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ABSTRACT 

The genus Opuntia embraces different species of cactus, and many of them produce 

acid fruits known as xoconostle, which are considered valuable vegetable foods in Latin 

America. Xoconostle fruit contains an edible thick-acid-freshly mesocarp, and seeds 

that are considered as by-products. Given the high potential of its use and consumption, 

and the lack of information about its detailed chemical composition and bioactive 

compounds, the aim of this study was to evaluate the nutritional and antioxidant 

properties of pulp and seeds of two highly consumed commercial cultivars of 

xoconostle fruits (Opuntia joconostle F.A.C. Weber ex Diguet, cv. Cuaresmeño, and 

Opuntia matudae Scheinvar, cv. Rosa).  

This investigation shows that the pulp of the studied xoconostle cultivars had an 

appreciable amount of soluble fiber and antioxidant compounds such as ascorbic acid, 

while the seeds are a source of fiber, phenolics, flavonoids, PUFAs and tocopherols 

(specially γ-tocopherol), which provide a good antioxidant capacity. In the light of these 

results, xoconostle fruits should be considered of great interest for either promoting the 

conventional consumption, and also as sources of bioactive compounds for the addition 

to other food products, so that all the nutrients present are fully used, instead of being 

discarded.  

 

KEYWORDS: Opuntia; xoconostle; PUFAs; vitamins; antioxidant capacity, seeds by-

product.   
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1. Introduction  

The genus Opuntia embraces about 1500 species of cactus and many of them produce 

sweet (cactus pear) or acid fruits (xoconostle), which growth in arid and semi-arid 

climates, being considered valuable vegetable foods in Latin America. Xoconostle fruit 

is a piriform berry and exhibits an apical depression or receptacle. It is composed by the 

epicarp (the skin), the mesocarp (pulp), and the endocarp (where the seeds are tightly 

packed together in a mucilaginous structure), as it can be seen in Fig. 1 (Reyes-Agüero, 

Aguirre, & Valiente-Banuet, 2006). This fruit may remain in the plant for several 

months without deteriorating, and it can even be kept for several weeks in a dry and 

cool environment without losing flavour, color or moisture (Zabaleta-Beckler, Olivares-

Orozco, Montiel-Solero, Chimal-Hernández, & Scheinvar, 2001). It has a great 

relevance because in arid and semiarid zones the accessibility to other vegetables is low. 

The mesocarp (pulp) is the edible part of this fruit, and is used as a condiment in the 

mexican cuisine, as well as in the elaboration of candies, jellies and beverages. It 

contains readily absorbable sugars, dietary fiber, ascorbic acid, polyphenols, 

carotenoids and betacyanin pigments, that have been related to its healthy benefits such 

as hypoglycaemic and hypolipidemic action, and antioxidant properties (Pimienta-

Barrios, Méndez-Morán, Ramírez-Hernández, García, & Domínguez-Arias, 2008; Paiz 

et al., 2010; Bender, 2003; Schaffer, Schmitt-Schillig, Müller, & Eckert, 2005; Phillips 

et al., 2010; Osorio-Esquivel, Ortiz-Moreno, Álvarez, Dorantes-Álvarez, & Giusti, 

2011). In the other hand, the seeds of xoconostle are considered as potential food by-

products, since they present high content of unsaturated fatty acids, specially 

polyunsaturated fatty acids (PUFAs), which are associated with a reduced risk of 

developing cardiovascular, inflammatory and autoimmune diseases (Simopoulus, 2002). 

These health benefits are associated with the fact that fatty acids from n-3 and n-6 
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series, such as linoleic (LA, C18:2n-6) and α-linolenic (ALA, C18:3n-3) acids are the 

biosynthetic precursors of eicosanoids, which take part in a wide range of metabolic 

functions.  

Furthermore, vitamin E and tocopherols (α, β, γ and δ-tocopherol) are antioxidant 

nutrients that play important roles in health by the inactivation of free radicals produced 

through normal cellular activity and from various stressors. Tocopherols act as 

antioxidants by their capacity to scavenge lipid peroxyl radicals of unsaturated lipid 

molecules, preventing propagation of lipid peroxidation (Traber, 2007). Due to its role 

as free radicals scavenger, vitamin E is also believed to protect against degenerative 

processes, such as cancer and cardiovascular diseases (Burton & Traber, 1990). It has 

been reported that γ-tocopherol and its physiological metabolite 2,7,8-trimethyl-2-(β-

carboxyethyl)-6-hydroxychroman (γ-CEHC), inhibit COX-2-catalyzed formation of 

PGE2, inducing anti-inflammatory properties (Jiang, Elson-Schwab, Courtemanche, & 

Ames, 2000; Barreira, Alves, Casal, & Ferreira, 2009). Regarding nutritional 

composition and antioxidant properties, xoconostle fruits could be an attractive target 

for food industry while seeds, instead of being discarded, could be recovered for their 

high nutritional value, as sources of PUFAs, tocopherols and dietary fiber (Prieto-

García, et al., 2006). Given the high potential of use and consumption of xoconostle 

fruits and the lack of information about its nutritional composition, the aim of this study 

was to evaluate the nutritional and antioxidant properties of pulp and seeds of two 

commercial varieties of xoconostle. Although there are some previously studies on 

other Opuntia fruits (Kuti, 2004; Chang, Hsieh, & Yen, 2008; Álvarez & Peña-Valdivia, 

2009; Ayadi, Abdelmaksoud, Ennouri, & Attia, 2009; Moussa-Ayoub et al., 2011), and 

on the xoconostle fruits (Osorio-Esquivel, Ortiz-Moreno, Álvarez, Dorantes-Álvarez, 

Giusti, 2011; Prieto-García et al., 2006; Guzmán-Maldonado et al., 2010), this is the 
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first report that highlights the nutritional composition and antioxidant potential of the 

seeds, being important to evaluate the possibility of using them in food industry as 

functional ingredients. Furthermore, the pulp, mainly in those varieties of higher 

consumption in Mexico, could also be considered as functional foods.  

