

A Fast Heuristic for a Lot Splitting and Scheduling Problem of a Textile Industry

Pimentel, Carina*. Alvelos, Filipe**

Carvalho, J. M. Valério ***. Duarte, António ****

*Centro de Investigação Algoritmi, Universidade doMinho, Braga, Portugal

 (Tel:+351 253 604 756; e-mail: carina@dps.uminho.pt).

** Centro de Investigação Algoritmi/Departamento de Produção e Sistemas, Universidade doMinho, Braga, Portugal

 (Tel:+351 253 604 751; e-mail: falvelos@dps.uminho.pt).

*** Centro de Investigação Algoritmi/Departamento de Produção e Sistemas, Universidade doMinho, Braga, Portugal

 (Tel:+351 253 604 744; e-mail: vc@dps.uminho.pt).

***** Centro de Investigação Algoritmi, Universidade doMinho, Braga, Portugal /Departamento de Gestão Industrial, Instituto

Politécnico de Bragança, Bragança, Portugal

 (Tel:+351 273 303 143; e-mail: aduarte@ipb.pt).

Abstract: In this paper we address a lot splitting and scheduling problem of a Textile factory that produces

garment pieces. Each garment piece is made of a set of components that are produced on the knitting

section of the company. The problem consists of finding a weekly production plan for the knitting section,

establishing the quantities to produce of each component (organized in one or several lots), and where and

when (starting/completion times) to produce them. The main contribution of this work is the development

of a constructive heuristic that generates automated knitting scheduling plans. The heuristic produces

solutions very fast for a set of randomly generated instances based on real world data.

1. INTRODUCTION

In this paper we present a procedure for a practical lot

splitting and scheduling problem of a Textile company. The

company produces fine knitted goods, such as cardigans,

pants, dresses, sweaters and scarves. Each product, defined

by a piece of cloth and size, is made up of a set of

components, which are knitted in a group of identical parallel

machines. Every Friday, a set of production orders are sent to

the knitting manager. The production orders contain the set of

garment pieces to be considered in the next knitting

scheduling plan, as well as the associated set of components.

Additionally, the production orders have information about

the quantity ordered by the customer and the due date of each

product.

The knitting manager is responsible for the development of a

weekly production plan for the knitting section, taking into

account all the production orders. Nowadays, these plans are

developed manually, based on common sense rules and on

the several years of experience of the knitting manager. The

main contribution of this work is the development of a fast

algorithm that generates automated knitting scheduling plans.

The developed algorithm solves a lot splitting problem and

an assignment and scheduling problem simultaneously. In the

lot splitting problem, the number of components requested is

split into lots of different sizes as a way of speeding up the

production process. In the assignment and scheduling

problem each of those lots is assigned to a given machine and

its starting/completion times are determined. Two or more

lots of a given component can be produced independently in

more than one machine, at the same time or in different

times, but a given machine can only process one lot at a time.

Moreover, two or more lots of the same component may be

produced in the same machine, with lots of other components

or with empty intervals between them. As the lot splitting

decisions are taken at the same level and in coordination with

the assignment and scheduling decisions, the quality of the

solutions is increased.

The knitting section has three groups of identical parallel

machines. The characteristic that defines a group is a gauge.

The gauge is associated with the thickness of the yarns and

with the type of needles existent in the machine. There is a

unique relationship between the gauge and the yarn. A given

product will then be associated with only a gauge. The

factory has three gauges, so three scheduling plans must be

prepared. The machines are identical, since they take the

same amount of time to produce a unit of a given component.

There is a compatibility matrix between the machines of a

given gauge and the components of that gauge. This

compatibility matrix is needed because of technical

characteristics of the components and of the machines. In

addition, each machine has a given release date.

One important objective is to develop scheduling plans that

minimize work-in-process inventory. Besides, on-time

delivery of products is very important. Being so, we use the

following two measures to evaluate a scheduling solution: (1)

total tardiness of products and (2) total deviations occurred

during production of each product. The total deviation of a

given product is the sum of all the absolute deviations of each

component lot completion time and the completion time of

the last component lot. Moreover, the completion time of the

last component lot is the product completion time.

