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Abstract 

Mushrooms are a possible rich source of biologically active compounds with potential 

for drug discovery. The aim of this work was to gain further insight into the citotoxicity 

mechanism of action of Clitocybe alexandri ethanolic extract against a lung cancer cell 

line (NCI-H460 cells). The effects on cell cycle profile and levels of apoptosis were 

evaluated by flow cytometry, and the effect on the expression levels of proteins related 

to cellular apoptosis was also investigated by Western blot. The extract was 

characterized regarding its phenolic composition by HPLC-DAD, and the identified 

compounds were studied regarding their growth inhibitory activity, by sulforhodamine 

B (SRB) assay. The effect of individual or combined compounds on viable cell number 

was also evaluated using the Trypan blue exclusion assay. It was observed that the 

Clitocybe alexandri extract induced an S-phase cell cycle arrest and increased the 

percentage of apoptotic cells. In addition, treatment with the GI50 concentration 

(concentration that was able to cause 50% of cell growth inhibition; 24.8 µg/ml) for 48h 

caused an increase in the levels of wt p53, cleaved caspase-3 and cleaved poly (ADP-

ribose) polymerase (PARP). The main components identified in this extract were 

protocatechuic, p-hydroxybenzoic and cinnamic acids. Cinnamic acid was found to be 

the most potent compound regarding cell growth inhibition. Nevertheless, it was 

verified that the concomitant use of the individual compounds provided the strongest 

decrease in viable cell number. Overall, we found evidence for alterations in cell cycle 

and apoptosis, involving p53 and caspase-3. Furthermore, our data suggests that the 

phenolic acids identified in the extract are at least partially responsible for the 

cytotoxicity induced by this mushroom extract. 
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1. Introduction  

Cancer is a leading cause of death worldwide and accounted for 7.6 million deaths 

(around 13% of all deaths) in 2008. Cancer related deaths are projected to increase to 

over 11 million in 2030 (World Health Organization, 2010). Lung cancer is the major 

cancer killer (being responsible for an estimated 1.4 million deaths in 2008) and a health 

care problem worldwide with an overall 5-year survival rate of less than 15% (Brescia, 

2001; Poleri et al., 2003). 

Empirical approaches to discover anticancer drugs and cancer treatments have made 

limited progress in the past several decades in finding a cure for cancer. The vast 

structural diversity of natural compounds found in mushrooms (macrofungi) provided 

unique opportunities for discovering new drugs (Zaidman, Yassin, Mahajana, & 

Wasser, 2005). Mushrooms have been valued as edible and medicinal resources, and 

antitumor substances have been identified in many mushrooms species (Zhang, Cui, 

Cheung, & Wang, 2007). There is a significant interest in the use of mushrooms and/or 

mushroom extracts as dietary supplements based on the theory that they enhance 

immune function and promote health (Borchers, Keen, & Gershwin, 2004). Particularly, 

they can be added to the diet and used orally and they are considered as a safe and 

useful approach for disease treatment.  

Different molecules found in fruiting bodies, mycelia and spores of macrofungi revealed 

antitumor potential (Moradali, Mostafavi, Ghods, & Hedjaroude, 2007), such as high-

molecular-weight compounds (e.g. polysaccharides, glycoproteins, proteoglycans and 

proteins) and low-molecular-weight compounds (e.g. quinones, cerebrosides, 

isoflavones, catechols, amines, triacylglycerols, sesquiterpenes and steroids) (Ferreira, 

Vaz, Vasconcelos, & Martins, 2010). Among the mentioned compounds, 

polysaccharides (primary metabolites) are the best studied mushroom-derived 
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substances with antitumor properties (Wasser, 2002; Zhang, Cui, Cheung, & Wang 

2007), while the study of mushrooms secondary metabolites such as phenolic 

compounds have been overlooked. 

Phenolic compounds are aromatic hydroxylated compounds, are commonly found in 

many food sources and some of them are among the most potent and therapeutically 

useful bioactive substances. Natural phenolic compounds accumulate as end-products 

from the shikimate and acetate pathways and can range from relatively simple 

molecules (phenolic acids, phenylpropanoids, flavonoids) to highly polymerised 

compounds (lignins, melanins, tannins) (Bravo, 1998). The main phenolic compounds 

found in mushrooms are phenolic acids: hydroxybenzoic and hydroxycinnamic acids, 

which are derived from the non-phenolic molecules benzoic and cinnamic acid, 

respectively (Ferreira, Barros, & Abreu, 2009).   