 

2. Material and Methods. 

2.1. Standards and reagents 

The eluents n-hexane 95% and ethyl acetate 99.98% were of HPLC grade from Lab-

Scan (Lisbon, Portugal). Methanol was of analytical grade purity and supplied by 

Pronalab (Lisbon, Portugal). The fatty acids methyl ester (FAME) reference standard 

mixture 37 (standard 47885-U) as well as other individual fatty acid isomers, tocopherol 

standards (α, β, γ and δ-isoforms), glucose, fructose, sucrose, organic acid standards (L 

(+)-ascorbic, oxalic, malic, citric and succinic acids), and gallic acid (for phenolics 

determination) were purchased from Sigma (St. Louis, MO, USA). Glutamic acid (used 

in organic acids analysis) and L-Cystein (used in vitamin C analysis) were purchased 

from Merck (Darmstadt, Germany). Racemic tocol (for tocopherols analysis) in n-

hexane, 50 mg/mL, was purchased from Matreya (PA, USA). The 2,2-diphenyl-1-

picrylhydrazyl (DPPH) used in antioxidant activity evaluation was obtained from Alfa 

Aesar (Ward Hill, MA, USA). Water was treated in a Milli-Q water purification system 

(TGI Pure Water Systems, USA).  

 

2.2. Material 



 6 

Fruits of O. joconostle F.A.C. Weber ex Diguet cv. Cuaresmeño (white skinned), and O. 

matudae Scheinvar cv. Rosa (pink skinned), were provided by a Mexican association 

(CoMeNTuna). The fruits were manually harvested in spring 2009 from a growing area 

in Mexico (Hidalgo state), when the characteristics of maturation (size and skin colours) 

were according to conventional standards for this product. The thin skin (epicarp) was 

removed, and then the mesocarp (the edible pulp) was separated of the endocarp with 

seeds (Fig. 1), and cut into small pieces. Both parts (mesocarp and endocarp) were 

freeze-dried. The seeds were cleaned by removing any mucilaginous material or pulp. 

The two lyophilized fractions (pulp and seeds) were ground separately, passed through 

a 1.0-mesh sieve, and stored in the dark at -20 ºC until analysis. Total vitamin C 

analysis was carried out in fresh material. 

 

2.3. Proximate Analysis.  

AOAC (Association of Analytical Communities) official methods (AOAC, 2005) were 

used for analysis of moisture (Method 925.09), total protein (Method 950.48), fat 

(Method 983.23) and ash (Method 930.05) (AOAC, 2005).  

 

2.4. Dietary fiber: Soluble and insoluble fiber  

Soluble (SDF) and insoluble dietary fiber (IDF) was determined according to AOAC 

enzymatic-gravimetric method (AOAC, 2005). Total dietary fiber (TDF) was the sum 

of SDF and IDF.  
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2.5. Soluble sugars.  

Ethanol soluble carbohydrates were extracted with 80% ethanol at 60 ºC and soluble 

sugars profile was determined by HPLC (Sánchez-Mata, Cámara-Hurtado, & Díez-

Marqués, 2002), using a Waters system equipped with a refractive index (RI) detector 

and the column used was a Luna 5mm NH2 100 R, 250 mm × 4.60 mm  (Phenomenex, 

Torrance, CA, USA). The flow rate of the acetonitrile/water solvent (80:20) was 0.9 

mL/min. Quantification was based on the RI signal response, and the resultant peak 

areas in the chromatograms were plotted against concentrations obtained from 

standards.  

 

2.6. Fatty acids 

Fatty acids (obtained after Soxhlet extraction) were methylated with 5 mL of 

methanol:sulphuric acid 95%:toluene 2:1:1 (v/v/v) for, at least, 12 h in a bath at 50 ºC 

and 160 rpm; to obtain phase separation 3 mL of deionised water were added; the fatty 

acids methyl esters (FAME) were recovered by strongly shaking with 3 mL of diethyl 

ether, and the upper phase was passed through a micro-column of anhydrous sodium 

sulphate to eliminate the water. The sample was recovered in a vial with Teflon and 

filtered through a 0.2 µm Whatman nylon filter. Fatty acids were determined by gas-

liquid chromatography with flame ionization detection (GC-FID)/capillary column as 

described previously by the authors (Morales et al., 2011a). The analysis was carried 

out with a DANI model GC 1000 instrument (Milan, Italy) equipped with a 

split/splitless injector and a flame ionization detector (FID at 260 ºC). The column used 

was a Macherey-Nagel (Duren, Germany) (50% cyanopropyl-methyl, 50% 

phenylmethylpolysiloxane; 30 m×0.32 mm ID × 0.25 µm df). The oven temperature 
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program was as follows: the initial temperature of the column was 50 ºC, held for 2 

min, then a 30ºC/min ramp to 125 ºC, 5ºC/min ramp to 160 ºC, 20ºC/min ramp to 180 

ºC, 3ºC/min ramp to 200 ºC, 20ºC/min ramp to 220 ºC and held for 15 min. The carrier 

gas (hydrogen) flow-rate was 4.0 mL/min (0.61 bar), measured at 50 ºC. Split injection 

(1:40) was carried out at 250 ºC. Fatty acid identification was made by comparing the 

relative retention times of FAME peaks from samples with standards. The results were 

recorded and processed using CSW 1.7 software (DataApex 1.7). 