In summary, our lot splitting and scheduling problem has the

following characteristics: identical parallel machines,

arbitrary demands and due dates, associated with products, a

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153408849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

compatibility matrix between machines and components, unit

production times associated with components and machine

release dates. To the best of our knowledge, no research has

ever been published dealing with this problem when the

objective is to minimize total deviations occurred during

production of each product.

Our problem is to some extent related with the classical

parallel machine scheduling problem (PMSP), in which there

are n jobs to schedule in m machines aiming at optimizing a

certain performance measure, but there are two important

differences: (1) in our problem a given job (component) can

be split into several lots of smaller size and processed in more

than one machine simultaneously, while in PMSP no splitting

or preemption of jobs can occur; (2) in our problem, a job

(product) is divided into several sub-jobs (components) that

are linked/related to each other because the job completion

time depends of the completion times of all the sub-jobs,

while in PMSP jobs are independent of each other. Cheng

and Sin (1990) and Mokotoff (2001) survey the research

contributions to the PMSP, both for enumerative algorithms

and for approximate algorithms.

Xing and Zhang (2000) show that the identical parallel

machine scheduling problem with jobs splitting, without

setup times and with objective to minimize total tardiness

(problem P/split/ΣTj according to the three-field classification

α/β/ɤ introduced by Graham et al. (1979)) is NP-hard. As our

problem is an extension of the previous one, it is also NP-

hard.

Yalaoui and Chu (2003) and Tahar et al. (2006) developed a

two step heuristic algorithm for the identical parallel machine

scheduling problem with job splitting and with sequence

dependent setup times, aiming at minimizing the makespan.

In the first step the problem is reduced into a single machine

scheduling problem with sequence dependent setups and

transformed into a travelling salesman problem that they

solve using Little’s method. In the second step Yalaoui and

Chu (2003) try to improve the solution obtained in step one

using a step by step procedure, taking into account setup

times and job splitting, while Tahar et al. (2006) use a linear

program to determine the size of the lots. The main

differences between our problem and the one studied by

Yalaoui and Chu (2003) and Tahar et al. (2006) are that: i)

they minimize the makespan, while we consider the

minimization of a function that involves total tardiness and

the deviation between the completion time of a product and

the completion times of all the component lots of that

product; ii) they consider sequence dependent setups, while

we do not and iii) they consider that all the machines can

process all the jobs, while we restrict job assignments to

specific machines.

Sheen and Liao (2007) present a network flow technique to

solve a preemptive scheduling problem with identical parallel

machines with availability constraints. Their goal is to

minimize the maximum lateness. In their problem, each job

can only be processed in specific machines. They solve this

problem using a series of maximum flow problems. They

propose a polynomial time two-phase binary search algorithm

to verify the feasibility of the problem and to solve the

scheduling problem optimally if a feasible schedule exists.

This problem is related to ours, but there are two important

differences: in our problem, a job can be split into several

lots, while in their problem a job can be preempted (but can

not be processed at the same time in different machines); and

the objectives are different.

The remainder of this paper is structured as follows: in

Section 2 a list scheduling constructive heuristic, which

explores the specific characteristics of the practical problem,

is developed, and in Section 3 an illustrative example is

presented. In Section 4, the computational experiments are

presented and finally, in Section 5, the main conclusions of

this work are summarized.

2. LIST SCHEDULING ALGORITHM

In this section a list scheduling algorithm for the lot splitting

and scheduling problem defined in Section 1 is presented. A

list scheduling (LS) algorithm is a constructive heuristic that

determines a schedule for a given ordering of jobs (Hurink

and Knust, 2001). In a LS algorithm, a schedule is obtained

in two steps. In the first step an ordered list of jobs is created

according to some pre-defined priorities. After that, in a

second step, the jobs of the ordered list are iteratively

selected one by one, and assigned and scheduled in a given

machine. The machine is selected from the set of available

parallel machines, using pre-defined criteria. Our LS heuristic

performs three steps. In step 1 an ordered list of products is

created. In step 2, an ordered list of components is created

based on the list defined in step 1. Finally, in step 3, the

components are selected one by one and for each component

one or more machines are selected to schedule the component

under analysis, following the order defined in step 2. A

detailed description of the LS algorithm is presented below.