Clitocybe alexandri is an edible saprophytic Basidiomycotina mushroom belonging to 

the family of Tricholomataceae that can be found wildly in Northeast Portugal. We have 

recently reported the growth inhibitory activity of methanolic, ethanolic and boiling 

water extracts from Clitocybe alexandri, in human tumour cell lines (NCI-H460, MCF-

7, HCT-15 and AGS) (Vaz et al., 2010). The ethanolic extract was the most potent one, 

particularly in NCI-H460 cells (GI50 24.8 ± 2.3 µg/ml) (Vaz et al., 2010). Herein, we 

intend to further evaluate the potential of this extract as a possible source of cytotoxic 

compounds. 

 

2. Materials and methods 

2.1. Standards and reagents 

Ethanol was of analytical grade purity and supplied by Pronalab (Lisbon, Portugal). 

Acetonitrile 99.9% was of HPLC grade from Lab-Scan (Lisbon, Portugal). Water was 
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treated in a Milli-Q water purification system (TGI Pure Water Systems, USA). Fetal 

bovine serum (FBS), L-glutamine, phosphate buffer saline (PBS), trypsin and RNase A 

were from Gibco Invitrogen Co. (Paisley, UK). RPMI-1640 medium was from Lonza 

(Basel, Switzerland). Acetic acid, dimethylsulfoxide (DMSO), sulforhodamine B 

(SRB), trypan blue, propidium iodide (PI) and phenolic standards were from Sigma 

Chemical Co. (St. Louis, USA). Tricloroacetic acid (TCA) and Tris were sourced from 

Merck (Darmstadt, Germany). Primary and secondary antibodies were from Santa Cruz 

Biotechnology Inc. (Heidelberg, Germany). 

 

2.2. Samples and sample preparation 

Samples of Clitocybe alexandri (Gillet) Gillet (edible mushroom) were collected under 

Quercus pyrenaica Willd, in Bragança (Northeast Portugal), in autumn 2008. 

Taxonomic identification of sporocarps was made according to Moreno (2005) and 

online keys (http://www.mycokey.com/), and representative voucher specimens were 

deposited at the herbarium of Escola Superior Agrária of Instituto Politécnico de 

Bragança. The samples were lyophilised (Ly-8-FM-ULE, Snijders, Holland) and 

reduced to a fine powder (20 mesh). 

The ethanolic extract was prepared from the lyophilised powder (extraction yield 3.5 ± 

0.2%) following the procedure previously described by us (Vaz et al., 2010). For the 

assays, the extract was re-dissolved in DMSO and diluted in media to the final 

concentrations used: GI50 (24.8 µg/ml) or 2 × GI50 (49.6 µg/ml). The GI50 was 

previously obtained from the growth inhibitory activity of C. alexandri ethanolic extract 

in NCI-H460 cells (Vaz et al., 2010).     

 

2.3. Cell line 
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NCI-H460 (non-small cell lung cancer) were routinely maintained as adherent cell 

cultures in RPMI-1640 medium with 5% heat-inactivated FBS, in a humidified 

incubator at 37 ºC with 5% CO2. All assays were performed with cells in exponential 

growth, with viabilities over 90% and repeated at least in three independent 

experiments.  

 

2.4. Cell cycle distribution analysis and apoptosis detection  

For the analysis of cell cycle phase distribution, NCI-H460 cells were plated at 1.5 × 

105 cells/ml in 6-well plates and left incubating for 24 hours. Cells were then incubated 

with complete medium only (blank), medium with the solvent DMSO or with C. 

alexandri ethanolic extract at GI50 (24.8 µg/ml) and 2 × GI50 (49.6 µg/ml) 

concentrations. The GI50 concentration had been previously determined by the SRB 

assay (Vaz et al., 2010). Cells were harvested following a 48 h incubation with the 

extract and further processed for either cell cycle analysis or apoptosis detection. For 

cell cycle analysis, cells were fixed in 70% ethanol for 10 min at room temperature. 