 

2.7. Vitamin C   

The quantification of ascorbic acid (AA) was carried out by a previously validated 

HPLC method (Ruiz-Rodríguez et al., 2011). Briefly, samples were extracted with 4.5% 

metaphosphoric acid, and dehydroascorbic acid was reduced to AA in the extract, using 

4% L-cysteine at pH 7. The HPLC equipment used was a liquid chromatographer 

(Micron Analítica, Madrid, Spain) equipped with an isocratic pump (model PU-II) and 

an AS-1555 automatic injector (Jasco AS-1555 Intelligent simple, Japan). The column 

used was a Sphereclone ODS 250 × 4.60, 5 µm (Phenomenex, Torrance, CA, USA) a 

UV-visible detector (Thermo Separation Specta Series UV100). The HPLC conditions 

were: 1.8 mM H2SO4 in distilled water (pH = 2.6) as solvent, with a flow rate of 0.9 

mL/min and UV detection at 245 nm.  Data were analyzed using a Biocrom 2000 3.0 

software. Quantification was based on the UV signal response, and the resultant peak 

areas in the chromatograms were plotted against concentrations obtained from 

standards. 

 

2.8. Tocopherols composition 
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Butylated hydroxytoluene (BHT) solution in hexane (10 mg/mL; 100 µL) and tocol 

(internal standard, IS) solution in hexane (50 µg/mL; 400 µL) were added to the sample 

prior to the extraction procedure. Samples (~500 mg) were homogenized with methanol 

(4 mL) by vortex mixing (1 min). Subsequently, hexane (4 mL) was added and again 

vortex mixed for 1 min. Saturated NaCl aqueous solution (2 mL) was added, the 

mixture was homogenized (1 min), centrifuged (5 min, 4,000g) and the clear upper 

layer was carefully transferred to a vial. The sample was re-extracted twice with n-

hexane. The combined extracts were taken to dryness under a nitrogen stream, 

redissolved in 2 mL of n-hexane, dehydrated with anhydrous sodium sulphate and 

filtered through 0.2 µm nylon filters and transferred into a dark injection vial. 

Tocopherols content was determined following a procedure previously described by 

Morales et al. (2011b). The HPLC equipment consisted of an integrated system with a 

Smartline pump 1000 (Knauer, Germany), a degasser system Smartline manager 5000, 

an AS-2057 auto-sampler and a 2500 UV detector at 295 nm (Knauer, Germany) 

connected in series with a FP-2020 fluorescence detector (Jasco, Japan) programmed 

for excitation at 290 nm and emission at 330 nm. The column used was a normal-phase 

250 mm × 4.6 mm i.d., 5 µm, Polyamide II, with a 10 mm × 4 mm i.d. guard column of 

the same material (YMC Waters, Dinslaken, Germany), operating at 30ºC. The mobile 

phase used was a mixture of n-hexane and ethyl acetate (70:30, v/v) at a flow rate of 1 

mL/min. Tocopherols identification was made by comparing the relative retention times 

of sample peaks with standards. Quantification was based on the fluorescence signal 

response, using the internal standard method. 

 

2.9. Determination of total phenolics and flavonoids 

Extracts preparation. A fine dried powder (1 g) was extracted by stirring with 40 mL of 
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methanol at 25 °C for 1 h and filtered through Whatman No. 4 filter paper. The residue 

was then extracted with one additional 40 mL portion of methanol. The combined 

methanolic extracts were evaporated at 35 °C under reduced pressure (rotary evaporator 

Büchi R-210 R-210; Flawil, Switzerland), re-dissolved in methanol at a concentration 

of 5 mg/mL, and stored at 4 °C (2 days) for further use. 

Total phenolics were estimated based on procedures described by Wolfe Wu, & Liu 

(2003) with some modifications. An aliquot of the extract solution (0.5 mL) was mixed 

with Folin–Ciocalteu reagent (2.5 mL, previously diluted with water 1:10 v/v) and 

sodium carbonate (75 g/l, 2 mL). The tubes were vortexed for 15 s and allowed to stand 

for 30 min at 40 °C for colour development. Absorbance was then measured at 765 nm 

(AnalytikJena 200 spectrophotometer, Jena, Germany). Gallic acid was used to 

calculate the standard curve (9.4×10-3 - 1.5×10-1 mg/mL). 