Step 0. Initialization: consider the set of products N, the set of

components J, the set of machines M and the set of

components that belong to product n, S(n). Let Dn be the

demand of product n, dn the due date of product n, rm the

ready time of machine m, aj the unit production time of

component j, bjm a compatibility indicator that takes value 1 if

component j can be processed in machine m and takes value 0

otherwise and fjn the number of units of component j required

to produce one unit of product n (nϵS(n)).

Step 1. Build ordered list of products: sort the set of products,

N, in increasing order of due date dn. To break ties, choose

the product n with the lowest total number of compatible

machines. The total number of compatible machines is given

by the sum of compatible machines of each component j that

belongs to product n (∑ ∑
∈∈ ∈)n(Sj|Jj Mm

jm
b). To break ties, choose

the product n with higher total unit production time. The total

unit production time of a product n is the sum of unit

production times of all the components that belong to that

product (∑
∈∈)n(Sj|Jj

j
a). To break ties, select arbitrarily a product

n.

Step 2. Build ordered list of components: for each product n

of the ordered list defined in step 1, do:

sort the components j that belongs to product n in increasing

order of number of compatible machines. The number of

compatible machines of a given component j is given

by∑
∈Mm

jm
b . To break ties, choose the component j with higher

unit production time. To break ties, select arbitrarily one of

the components j that belongs to product n.

Step 3. Assignment and scheduling of components: for each

component j of the ordered list defined in step 2, do:

repeat while total unscheduled production time of component

j (given by ()nSjfaD
jnjn

∈××) is greater than zero:

Assignment: select the machine compatible with component j

that allows scheduling it closest to its objective date. If j is

the first component lot of product n to be scheduled, its

objective date is equal to the due date of product n, to which

component j belongs. If j is the first component of product n

to be scheduled, but one or more lots of component j are

already scheduled or if j is not the first component of product

n to be scheduled, its objective date will be equal to the last

completion time (considering all the lots of product n already

scheduled). Component j will be scheduled in the selected

machine in the free interval closest to the objective date. To

break ties, i. e., if in more than one compatible machine the

free interval closest to the objective date ends at the same

time, choose the machine with more idle time. The idle time

of a machine is the sum of all its free intervals, from its

release date, rm, until the completion time of the free interval

that is closest to the objective date. To break ties, select

arbitrarily one of the machines.

Scheduling: schedule component j in the selected machine. If

the length of the free interval closest to the objective date (in

the selected machine) is smaller than the total unscheduled

production time of component j, schedule component j in that

interval, fully occupying the interval, and update the

unscheduled production time of component j. However, if the

length of the free interval closest to the objective date (in the

selected machine) is greater than or equal to the total

unscheduled production time of component j, schedule the

total unscheduled production time of component j in that

interval, and update the total unscheduled production time of

component j to zero.

If it is not possible to schedule component j in any of the

compatible machines before its objective date, meaning that

all the compatible machines with component j are fully

occupied until the objective date, that component will be late.

In that case, divide the unscheduled production time of

component j by the number of compatible machines with

component j (getting a number of lots equal to the number of

compatible machines) and schedule each of the lots in each of

the compatible machines, closest to the objective date. In this

case the objective date is equal to the due date of product n,

to which component j belongs.

The worst-case computational complexity of LS algorithm is

determined in step 3, and is O (JK
2
M), where J is the number

of components, K is the maximum number of lots of a

machine, and M is the number of machines. Steps 1 and 2,

corresponds to sorting two lists.

3. ILLUSTRATIVE EXAMPLE

Consider a problem with five products that must be

scheduled, at most, in five machines, in the next 48 hours.

