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ABSTRACT

The main objective of this paper is to present a computational model for the fire resistance of
wood/steel hybrid elements. Different design solutions will be presented. The most important
factors for fire safety in hybrid elements are the thermal effects degradation and the charring
depth formation in wood materials, and also the heat conduction extremely well in steel
material. Unprotected steel elements under fire condition may suffer serious damage. The use
of hybrid wood/steel elements could increase both structural strength and stiffness. Wood
could be considered as an insulating material, the core section could remain at low
temperature, function of fire exposure time and element cross section size. All presented
results will permit to evaluate different design solutions, which facilitates the fire design of
wood/steel hybrid elements. The presented study was conducted in order to articulate the best
constructive solution using the finite element method.

1 INTRODUCTION

In the past, buildings have been entirely constructed with steel or entirely with wood, but
recently have begun to integrate with both different materials, using hybrid wood/steel
solutions, [1-2].

Hybrid structure does not merely indicate a framework member composed by a combination
of different materials, but a construction using different methods according specific structural
functions [2]. For this reason, the use of hybrid materials could increase the structural
integrity. Steel material has many advantages over wood elements, strength, stability,
resistance to woodworm, among others. Steel is incombustible and most of the times it can
full recover strength after fire. However, steel has one significant disadvantage over wood,
steel material conducted heat extremely well, [3]. Wood is a renewable resource, recently
attracted by public attention, as an environmentally friendly material. This product is a
building material with attractive attributes, as architectural and structural aspects. The wood
when exposed to accidental actions, such as fire conditions, has a surrounding charring depth.
However, this layer can delay the heating process to the wood core section, acting as an
insulating. By comparison with other traditional materials applied to the building
construction, wood exhibits an exceptional strength, contrarily to that occurs with steel
elements, where the structural collapse may result from the deterioration of mechanical
properties with temperature increase. [4].
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The combination between wood and steel leads to economic and ecologic benefits, weight
optimization, fire resistance increase, earthquake resistance and an efficient assembling [5].
Recently building codes and standards have been increasing the performance of structures in
fire. Several researches have presented experimental and numerical models for the study of
wood degradation in presence of high temperatures [6-8]. The charring rate of softwood or
hardwood material exposed to fire conditions has been studied by researchers in different
countries, [9-16]. Also, several studies have been presented to investigate the behaviour of
steel elements under fire conditions, [17]. The greatest opportunity in fire research is the
development of computational fire resistance models and experimental methodologies for
hybrid materials submitted to natural fire scenarios [18]. In this work the first objective was to
produce the temperature time history in different design solutions submitted to different fire
scenarios. The second objective is to verify the best constructive solution and compare the fire
resistance. All models were developed by the finite element method using ANSYS.

2 MATERIAL PROPERTIES

The most important factors for structural strength in wooden elements submitted to fire are
the material properties degradation and the charring depth formation. The wood density
decreases with the material degradation caused by the pyrolysis process, in the presence of
high temperatures. For wood temperatures around 280[°C] to 300[°C] are generally prescribed
as the start of pyrolysis, [19]. Wood burns leading to material degradation and decomposition.
The wood thermal properties are strongly affected by temperature and moisture content levels.
The thermal behaviour of wood is complex, but has been well documented. Eurocode 5 [20]
provides the design values for wood thermal properties, for density, thermal conductivity and
specific heat, figure 1. The values below about 350[°C] represent the properties of wood and
above 350°C represent the properties of charred layer. The specie (Spruce) considered in this
study presents a value of density equal to 450[kg/m’].

The thermal properties of steel are function of the temperature and should be determined from
Eurocode 3 [21]. The density of steel is considered constant and equal to 7850[kg/m’]. The
specific heat and the thermal conductivity of steel are represented in figure 2, [21].

Figure 3 gives the thermal properties of the air with temperature dependence for specific heat.
thermal conductivity and density, [22].

The evolution of fire temperature (6, in [°C]) over time (¢ in [min]) was defined by standard

fire curve. In this work the standard ISO834 fire curve was adopted, with the expression 1,
according the Eurocode 1 [23]:

6, =20+345log,, (8 +1) (1)
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Fig. 3. Thermal properties of air.
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3 STUDIED MODELS

Table 1 represents three different geometries in study (G1, G2 and G3), and the fire scenario,
considering one side (1F) and three sides (3F). For each model, four different nodal positions
were chosen to obtain the temperature evolution during one hour of fire exposure.