Flavonoids content was determined using the method of Jia, Tang, & Wu (1993), with 

some modifications. An aliquot (0.5 mL) of the extract solution was mixed with 

distilled water (2 mL) and subsequently with NaNO2 solution (5%, 0.15 mL). After 6 

min, AlCl3 solution (10%, 0.15 mL) was added and allowed to stand further 6 min, 

thereafter, NaOH solution (4%, 2 mL) was added to the mixture. Immediately, distilled 

water was added to bring the final volume to 5 mL. Then the mixture was properly 

mixed and allowed to stand for 15 min. The intensity of pink colour was measured at 

510nm. (+)-Catechin was used to calculate the standard curve (4.5 × 10-3 - 2.9 × 10-1 

mg/mL). 

 

2.10. Evaluation of antioxidant activity 

DPPH radical-scavenging activity. This methodology was performed using an ELX800 

Microplate Reader (Bio-Tek Instruments, Inc.), according to Morales et al. (2011b). The 
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reaction mixture in each one of the 96-wells consisted of one of the different 

concentrations of the extracts (30 µl) and aqueous methanolic solution (80:20 v/v, 270 

µl) containing DPPH radicals (6×10-5 mol/L). The mixture was left to stand for 60 min 

in the dark. The reduction of the DPPH radical was determined by measuring the 

absorbance at 515 nm. The radical-scavenging activity (RSA) was calculated as a 

percentage of DPPH discolouration using the equation: % RSA = [(ADPPH - AS)/ADPPH] 

× 100, where AS is the absorbance of the solution when the sample extract has been 

added at a particular level, and ADPPH is the absorbance of the DPPH solution. The 

extract concentration providing 50% of radicals scavenging activity (EC50) was 

calculated from the graph of RSA percentage against extract concentration. 

  

Reducing power. Different concentrations of the extracts (0.5 mL) were mixed with 

sodium phosphate buffer (200 mmol/l, pH 6.6, 0.5 mL) and potassium ferricyanide (1% 

w/v, 0.5 mL) in Eppendorf tubes. The mixture was incubated at 50 °C for 20 min, and 

trichloroacetic acid (10% w/v, 0.5 mL) was added. Afterwards, the mixture (0.8 mL) 

was poured in the 48-wells microplates, as also deionised water (0.8 mL) and ferric 

chloride (0.1% w/v, 0.16 mL), and the absorbance was measured at 690 nm in the 

Microplate Reader described above (Morales et al., 2011b). The extract concentration 

providing 0.5 of absorbance (EC50- 50% of the maximal absorbance, 1) was calculated 

from the graph of absorbance at 690 nm against extract concentration.  

 

Inhibition of β-carotene bleaching. A solution of β-carotene was prepared by dissolving 

β-carotene (2 mg) in chloroform (10 mL). Two millilitres of this solution were pipetted 

into a round-bottom flask. After the chloroform was removed at 40 °C under vacuum, 

linoleic acid (40 mg), Tween 80 emulsifier (400 mg), and distilled water (100 mL) were 
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added to the flask with vigorous shaking. Aliquots (4.8 mL) of this emulsion were 

transferred into different test tubes containing different concentrations of the extracts 

(0.2 mL). The tubes were shaken and incubated at 50 °C in a water bath (Morales et al., 

2011b). As soon as the emulsion was added to each tube, the zero time absorbance was 

measured at 470 nm. β-Carotene bleaching inhibition was calculated using the 

following equation: (β-carotene absorbance after 2 h of essay/initial β-carotene 

absorbance) × 100. The extract concentration providing 50% antioxidant activity (EC50) 

was calculated by interpolation from the graph of β-carotene bleaching inhibition 

percentage against extract concentration.  

 

2.11. Statistical analysis 

Analysis of variance (ANOVA), followed by Duncan`s test, was conducted using 

Statgraphics Plus 5.1. software to analyze data, at a confidence level of 95 %. Values 

were expressed as means and standard deviations of triplicate analyses (n=3). 

 

3. Results and discussion  

3.1. Nutritional composition 

Proximal composition of O. joconostle and O. matudae is listed in Table 1. Results of 

pulp and seeds are separately presented, as seeds represent a high proportion of the 

complete fruit (21 to 23%). The pulp of xoconostle was characterized by an appreciable 

content of digestible carbohydrates, while the seeds had a significant predominance of 

non-digestible compounds (insoluble fiber dietary), protein, fat and ash contents. 

Proximal composition in pulp was similar for both cultivars, with the exception of 
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soluble sugars and ash. The seeds had significant differences among both species, with 

lower moisture content in O. matudae and a higher content of nutrients (protein, fat, 

soluble sugars, fiber and ash) compared with O. joconostle. 

One of the main characteristics of this fruit is its sour taste (Guzmán-Maldonado et al., 

2010) and its low content of soluble sugars. The content of soluble sugars in pulp (1.56 

± 0.17 and 2.02 ± 0.09 g/100 fw, in O. matudae and O. joconostle respectively) was low 

compared with other Opuntia fruits (cactus pear) (Ayadi et al., 2009), or with other 

conventional fruits. The soluble sugars were the most important contributors to the total 

available carbohydrates fraction. The profile of the soluble sugars in both fractions of 

the fruit (pulp and seeds) showed a clear predominance of fructose, while glucose and 

sucrose appeared as minor compounds (Table 1).  