The data associated with this example is presented in Table 1

and in Table 2.

Table 1. Illustrative example data

Unit Total

Due Compatible processing processing

date machines time time

(hours) (minutes) (hours)

CM1F 0,1,2,3,4 1 40

CM1C 0,1,2,3,4 0.9 36

CM2F 0,3,4 1 33.33

CM2C 0,3,4 0.9 30

CM3F 0,1,2,3 1 8.33

CM3C 0,1,2,3 0.9 7.5

CM3M 0,1,2,3,4 0.6 10

CS1F 0,2,3 1 6.67

CS1C 0,2,3 0.9 6

CS1M 0,1,2,3,4 0.6 8

CS2F 0,1,2,3,4 1 10

CS2C 0,1,2,3,4 0.9 9

CS2M 0,1,2,3,4 0.6 12

ComponentProduct

CM1

CM2

CM3

CS1

CS2

24

48

24

24

48

Table 2. Release times of machines

Machine Release time (hours)

0 0

1 1

2 0

3 1

4 2

The products ordered list of step 1 of the LS algorithm, for

the example is CM1, CS1, CM3, CM2, CS2, and the

components ordered list of step 2 is CM1F, CM1C, CS1F,

CS1C, CS1M, CM3F, CM3C, CM3M, CM2F, CM2C, CS2F,

CS2C, CS2M. In Table 3 the auxiliary information used

during step 1 is presented.

Table 3. Information used during step 1

Total number of Total unit

compatible machines production time

CM1 24 10 1.9

CM2 48 6 1.9

CM3 24 13 2.5

CS1 24 11 2.5

CS2 48 15 2.5

Product Due date

Figure 1 presents the Gantt chart of the schedule obtained in

step 3 of the LS algorithm. The total tardiness of this

schedule is 2.63 hours, due to product CM3, the total

deviation is 78.4 hours and the average machine utilization is

equal to 92%. The machine utilization of a given machine M

is given by: 100
 Mof date Release - Horizon Time

 Mof time occupied Total
× .

Figure1. Gantt chart for the solution of example

4. COMPUTATIONAL EXPERIMENTS

In this section the computational results for the list

scheduling algorithm are presented. The test instances were

randomly generated taking into account data obtained at the

company. For example, the number of machines of each

gauge is the same as in the company and the demands of

different product types and the processing times were

randomly generated within intervals defined by data provided

by the company. The instance set is made up of 54 instances,

grouped by gauge (18 instances of gauge 21, 18 of gauge 24

and 18 of gauge 27). The instances size is presented in Table

4. The first 18 instances belong to gauge 21, the next 18 to

gauge 27, and the last 18 to gauge 24.