Geometries Fire at one side (1F) Fire at three sides (3F)
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Table 1. Geometries and nodal locations.
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Table 2 represents all different combinations according to the material for each model (Wood,
Steel, Wood-Steel). According to the fire scenario and the material combination, 24 different
models were considered in this study. Four of these models were considered with air in the
internal cavity. The air modelling permits to verify the heating conduction inside the void.

Wood (W) Steel (S) Wood-Steel (WS) Steel-Wood (SW)
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7
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G2-1F-S G2-1F-WS G2-1F-SW
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F P gt ~
L.z I X J
G3-1 #—S-air G3-1F-WS G3-1F-WS-air
G3-3F-S-air G3-3F-WS G3-3F-WS-air

Table 2. 24 models and fire action.

The boundary conditions considered in all analysis are convection and radiation, according to
the temperature evolution in fire. A transient thermal analysis was defined with ANSYS. A
two dimensional finite element with eight nodes (PLANE77) was considered. All
temperatures were obtained during one hour of fire exposure.

Tables 3 to 8 represent the results for each model in analysis, according to the time history for
each chosen node and the temperature field distribution at 3600[s].
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Time history, 0 to 3600[s] Temperatures at the end of 3600[s]
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Table 3. Model GI and fire scenario (1F).
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Time history, 0 to 3600[s] Temperatures at the end of 3600[s]
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Table 4. Model G1 and fire scenario (3F).
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Time history, 0 to 3600[s] Temperatures at the end of 3600[s]
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Table 5. Model G2 and fire scenario (1F).
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Time history, 0 to 3600[s] Temperatures at the end of 3600[s]
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Table 6. Model G2 and fire scenario (3F).
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Time history, 0 to 3600[s] Temperatures at the end of 3600[s]
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Table 7. Model G3 and fire scenario (1F).




HYBRID WOOD/STEEL ELEMENTS UNDER FIRE
Barbosa,L.F.M.; Almeida, P.M.L.; Fonseca, E.M.M.; Barreira, L.M.S.; Coelho, D.C.S.

Time history, 0 to 3600[s]
1000
900 SO 834
00
700
- -~ Node |
Z 600
2 s
2 ~-~Node 2
g w Node 2
@
R
200 —Node3
100
0 o
0400 K00 1200 1600 2000 2400 2800 3200 3600 TNoded
Time [s]
1000
900 — 180 #34
800
700
- -~ Node |
Z 60
z
]
E 500
£ 400 VNG
2
300
200 —-Node 3
100
0 400 B0 1200 1600 2000 2400 2800 3200 3600 ----Noded
Time 5]
G3-3F-S-air
1000
900 —I180 834
800
. - - Nede
B
£ so0
£ - -Node 2
£ a0 Node 2
2
300
200 — Node3
100
0 s o =
O 400 ROO 1200 16DO 2000 2400 2800 3200 3600 ----Neded
Time fs)
— 150834
. - = Node |
g2
] f
% i = =Node 2
& !
i
:
7 =
a0 I -
' i
L i sl
o - -
0 400 500 1200 1600 2000 2400 2800 3200 360g ~Noded
“Time 5]
G3-3F-WS-air

Table 8. Model G3 and fire scenario (3F).
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4 RESULTS AND DISCUSSION

After all simulations it is possible to identify different conclusions. The fire exposure at three
sides is the worst situation. For the same period of time, the temperature increases, in all
elements. The interface between charred and noncharred wood is the demarcation plane
between black and brown material and is characterized by a temperature of 300°C, according
Eurocode 5 [20].

Considering all different geometries and materials:

-For model G1, the elements that have wood in front of the fire exposure, protects the core
section. For materials with steel in front of the fire, the heat conduction is very high and
quickly heats all components.

-In the model G2, the wood elements in front of the fire are very thin, and quickly lose their
resistance due the char layer formation, compromising the remaining structure. In this model
the steel material has better performance.

-For model G3, when wood material is externally applied to the steel profile, plays an
important role as insulation, reducing the temperature inside steel. In the cases where both
(outside and inside of the model) are made of steel, the temperature in the inner profile is
higher, than the previous solution.

According to these results, it can be seen that wood elements present lower temperatures than
steel, and the maximum temperature in the model is always inside the char layer. The hybrid
model can perform well under fire conditions. Regarding the best design solution for all
studied models, it is concluded that the hybrid model 3F-G3-WS has a good fire resistance
even for three sides exposure, showing the ability of wood to protect the steel.
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