After centrifugation cells were incubated with PI (5 µg/ml) and RNase A in PBS (100 

µg/ml) for 30 min on ice (Vasconcelos et al., 2000; Palmeira et al., 2010). Induced 

apoptosis was assayed by the Human Annexin V-FITC/PI apoptosis Kit (Bender 

MedSystems, Vienna, Austria) according to the manufacturer’s instructions (Queiroz et 

al., 2011). 

Cellular DNA content (for cell cycle distribution analysis and presence of sub-G1 peak, 

suggestive of apoptosis induction) and measurement of phosphatidylserine 

externalization were analyzed using an Epics XL-MCL Coulter flow cytometer plotting 

at least 20,000 events per sample. Cell cycle distribution and apoptosis data analysis 

were subsequently performed using the FlowJo 7.2 software (Tree Star, Ashland, USA). 
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Three to six independent experiments were performed in duplicate and the results were 

expressed as mean values ± standard deviation (SD). Statistical analysis was performed 

by the non-parametric Friedman’s test followed by Dunn’s Post-test using GraphPad 

Prism 5 software. P values < 0.05 were considered as statistically significant.  

 

2.5. Protein expression analysis 

For analysis of protein expression, NCI-H460 cells were treated with complete medium 

(blank), medium with the solvent (DMSO) or with C. alexandri ethanolic extract at 24.8 

µg/ml, the GI50 concentration previously determined by the SRB assay (Vaz et al., 

2010), and processed 48 h after incubation. Cells were lysed in Winman’s buffer (1% 

NP-40, 0.1 M Tris-HCl pH 8.0, 0.15 M NaCl and 5 mM EDTA) with EDTA-free 

protease inhibitor cocktail (Boehringer, Mannheim, Germany). Proteins were quantified 

using the DC Protein Assay Kit (BioRad, Hercules, CA, USA) and separated in 8% or 

12% tris-glycine sodium dodecyl sulfate (SDS)-polyacrylamide gel. Proteins were then 

transferred to a nitro-cellulose membrane (GE Healthcare, Madrid, Spain). The 

membranes were incubated with the following primary antibodies for poly (ADP-

ribose) polymerase (PARP) (1:4000), Actin (1:2000), p53 (1:250) and caspase 3 

(1:2000), and further incubated with the appropriate secondary antibodies conjugated 

with horseradish peroxidase (HRP) diluted 1:2000 in 5% non-fat dried milk in T-TBS.  

The signal was detected with the Amersham ECL kit (GE Healthcare). Hyperfilm ECL 

(GE Healthcare) and Kodak GBX developer and fixer twin pack (Sigma) (Palmeira et 

al., 2010).      

 

2.6. Identification of phenolic compounds and evaluation of their cell growth inhibitory 

activity 
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Phenolic acids of C. alexandri extract were analysed using high performance liquid 

chromatography (HPLC) equipment consisting of an integrated system with a Varian 

9010 pump, a Varian Pro star diode array detector (DAD) and a Jones Chromatography  

oven column heater (model 7981). Data were analysed using Star chromatography 

workstation version 6.41 software (Varian). The chromatographic separation was 

achieved with an Aqua (Phenomenex, Torrance, CA) reverse phase C18 column (3 µm, 

150 mm × 4.6 mm i.d.) thermostatted at 30 ºC. The mobile phase and the gradient 

employed were described previously (Vaz et al., 2011). Injection volume was 20 µl. 

Detection was carried out in a diode DAD, using 280 nm as the preferred wavelength.  

The effects of the identified compounds (protochatequic, p-hydroxibenzoic and 

cinnamic acids) on the growth of NCI-H460 were evaluated according to the procedure 

adopted in the NCI’s in vitro anticancer drug screening, which uses SRB assay to assess 

cell growth inhibition (Skehan et al., 1990). This colorimetric assay estimates cell 

number indirectly, by staining cellular protein with the protein-binding dye SRB. For 

such, the cell line was plated at an appropriate density (5.0 × 103 cells/well) in 96-well 

plates and allowed to attach for 24 h. Cells were then treated for 48 h with various 

concentrations of the compounds. Following this incubation period, the adherent cells 

were fixed with 10% trichloroacetic acid, washed with 1% acetic acid and stained with 

SRB. The bound stain was solubilised with 10 mM Tris and the absorbance was 

measured at 490 nm in a microplate reader (BIORAD 680 model). The concentration 

that inhibited growth in 50% (GI50) was calculated as described by Monks et al. (1991). 