In comparison with other fruits, the xoconostle pulp provides a good percentage of total 

fiber (2 % approximately), mainly as insoluble fiber. Alvarez & Peña-Valdivia (2009) 

reported that the distribution of fiber fractions in xoconostle was different according to 

the stages of maturation; in particular, mucilage and pectin increased (3 or 4 times) with 

the maturation of the fruit. The Recommended Dietary Allowance (RDA) established 

by dietary fiber (FAO, 2003), indicate the consumption between 25 and 30 g of fiber 

per day. Furthermore, it is recommended that a third of total fiber (approximately 10 g) 

should be soluble fiber, and the distribution of fiber in the xoconostle pulp is in 

agreement with the nutritional recommendations. According to these recommendations, 

100 g of edible pulp of xoconostle provides up to 5 and 8 % of the daily fiber 

requirement for adults (1.74 ± 0.07 and 2.31 ± 0.12 g/100 g fw in O. matudae and O. 

joconostle, respectively), with a very adequate soluble/insoluble ratio. On the other 

hand, seeds revealed the highest content of dietary fiber (19.22 and 30.17 g/100g in O. 

joconostle and O. matudae, respectively) mainly as insoluble fiber in similar form of 
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other conventional fruits as apple, pear, pineapple and strawberry (Pak, 2003; Ramulu 

& Udayasekhara, 2003). In comparison with other species of the genus Opuntia the 

fiber content of xoconostle fruit is higher (Ramírez-Moreno et al., 2011; Díaz, 

Rodríguez & Díaz, 2007),  making it ideal to be added to other foods to improve fiber 

intake of the population. 

The amount of fat in xoconostle seeds (2.45 ± 0.05 and 3.52 ± 0.12 g/100 g fw in O. 

joconostle and O. matudae, respectively) was higher compared with the pulp (0.03 and 

0.04 g/100 g fw in O. joconostle and O. matudae, respectively). The amount of fat 

present in seeds is nutritionally interesting and makes it a good potential source of 

dietary oil. Sawaya & Khan (1982) reported the high quality of oil in other Opuntia 

species in terms of fatty acids composition (82% unsaturated fatty acids), representing a 

major contribution to the dietary intake of essential fatty acids for population who 

traditionally include these fruits in the diet. The individual fatty acids content in pulp 

and seeds of the xoconostle cultivars in this study are presented in Table 2. At least 

nineteen fatty acids were identified and quantified in the seeds of both cultivars, while 

in the pulp only sixteen fatty acids were characterized. The beneficial effects attributed 

to the n-3 PUFAs is due to their anti-agregant effects in cardiovascular diseases. 

Therefore the ratio of dietary ALA to LA is very important from a nutritional point of 

view (Guil, & Rodriguez, 1999). Adequate intakes for male adults must be around 14-

17 g per day of linoleic acid (LA) and 1.6 g per day of α-linolenic acid (ALA), whereas 

for females the adequate intakes are lower, around 11-12 g per day of LA and 1.1 g per 

day of ALA (Trumbo, Schlicker, Yates, & Poos, 2002). LA (C18:2n6) was found at 

72.49 and 79.15 % in the seeds of Cuaresmeño and Rosa cultivars, respectively (Table 

2), similar values to the ones found in Opuntia fruits from other species (O. ficus-

indica) (Sawaya & Khan, 1982; Ramadan, & Mörsel, 2003). 
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Two saturated fatty acids (SFA), palmitic acid (PA, C16:0) and octanoic acid (C8:0) 

were found in significant amounts. In fact, PA was the main SFA found in all the 

samples, except in the pulp of O. joconostle fruit pulp, whose main SFA was octanoic 

acid (C8:0, 21.35%), with percentages of 9.42 and 12.74% in seed and pulp of O. 

matudae respectively, while O. joconostle presented 12.35 and 15.03% in seed and 

pulp, respectively (Table 2). Comparing with other authors, the percentages of PA were 

lower than the ones described by Ramadan & Mörsel (2003) for cactus pear (O. ficus–

indica). The mentioned variability could be explained by different climatic and soil 

conditions as well as by time of harvest and postharvest conditions (Prohens et al. 

2005). In the case of monounsaturated fatty acids (MUFA), oleic acid (OA, 18:1n9) was 

the most representative one, with percentages of 2.45 and 3.68% in pulp of O. matudae 

and O. joconostle, respectively, and 7.82 and 9.72% in seeds of O. joconostle and O. 

matudae, respectively. Being O. joconostle fruits the one that had the highest content. 

The highest LA content was found in the seeds (72.49 and 79.15% in O. joconostle and 

O. matudae, respectively), whereas the ALA content was higher in the pulp of the fruit 

(7.67 and 8.64% in O. joconostle and O. matudae, respectively). 