Table 4. Instances size

Number Number Number

of of of

products components machines

Inst20T1.1.G21 8 18 5

Inst20T1.2.G21 9 25 5

Inst20T1.3.G21 9 17 5

Inst30T1.1.G21 18 50 5

Inst30T1.2.G21 20 56 5

Inst30T1.3.G21 20 60 5

Inst40T1.1.G21 20 58 5

Inst40T1.2.G21 24 69 5

Inst40T1.3.G21 27 74 5

Inst50T1.1.G21 29 74 5

Inst50T1.2.G21 30 74 5

Inst50T1.3.G21 33 99 5

Inst60T1.1.G21 26 70 5

Inst60T1.2.G21 30 77 5

Inst60T1.3.G21 29 77 5

Inst70T1.1.G21 30 90 5

Inst70T1.2.G21 33 83 5

Inst70T1.3.G21 39 116 5

Inst20T1.1.G27 31 89 11

Inst20T1.2.G27 32 84 11

Inst20T1.3.G27 29 84 11

Inst30T1.1.G27 41 107 11

Inst30T1.2.G27 38 103 11

Inst30T1.3.G27 44 128 11

Inst40T1.1.G27 53 142 11

Inst40T1.2.G27 42 112 11

Inst40T1.3.G27 47 125 11

Inst50T1.1.G27 43 120 11

Inst50T1.2.G27 65 174 11

Inst50T1.3.G27 60 154 11

Inst60T1.1.G27 71 197 11

Inst60T1.2.G27 76 210 11

Inst60T1.3.G27 67 181 11

Inst70T1.1.G27 70 182 11

Inst70T1.2.G27 81 221 11

Inst70T1.3.G27 67 187 11

Inst20T1.1.G24 34 94 13

Inst20T1.2.G24 37 108 13

Inst20T1.3.G24 34 98 13

Inst30T1.1.G24 51 139 13

Inst30T1.2.G24 49 135 13

Inst30T1.3.G24 38 90 13

Inst40T1.1.G24 57 152 13

Inst40T1.2.G24 64 174 13

Inst40T1.3.G24 57 157 13

Inst50T1.1.G24 55 152 13

Inst50T1.2.G24 70 197 13

Inst50T1.3.G24 70 184 13

Inst60T1.1.G24 81 216 13

Inst60T1.2.G24 69 188 13

Inst60T1.3.G24 81 232 13

Inst70T1.1.G24 82 226 13

Inst70T1.2.G24 94 254 13

Inst70T1.3.G24 108 277 13

Instance

We coded the list scheduling heuristic in visual C++, and the

tests were run in a personal computer with a Pentium 4

processor, with 1 GB of RAM. In our implementation we set

K, the maximum number of lots of a machine, to: number of

components × planning horizon in days. In Table 5 we

present the results for the instance set. The performance

measures considered were: total tardiness (column 2),

number of products late (column 3), total deviation (column

4), number of lots (column 6), average number of lots per

component (column 7), average deviation per product

(column 8) and average deviation per lot (column 9).