The growth inhibitory activity of the compounds was inferred from the SRB assay by 

comparing the absorbance of the wells containing extract-treated cells with the 

absorbance of the wells containing untreated cells, 48 h following treatment with the 

compounds, and subsequently comparing these results with the ones obtained for cells 
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that had been fixed at time zero (time at which the extracts were added) (Vaz et al., 

2010). Doxorubicin was tested in the same manner to be used as a positive control. 

Three to six independent experiments were performed in duplicate and the results were 

expressed as mean values ± standard deviation (SD).  

 

2.7. Viable cell number  

Viabel cell number was determined with the trypan blue dye exclusion test (Renzi, 

Valtolina, & Foster, 1993) after incubation of NCI-H460 cells (7.5 × 104 cells in 12-

well plates) with complete medium (blank), medium with the solvent (DMSO), with 

cinnamic acid (A) at GI50 concentration (845.9 µM), protochatequic acid (B) at GI50 

concentration (1616.9 µM) or with p-hydroxibenzoic acid (C) at 3000 µM. Cells were 

also treated with a combination of the previous treatments: A+B, B+C, A+C and 

A+B+C. Following a 48 h incubation, viable cell number was determined in a Neubauer 

chamber. Three independent experiments were performed and the results were 

expressed as mean values ± standard deviation (SD). Statistical analysis was performed 

by the non-parametric Friedman’s test followed by Dunn’s Post-test using GraphPad 

Prism 5 software. P values < 0.05 were considered as statistically significant.  

 

3. Results and discussion 

3.1. Effect of Clitocybe alexandri estract on cell cycle profile and levels of apoptosis 

The most active Clitocybe alexandri extract- the ethanolic extract- reported in our 

previous study (Vaz et al., 2010) was chosen to be further investigated regarding its 

possible mechanism of action. The NCI-H460 cell line was incubated with the GI50 

(24.8 µg/ml) or 2 × GI50 (49.6 µg/ml) concentrations of the mushroom’s extract for 48 h 
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and their effects on the normal cell cycle distribution and induction of apoptosis were 

studied.  

Analysis of the effect of the ethanolic extract on cell cycle was performed by flow 

cytometry and results show a dose-dependent increase in the percentage of cells in the 

S-phase of the cell cycle, with a concomitant decrease in the percentage of cells in the 

G1 and G2/M phases (Figure 1). C. alexandri extract therefore seems to be an inducer 

of S-phase cell cycle arrest, after 48 h of treatment.  

Additionally, it was investigated whether C. alexandri induced apoptosis in the NCI-

H460 cell line, by the annexin V-FICT/PI flow cytometry assay. NCI-H460 cells treated 

with the 2×GI50 concentration (49.6 µg/ml) of the ethanolic extract for 48 h presented a 

statistically significantly increase in the percentage of apoptotic cells (28.6% ± 0.9%), 

in comparison to the blank cells (6.6% ± 0.3%). Cells treated with the GI50 

concentration (24.8 µg/ml) of the extract for 48 h had 7.3% ± 2.1% of apoptotic cells, 

similarly to the blank.  

Furthermore, the effect of the mushroom extract on the expression of some proteins 

involved in the apoptotic process was determined by Western blot. Results show that 

treatment of NCI-H460 cells with the GI50 concentration (24.8 µg/ml) of the extract for 

48 h caused an increase in the levels of wt p53, cleaved caspase-3 and cleaved PARP 

(Figure 2). 

 

3.2. Chemical characterization of the extract and further evaluation of the effect of the 

identified compounds on cell growth and viable cell number 

The ethanolic extract was analysed by HPLC-DAD, and two phenolic acids and a 

related compound were identified (Figure 3) and quantified: protocatechuic acid (16.4 ± 
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2.2 mg/kg of dry weight), p-hydroxybenzoic acid (8.3 ± 0.4 mg/kg of dry weight) and 

cinnamic acid (6.4 ± 0.3 mg/kg of dry weight).  

