrial Technology, pp. 1-6, 2008.

[21] Cândido, G., Barata, J., “A Mutliagent Control System for Shop Floor
Assembly”, V. Marík, V. Vyatkin and A.W. Colombo (eds.),
HoloMAS’2007, LNAI 4659, Springer-Verlag, pp. 293-302, 2007.

[22] Al-Safi, Y. and Vyatkin, V., “An Ontology-based Reconfiguration
Agent for Intelligent Mechatronic System”, V. Marík, V. Vyatkin and
A.W. Colombo (eds.), HoloMAS 2007, LNAI 4659, Springer-Verlag
Berlin/Heidelberg, pp. 114-126, 2007.

[23] Andreev, M., Rzevski, G., Shviekin, P., Skobelev, P., Yankov, I., “A
Multi-agent Scheduler for Rent-a-Car Companies”, Marík, V. Strasser,
T., and Zoitl, A (eds.), HoloMAS’2009, LNAI 5696, Springer-Verlag,
Berlin Heidelberg, pp. 305-314, 2009.

[24] Andreev, M., Rzevski, G., Skobelev, P., Shveykin, P., Tsarev, A. and
Tugashev, A., “Adaptive Planning for Supply Chain Networks”, V.
Marík, V. Vyatkin and A.W. Colombo (eds.), HoloMAS’2007, LNAI
4659, SpringerVerlag, pp. 215-224, 2007.

[25] Hellingrath, B., Witthaut, M., Böhle, C., Brügger, S., ”An
Organizational Knowledge for Automotive Supply Chains”, Marík, V.,
Strasser, T. and Zoitl, A (eds.), HoloMAS 2009, LNAI 5696, Springer-
Verlag Berlin Heidelberg, pp. 37-46, 2009.

[26] Kiko, K., Atkinson, C., “A Detailed Comparison of UML and OWL”,
Technical Report TR-2008-004, Department for Mathematics and
Computer Science, University of Mannheim, 2008.

[27] Bellifemine, F., Caire, G., Greenwood, D., “Developing Multi-Agent
Systems with JADE”, Wiley, 2007.

[28] Grobe,M., “RDF, Jena, SparQL and the 'Semantic Web'”, Proceedings
of the 37th annual ACM SIGUCCS Fall Conference (SIGUCCS '09),
ACM, New York, NY, USA, pp. 131-138, 2009.

4333

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