Table 5. Results

Total Number of Total Average machine Number Average Average Average

tardiness products deviation utilization of number of lots deviation deviation

(hours) late (hours) (%) lots by component by product by lot

Inst20T1.1.G21 5.60 1 254.36 46.27 23 1.28 31.80 11.06

Inst20T1.2.G21 3.38 1 1094.73 102.10 41 1.64 121.64 26.70

Inst20T1.3.G21 20.98 2 622.91 80.68 45 2.65 69.21 13.84

Inst30T1.1.G21 77.52 5 2208.37 103.87 117 2.34 122.69 18.87

Inst30T1.2.G21 2.26 1 533.33 68.60 78 1.39 26.67 6.84

Inst30T1.3.G21 41.42 5 755.74 92.68 132 2.20 37.79 5.73

Inst40T1.1.G21 0.00 0 609.20 99.37 77 1.33 30.46 7.91

Inst40T1.2.G21 5.50 2 1109.36 101.93 112 1.62 46.22 9.91

Inst40T1.3.G21 0.00 0 267.97 79.26 101 1.36 9.92 2.65

Inst50T1.1.G21 0.00 0 395.91 87.61 94 1.27 13.65 4.21

Inst50T1.2.G21 7.56 1 1483.99 104.54 114 1.54 49.47 13.02

Inst50T1.3.G21 0.00 0 629.01 86.39 129 1.30 19.06 4.88

Inst60T1.1.G21 0.00 0 1207.00 98.03 99 1.41 46.42 12.19

Inst60T1.2.G21 38.92 3 977.02 66.35 114 1.48 32.57 8.57

Inst60T1.3.G21 15.82 3 475.85 96.00 121 1.57 16.41 3.93

Inst70T1.1.G21 114.34 14 578.99 59.29 250 2.78 19.30 2.32

Inst70T1.2.G21 0.00 0 933.28 60.12 106 1.28 28.28 8.80

Inst70T1.3.G21 0.00 0 345.41 79.24 140 1.21 8.86 2.47

Inst20T1.1.G27 0.00 0 836.37 88.12 132 1.48 26.98 6.34

Inst20T1.2.G27 15.84 2 1247.35 89.10 178 2.12 38.98 7.01

Inst20T1.3.G27 2.20 1 1211.50 63.88 120 1.43 41.78 10.10

Inst30T1.1.G27 0.00 0 454.94 81.95 159 1.49 11.10 2.86

Inst30T1.2.G27 40.67 9 2461.20 105.90 372 3.61 64.77 6.62

Inst30T1.3.G27 0.00 0 1061.65 95.57 183 1.43 24.13 5.80

Inst40T1.1.G27 0.00 0 938.34 95.74 191 1.35 17.70 4.91

Inst40T1.2.G27 0.00 0 1077.09 95.37 174 1.55 25.65 6.19

Inst40T1.3.G27 34.28 5 1964.49 75.92 289 2.31 41.80 6.80

Inst50T1.1.G27 0.00 0 1668.75 99.55 196 1.63 38.81 8.51

Inst50T1.2.G27 16.80 5 1595.13 103.63 368 2.11 24.54 4.33

Inst50T1.3.G27 0.00 0 646.32 83.72 204 1.32 10.77 3.17

Inst60T1.1.G27 0.00 0 1857.14 99.73 264 1.34 26.16 7.03

Inst60T1.2.G27 298.15 25 1727.42 80.24 901 4.29 22.73 1.92

Inst60T1.3.G27 94.50 9 1535.01 96.90 486 2.69 22.91 3.16

Inst70T1.1.G27 361.68 20 2239.87 97.52 700 3.85 32.00 3.20

Inst70T1.2.G27 251.45 19 2339.09 98.55 728 3.29 28.88 3.21

Inst70T1.3.G27 146.32 15 2362.96 91.28 651 3.48 35.27 3.63

Inst20T1.1.G24 0.00 0 500.37 95.64 148 1.57 14.72 3.38

Inst20T1.2.G24 22.29 4 2256.61 91.80 287 2.66 60.99 7.86

Inst20T1.3.G24 126.32 8 2205.99 96.57 426 4.35 64.88 5.18

Inst30T1.1.G24 0.00 0 816.46 82.71 195 1.40 16.01 4.19

Inst30T1.2.G24 2.89 1 2832.25 101.77 240 1.78 57.80 11.80

Inst30T1.3.G24 30.54 4 2082.22 97.45 271 3.01 54.80 7.68

Inst40T1.1.G24 1.88 1 2364.74 91.16 235 1.55 41.49 10.06

Inst40T1.2.G24 0.00 0 499.41 82.53 226 1.30 7.80 2.21

Inst40T1.3.G24 98.31 10 2008.03 94.77 569 3.62 35.23 3.53

Inst50T1.1.G24 0.00 0 322.24 65.38 204 1.34 5.86 1.58

Inst50T1.2.G24 426.55 20 2606.13 114.00 906 4.60 37.23 2.88

Inst50T1.3.G24 6.05 4 1403.93 96.34 378 2.05 20.06 3.71

Inst60T1.1.G24 0.00 0 797.37 90.49 284 1.31 9.84 2.81

Inst60T1.2.G24 12.10 2 3239.33 103.89 327 1.74 46.95 9.91

Inst60T1.3.G24 0.96 1 2476.19 100.60 335 1.44 30.57 7.39

Inst70T1.1.G24 0.00 0 973.29 88.50 295 1.31 11.87 3.30

Inst70T1.2.G24 99.09 10 2720.66 109.79 746 2.94 28.94 3.65

Inst70T1.3.G24 17.04 12 2342.35 101.51 752 2.71 21.69 3.11

Instance

All the instances tested were solved in less than 0.03 seconds.

In some instances, the total tardiness is large. This may occur,

because the products due dates are generated randomly, and

there may be a huge order with a due date that can not be

fulfilled even if all the resources were assigned to it.