The percentages of each group of fatty acids (SFA, MUFA and PUFA) and PUFA/SFA 

and n-3/n-6 ratios, calculated in pulp and seed of the studied cultivars are also shown in 

Table 2. As can be observed, the seeds provide the lowest SFA (12.01 ± 1.43 to 16.86 ± 

0.17%, in O. matudae and O. joconostle, respectively), the highest MUFA (7.64 ± 0.86 

to 10.28 ± 0.03%, in O. matudae and O. joconostle, respectively) and PUFA (72.85 ± 

0.14 to 80.26 ± 1.83%, in O. joconostle and O. matudae, respectively) contents; in this 

way, seeds of xoconostle fruits were good sources of healthy unsaturated fatty acids as 

also stated by Sawaya & Khan (1982) for cactus pear seeds oil. All samples presented a 

good ratio PUFA/SFA, higher than 0.45: pulp (1.28 ± 0.74 and 2.88 ± 0.03 for O. 
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joconostle and O. matudae, respectively) and seeds (4.32 ± 0.05 and 6.67 ± 0.73 for O. 

joconostle and O. matudae, respectively); these results are interesting since diets rich in 

n-6 PUFA and low in SFA have been shown to be cardio-protective (McGee, Ree, & 

Yano, 1984). Moreover, the samples presented low n-3/n-6 ratios (less than 0.20); it is 

becoming increasingly clear that both n-3 and n-6 PUFA have independent health 

effects in the body, and as intakes of n-6 PUFA are within the guidelines for a healthy 

diet, concerns about the n-3 to n-6 ratio are driven by low intakes of n-3 rather than high 

intakes of n-6 (Ward & Singh, 2005). Furthermore, the optimal balance between dietary 

ALA and LA, which are the two main fatty acids influencing this ratio, may contribute 

to reduce the prevalence of different diseases such as asthma atherosclerosis and 

potential lung cancer (Oddym et al., 2004). 

 

3.2. Antioxidant compounds and antioxidant properties 

The contents of vitamin C, vitamin E and antioxidant activity of analysed samples are 

presented in Table 3. The methodology applied for vitamin C analysis allowed the 

quantification of the two active forms: ascorbic acid (AA) and dehidroascorbic acid 

(DHAA). The total content of vitamin C as AA was characterized in pulp of each fruit, 

with values of 20 ± 0.32 and 31.67 ± 0.67 mg/100 g fw in O. joconostle and O. 

matudae, respectively. These values was in agreement with Guzmán-Maldonado et al. 

(2010) who reported an ascorbic acid content of 31.8 mg/100 g fw for pulp of O. 

matudae xoconostle, but are lower than the values reported by Corral-Aguayo, Yahia, 

Carrillo-López, & González-Aguilar (2008) and Kuti (2004) for other cactus pear fruits 

(around 45 mg/100 g fw). The vitamin C in the pulp of xoconostle was mostly in the 

reduced form (AA), as no detectable amounts of DHAA were found, which could mean 
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a higher contribution to antioxidant activity. Vitamin C was not detected in xoconostle 

seeds, in the same way found in previous studies for cactus pear (Corral-Aguayo, Yahia, 

Carrillo-López, & González-Aguilar, 2008). 

Total tocopherols content was higher in seeds of both cultivars than in the pulp (3.23 ± 

0.18 and 6.71 ± 0.38 mg/100 g fw in O. joconostle and O. matudae, respectively). The 

four isoforms (α, β, γ and δ- tocopherols) were identified. The seeds presented a high 

amount of γ-tocopherol (3.07 and 6.42 mg/100g fw in O. joconostle and O. matudae, 

respectively), whereas α-tocopherol was the main isoform in pulp, with relatively low 

values (0.10 and 0.16 mg/100g fw in O. matudae and O. joconostle, respectively) 

(Table 3). This data is quite important because until now, there was only few available 

data on tocopherols content in cactus pear species (O. ficus–indica L.) (Ramadan & 

Mörsel, 2006; Yahia & Mondragon, 2006) and not in xoconostle fruits, whose by the 

high amount in the seeds could be consider for the food industry as a functional 

ingredient. 

Xoconostle seeds presented the highest phenolics and flavonoids contents, particularly 

O. matudae (phenolics 59.48 mg GAE/g of extract and flavonoids 58.40 mg CE/g of 

extract) (Table 3). The total polyphenol content in these cultivars were three fold higher 

than the ones reported by other authors in other cultivars of Opuntia matudae 

xoconostle (Guzmán-Maldonado et al., 2010) and Opuntia joconostle fruits (Osorio-

Esquivel, Ortiz-Moreno, Álvarez, Dorantes-Álvarez, & Giusti, 2011), and even higher 

than the contents found in cactus pear fruits (Chang et al., 2008). Phenolic compounds 

help to protect plants against ultraviolet light and act as defences against pathogenic 

microorganisms in plants. This type of protection could be necessary for xoconostle 

fruits, that may remain in the plant for several months without deterioration, and could 

explain its higher phenolics and flavonoids contents than other fruits of Opuntia 
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(Chang, Hsieh, & Yen, 2008) or even, the higher flavonoids content found in peel or 

epicarp (0.68 mg CE/g) in comparison with the pulp or mesocarp (around 0.35 mg 

CE/g) described in other studies (Osorio-Esquivel, Ortiz-Moreno, Álvarez, Dorantes-

Álvarez, & Giusti, 2011). Flavonoids act as antioxidants, which markedly delay or 

prevent oxidation of the substrate, and they are strongly correlated to antioxidant 

activity. The consumption of xoconostle fruits may contribute to increase the amount of 

antioxidants in the diet.  