The in vitro NCI-H460 growth inhibitory activity of the identified compounds was 

evaluated by SRB assay, after a continuous treatment during 48 h. Cinnamic acid was 

found to be the most potent compound regarding cell growth inhibition (GI50 value 

845.9 ± 97.5 µM) (Figure 4). Protocatechuic acid revealed a GI50 value of 1616.9 ± 

75.3 µM, while p-hydroxybenzoic acid did not show any activity at the highest tested 

concentration tested (3000 µM) (Figure 4). Despite the much lower GI50 value obtained 

for the positive control Doxorubicin (0.07 ± 0.02 µM), it should be highlighted that 

phenolic acids are natural compounds and can act synergistically with other compounds 

present in the mushroom extract. Therefore, the comparisons between the positive 

control (highly toxic synthetic compound) and the individual compounds found in the 

extract, and mostly with the whole extract, should be made carefully. 

The effect of the individual and combined treatment with the identified compounds was 

also tested, by verifying the number of viable cells upon a 48 h incubation with the GI50 

concentrations for cinnamic (845.9 µM) and protochatequic (1616.9 µM) acids and 

3000 µM of p-hydroxibenzoic acid (the maximum concentration tested in the SRB, 

since the GI50 was not obtained even with this high concentration). Results were 

compared with those obtained with DMSO control and blank treatment (cells incubated 

with complete medium). Treatment with the GI50 concentration of cinnamic (845.9 µM) 

and protochatequic (1616.9 µM) acids caused a statistically significantly reduction in 

the number of viable cells to ≈ 50 %, as expected to occur with the GI50 concentration of 

any compound (Figure 5). However, p-hydroxibenzoic acid did not show any 

significantly reduction in the viable cell number, as expected from the results previously 

obtained with SRB assay. Nevertheless, it was verified that the concomitant use of the 
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three compounds provided the strongest decrease in the viable cell number, highlighting 

a concomitant effect of those compounds (Figure 5). 

 

Overall, the results reported here are related to the cytotoxicity of Clitocybe alexandri in 

a non-small lung cancer cell line. We found evidence for alterations in cell cycle and 

apoptosis, involving p53 and caspase-3. Other studies using extracts of plants like 

Euchresta formosana and Angelica sinensis (Cheng, et al., 2011; Hsu, et al., 2007) also 

reported similar effects to the ones observed for Clitocybe alexandri extract. 

Finally, our data suggests that the phenolic acids identified in the ethanolic extract are at 

least partially responsible for the cytotoxicity induced by this mushroom extract and that 

they exert a concomitant effect. Further studies will include analysis of effect in non-

tumour cells and the identification of other compounds in the extract. 
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Figure 1. Cell cycle analysis of NCI-H460 cells treated for 48 h with the ethanolic 

extract of Clitocybe alexandri at GI50 (24.8 µg/ml) or 2×GI50 (49.6 µg/ml) 

concentrations. Untreated cells and the solvent (DMSO) treated cells were used as 

controls. Results are the mean ± SD of three to six independent experiments performed 

in duplicate. *Values statistically significantly (P < 0.05) different when compared to 

blank or DMSO. 
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Figure 2. The ethanolic extract of Clitocybe alexandri alters the expression of some 

apoptotic proteins. NCI-H460 cells were treated for 48 h with complete medium (blank) 

or with the extract at GI50 concentration (24.8 µg/ml). Actin was used as a loading 

control. Results are representative of three independent experiments. 
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Figure 3. HPLC chromatogram recorded at 280 nm of the Clitocybe alexandri extract. 

Only peaks corresponding to phenolic compounds or related compounds are indicated: 

(1) protocatechuic acid, (2) p-hydroxybenzoic acid and (3) cinnamic acid.   
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Figure 4. Percentage of cell growth inhibition induced in the NCI-H460 cells by the 

main compounds identified in the ethanolic extract of Clitocybe alexandri. Results are 

express as a % of the control. GI50 value for the positive control Doxorubicin: 0.07 ± 

0.02 µM. Results are the mean ± SD of three to six independent experiments, performed 

in duplicate. 
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Figure 5. Viable cell number after treatment of NCI-H460 cells with the compounds 

identified in the ethanolic extract of Clitocybe alexandri, for 48 h: A- cinnamic acid (at 

GI50 concentration; 845.9 µM), B- protochatequic acid (at GI50 concentration; 1616.9 

µM), C- p-hydroxibenzoic acid (at 3000 µM). Untreated cells and the solvent DMSO 

were used as controls. Results are the mean ± SD of three independent experiments 

performed in duplicate. *Values statistically significantly (P < 0.05) different when 

compared to blank or DMSO. 
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