There is a positive correlation between the size of the

instance (measured in terms of the number of components

and the number of machines) and the total deviation,

particularly for the instances with higher average machine

utilization, although this does not hold for all the set of

instances tested (see for example Inst30T1.1.G21, one of the

smaller instances with a total deviation of approximately

2208 hours and an average machine utilization of

approximately 104%, and Inst60.T1.1.G24, one of the greater

instances with a total deviation of approximately 797 hours

and an average machine utilization of 90.5%). The results

show that there is not a direct relationship between the size of

the instance and the total tardiness. Almost certainly, the total

tardiness is more dependent of both the machines loads and

the required due dates. The number of lots increases with the

size of the instance. The average number of lots per

component tends to increase with the size of the instance too,

although there are exceptions (see for example

Inst20T1.3.G21 and Inst70T1.1.G21). On the other hand, the

average deviation by lot tends to decrease as the instance size

increases. In the set of 18 instances of gauge 21, there are six

instances with an average deviation by lot greater or equal to

10 hours, in the set of 18 instances that belong to gauge 27,

only one instance has an average deviation by lot greater or

equal to 10 hours, and, finally, in the set of 18 instances that

belong to gauge 24, there are three instances with an average

deviation by lot higher or equal to 10 hours.

There is a positive correlation between the average machine

utilization and total tardiness. If we consider only the

instances, of the set of 54 instances, that have an average

machine utilization greater or equal to 98% (18 instances),

only four of the eighteen instances do not have tardiness

(Inst40T1.1.G21, Inst60T1.1.G21, Inst50T1.1.G27 and

Inst60T1.1.G27).

The instances with higher number of lots have higher total

tardiness. This can be in part explained because the LS

algorithm splits the components into more lots when they are

late.

There seems to exist a direct relationship between the total

tardiness and the total deviation of a product, even though

there are exceptions. The total tardiness and the total

deviation have a positive correlation with: the average

machine utilization, the number of lots, and the average

number of lots per component.

5. CONCLUSIONS

The main motivation for this study arose from the interest of

a Textile company to increase the efficiency of their knitting

scheduling plans. As in such type of problems the solution

times are a major concern, we developed a constructive

heuristic for the lot splitting and scheduling problem existent

in the knitting section of the factory. The heuristic is

extremely fast, solving instances greater than the real ones in

less than one second. The total tardiness and the total

deviations are for some instances high, denoting a potential

field of improvement. In the context of the real problem, the

minimization of the total tardiness is very important to assure

a high level customer service. Nonetheless, the total

deviations are of major interest since the production process

after the components knitting, is joining the several

components that belong to the same product and that process

can only occur after completing all the components

production. The developed heuristic, takes both objectives

into consideration. As far as we are aware, none scheduling

published work consider this kind of objective.

REFERENCES

Cheng, T. and C. Sin (1990). A state-of-the-art review of

parallel-machine scheduling research. European

Journal of Operational Research, Vol. 47, pp. 271-

292.

Graham, R. el al. (1979). Optimization and approximation in

deterministic sequencing and scheduling: a survey.

Annals of Discrete Mathematics, Vol. 5, pp. 287-

326.

Hurink, J. and S. Knust (2001). List scheduling in a parallel

machine environment with precedence constraints

and setup times. Operations Research Letters, Vol.
29, pp. 231-239.

Mokotoff, E. (2001). Parallel machine scheduling problems:

a survey. Asia-Pacific Journal of Operational

Research, Vol. 18, pp. 193-242.

Sheen, G. and L. Liao (2007). Scheduling machine-dependent

jobs to minimize lateness on machines with identical

speed under availability constraints. Computers and

Operations Research, Vol. 34, pp. 2266-2278.

Tahar, D. et al. (2006). A linear programming approach for

identical parallel machine scheduling with job

spliting and sequence-dependent setup times.

International Journal of Production Economics,

Vol. 99, pp. 63-73.

Xing, W. and J. Zhang (2000). Parallel machine scheduling

with splitting jobs. Discrete Applied Mathematics,

Vol. 103, pp. 259-269.

Yalaoui, F. and C. Chu (2003). An efficient heuristic

approach for parallel machine scheduling with job

splitting and sequence-dependent setup times. IIE

Transactions, Vol. 35, pp. 183-190.