The antioxidant properties of the studied fruits were evaluated by DPPH radical 

scavenging capacity, reducing power (Fe3+ into Fe2+) and inhibition of lipid 

peroxidation using β-carotene–linoleate model system by neutralising the linoleate-free 

radical and other free radicals formed in the system, which attack the highly unsaturated 

β-carotene models (Morales, et al., 2011b; Barros, Carvalho, Sá Morais, & Ferreira, 

2010). DPPH free radicals can be used to evaluate the antioxidant activity in a relatively 

short time. The highest antioxidant properties of seeds are in agreement with their 

highest phenolics and flavonoids contents (Table 3). The seeds of O. joconostle fruits 

presented the highest DPPH scavenging activity (EC50 1.53 ± 0.05 mg/mL) and 

reducing power (EC50 0.27 ± 0.04 mg/mL) activities, whereas the pulp of both fruits 

presented the lowest phenolics content and the worst antioxidant activity for DPPH and 

reducing power assays. On the other hand, these samples presented the highest 

antioxidant capacity for lipid peroxidation inhibition; with values for β-carotene 

bleaching inhibition assay of 0.02 ± 0.00 and 0.32 ± 0.02 mg/mL for pulp of O. 

matudae and O. joconostle fruits, respectively.  

 

4. Conclusions 
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This investigation shows that the pulp of the studied xoconostle cultivars had an 

appreciable amount of soluble fiber and antioxidant compounds such as ascorbic acid, 

while the seeds are a source of fiber, phenolics, flavonoids, PUFAs and tocopherols 

(specially γ-tocopherol), which provide a good antioxidant capacity. The most 

remarkable features of the cultivars of xoconostle studied were that O. matudae fruits 

showed higher ascorbic acid in the pulp, and higher fiber and flavonoids contents in the 

seeds than O. joconostle, which had a pulp richer in soluble sugars and higher 

antioxidant activity in the seeds. For those reasons, these fruits should be considered of 

great interest for either promoting the conventional consumption, and as sources of 

bioactive compounds for the addition to other food products, so that all the nutrients 

present are fully used instead of being discarded.  
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Table 1. Nutritional composition of cultivated xoconostle fruits.A 

 

AResults were expressed as g/100 g of fresh weight (fw). Mean ± SD, n=3. In each row, different letters 

mean statistically significant difference (p ≤ 0.05).  

B Total available carbohydrates were calculated as the difference of moisture, protein, fat, ash and fiber 

values (Barros et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nutritional parameters 
Opuntia joconostle, 

cv. Cuaresmeño 
 

Opuntia matudae,  

cv. Rosa 

 Pulp Seeds  Pulp Seeds 

Moisture  93.24 ± 0.02 c 73.95 ± 1.09 b  94.11 ± 0.00 c 60.44 ± 0.66 a 

Protein  0.66 ± 0.01 a 2.12 ± 0.00 b  0.56 ± 0.00 a 3.45 ± 0.02 c 

Fat  0.03 ± 0.0 a 2.45 ± 0.05 b  0.04 ± 0.00 a 3.52 ± 0.12 c 

Total available 

carbohydrates B 
3.69 c 1.71 b  3.93 d 1.56 a 

Soluble sugars  2.02 ± 0.09 c 0.95 ± 0.09 a  1.56 ± 0.17 b 1.47 ± 0.19 b 

Fructose  

Glucose  

Sucrose  

1.38 ± 0.03 c 

0.37 ± 0.05 b 

0.27 ± 0.01 c 

0.71 ± 0.07 a 

0.15 ± 0.01 a 

0.09 ± 0.00 a 

 

0.87 ± 0.03ab 

0.35 ± 0.13 b 

0.34 ± 0.01 d 

0.99 ± 0.12 b 

0.34 ± 0.05 b 

0.14 ± 0.02 b 

Total dietary fiber  

Insoluble fiber  

Soluble fiber  

2.31 ± 0.12 b 

1.45 ± 0.07 b 

0.86 ± 0.05 c 

19.22 ± 0.15 c 

18.85 ± 0.12 c 

0.36 ± 0.03 a 

 

1.74 ± 0.07 a 

1.16 ± 0.01 a 

0.58 ± 0.07 b 

30.17 ± 0.64d 

29.04 ± 0.57 d 

1.13 ± 0.07 d 

Ash  0.07 ± 0.00 a 0.54 ± 0.01 c  0.11 ± 0.00 b 0.85 ± 0.04 d 
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Table 2. Fatty acids composition of cultivated xoconostle fruits.A 

 

Fatty acids 

Opuntia joconostle, 

cv. Cuaresmeño 
 

Opuntia matudae,  

cv. Rosa 
 Pulp Seeds  Pulp Seeds 
C6:0 nd 0.57 ± 0.03  0.24 ± 0.00 0.09 ± 0.02 
C8:0 31.35 ± 3.55 0.01 ± 0.00  8.04 ± 0.67 traces 
C10:0 0.16 ± 0.10 0.01 ± 0.00  0.05 ± 0.00 traces 
C12:0 0.82 ± 0.41 0.09 ± 0.00  0.19 ± 0.01 traces 
C13:0 nd 0.01 ± 0.00  nd traces 
C14:0 0.84 ± 0.19 0.04 ± 0.00  0.28 ± 0.00 0.04 ± 0.00 
C14:1 nd nd  nd traces 
C15:0 0.32 ± 0.02 0.01 ± 0.00  0.48 ± 0.04 0.01 ± 0.00 
C15:1 nd 0.01 ± 0.00  nd 0.01 ± 0.00 
C16:0 15.03 ± 1.59 12.35 ± 0.40  12.74 ± 0.18 9.42 ± 0.78 
C16:1 0.48 ± 0.06 0.41 ± 0.01  0.50 ± 0.00 0.31 ± 0.03 
C17:0 2.08 ± 0.12 0.04 ± 0.00  nd 0.02 ± 0.00 
C18:0 2.81 ± 1.04 3.28 ± 0.18  2.05 ± 0.02 2.04 ± 0.34 
C18:1n9c 3.68 ± 1.29 9.72 ± 0.03  2.45 ± 0.06 7.82 ± 0.84 
C18:2n6c 32.70 ± 2.30 72.49 ± 0.13  64.29 ± 0.46 79.15 ± 1.86 
C18:3n3c 8.64 ± 1.97 0.36 ± 0.01  7.67 ± 0.21 0.41 ± 0.04 
C20:0 0.25 ± 0.15 0.26 ± 0.01  0.15 ± 0.06 0.19 ± 0.01 
C20:1 nd 0.07 ± 0.02  nd 0.05 ± 0.00 
C22:0 0.30 ± 0.12 0.19 ± 0.02  0.23 ± 0.06 0.04 ± 0.01 
C23:0 0.10 ± 0.08 nd  nd 0.10 ± 0.02 
C22:1n9c nd 0.05 ± 0.01  nd 0.04 ± 0.01 
C23:0 nd nd  nd 0.03 ± 0.00 
C24:0 0.38 ± 0.26 0.09 ± 0.03  0.53 ± 0.23 0.06 ± 0.00 
C24:1 nd 0.02 ± 0.00  0.09 ± 0.03 0.01 ± 0.00 
SFA (% of total FA) 54.43 ± 0.92c 16.86 ± 0.17a  25.00 ± 0.22b 12.10 ± 1.43a 
MUFA  (% of total FA) 4.16 ± 1.23a 10.28 ± 0.03c  3.05 ± 0.03a 7.64 ± 0.86b 
PUFA  (% of total FA) 41.41 ± 0.32a 72.85 ± 0.14b  71.95 ± 0.25b 80.26 ± 1.83c 
PUFA/SFA  (% of total FA) 1.28 ± 0.74a 4.32 ± 0.05b  2.88 ± 0.03a 6.67 ± 0.73c 
n-3/n-6 0.20 ± 0.01b 0.01 ± 0.00a  0.12 ± 0.00b 0.01 ± 0.00a 

 

AResults were expressed as relative percentage of each fatty acid. Mean ± SD, n=3. In each row, different 

letters mean statistically significant difference (p ≤ 0.05).  

Traces (≤ 0.005 %); nd (not detected).  
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Table 3. Antioxidant compounds and antioxidant properties (EC50 values) of cultivated 

xoconostle. 

Antioxidant compounds 
Opuntia joconostle, 

cv. Cuaresmeño 
 

Opuntia matudae,  

cv. Rosa 
Pulp Seeds  Pulp Seeds 

Ascorbic acidA 20.63 ± 0.32 a nd   31.67 ± 0.67 b nd 

Total tocopherolsA 0.22 ± 0.01 b 3.23 ± 0.18 c  0.14 ± 0.00 ª 6.71 ± 0.38 d 

α-tocopherolA 0.16 ± 0.01 b 0.09 ± 0.02 ª  0.10 ± 0.00 a 0.19 ± 0.01 c 

β-tocopherolA 0.01 ± 0.00 a 0.01 ± 0.00 ª  Traces 0.02 ± 0.00 b 

γ-tocopherolA  0.05 ± 0.00 ª 3.07 ± 0.15 b  0.03 ± 0.00 a 6.43 ± 0.37 c 

δ-tocopherolA  Traces  0.06 ± 0.01 b  0.01 ± 0.00 ª 0.08 ± 0.00 c 

Total Phenolics B 38.57 ± 6.87 b 50.43 ± 4.86 c  33.71 ± 2.09 b 59.48 ± 0.69 d 
Total FlavonoidsC 3.93 ± 0.19 b 24.18 ± 1.69 c  0.86 ± 0.09 a 58.40 ± 0.78 d 
Antioxidant activity EC50 values      
DPPH scavenging activityD 5.14 ± 0.20 c 1.53 ± 0.05 a  > 16 d 1.88 ± 0.11 b 
Reducing powerD 3.16 ± 0.12c 0.27 ± 0.04 a  5.35 ± 0.63 d 1.58 ± 0.01 b 
β-carotene bleaching inhibitionD 0.32 ± 0.02 b 2.11 ± 0.30 c  0.02 ± 0.00 a 4.75 ± 0.03 d 

 

AResults were expressed as mg/100 g of fresh weight (fw).  
B Results were expressed as mg of gallic acid equivalents (GAE)/g of extract.  

C Results were expressed as mg of catechin equivalents (CE)/g of extract. 

DResults were expressed as mg/mL of extract.  

Mean ± SD, n=3. In each row, different letters mean statistically significant difference (p ≤ 0.05).  

nd (not detected). 

Traces (≤ 0.005 mg/100 g fw). 
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Figure 1. Picture of Opuntia joconostle (cv. Cuaresmeño) fruits. The whole fruit (a) and 

its parts (b) are shown, epicarp, mesocarp (edible part) and endocarp (mucilaginous part 

with seeds). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 


