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Abstract: In this paper we address a lot splitting and scheduling problem of a Textile factory that produces 

garment pieces. Each garment piece is made of a set of components that are produced on the knitting 

section of the company. The problem consists of finding a weekly production plan for the knitting section, 

establishing the quantities to produce of each component (organized in one or several lots), and where and 

when (starting/completion times) to produce them. The main contribution of this work is the development 

of a constructive heuristic that generates automated knitting scheduling plans. The heuristic produces 

solutions very fast for a set of randomly generated instances based on real world data.     

1. INTRODUCTION 

In this paper we present a procedure for a practical lot 

splitting and scheduling problem of a Textile company. The 

company produces fine knitted goods, such as cardigans, 

pants, dresses, sweaters and scarves. Each product, defined 

by a piece of cloth and size, is made up of a set of 

components, which are knitted in a group of identical parallel 

machines. Every Friday, a set of production orders are sent to 

the knitting manager. The production orders contain the set of 

garment pieces to be considered in the next knitting 

scheduling plan, as well as the associated set of components. 

Additionally, the production orders have information about 

the quantity ordered by the customer and the due date of each 

product. 

The knitting manager is responsible for the development of a 

weekly production plan for the knitting section, taking into 

account all the production orders. Nowadays, these plans are 

developed manually, based on common sense rules and on 

the several years of experience of the knitting manager. The 

main contribution of this work is the development of a fast 

algorithm that generates automated knitting scheduling plans. 

The developed algorithm solves a lot splitting problem and 

an assignment and scheduling problem simultaneously. In the 

lot splitting problem, the number of components requested is 

split into lots of different sizes as a way of speeding up the 

production process. In the assignment and scheduling 

problem each of those lots is assigned to a given machine and 

its starting/completion times are determined. Two or more 

lots of a given component can be produced independently in 

more than one machine, at the same time or in different 

times, but a given machine can only process one lot at a time. 

Moreover, two or more lots of the same component may be 

produced in the same machine, with lots of other components 

or with empty intervals between them. As the lot splitting 

decisions are taken at the same level and in coordination with 

the assignment and scheduling decisions, the quality of the 

solutions is increased. 

The knitting section has three groups of identical parallel 

machines. The characteristic that defines a group is a gauge. 

The gauge is associated with the thickness of the yarns and 

with the type of needles existent in the machine. There is a 

unique relationship between the gauge and the yarn. A given 

product will then be associated with only a gauge. The 

factory has three gauges, so three scheduling plans must be 

prepared. The machines are identical, since they take the 

same amount of time to produce a unit of a given component. 

There is a compatibility matrix between the machines of a 

given gauge and the components of that gauge. This 

compatibility matrix is needed because of technical 

characteristics of the components and of the machines. In 

addition, each machine has a given release date. 

One important objective is to develop scheduling plans that 

minimize work-in-process inventory. Besides, on-time 

delivery of products is very important. Being so, we use the 

following two measures to evaluate a scheduling solution: (1) 

total tardiness of products and (2) total deviations occurred 

during production of each product. The total deviation of a 

given product is the sum of all the absolute deviations of each 

component lot completion time and the completion time of 

the last component lot. Moreover, the completion time of the 

last component lot is the product completion time. 

In summary, our lot splitting and scheduling problem has the 

following characteristics: identical parallel machines, 

arbitrary demands and due dates, associated with products, a 
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compatibility matrix between machines and components, unit 

production times associated with components and machine 

release dates. To the best of our knowledge, no research has 

ever been published dealing with this problem when the 

objective is to minimize total deviations occurred during 

production of each product. 

Our problem is to some extent related with the classical 

parallel machine scheduling problem (PMSP), in which there 

are n jobs to schedule in m machines aiming at optimizing a 

certain performance measure, but there are two important 

differences: (1) in our problem a given job (component) can 

be split into several lots of smaller size and processed in more 

than one machine simultaneously, while in PMSP no splitting 

or preemption of jobs can occur; (2) in our problem, a job 

(product) is divided into several sub-jobs (components) that 

are linked/related to each other because the job completion 

time depends of the completion times of all the sub-jobs, 

while in PMSP jobs are independent of each other. Cheng 

and Sin (1990) and Mokotoff (2001) survey the research 

contributions to the PMSP, both for enumerative algorithms 

and for approximate algorithms.  

Xing and Zhang (2000) show that the identical parallel 

machine scheduling problem with jobs splitting, without 

setup times and with objective to minimize total tardiness 

(problem P/split/ΣTj according to the three-field classification 

α/β/ɤ introduced by Graham et al. (1979)) is NP-hard. As our 

problem is an extension of the previous one, it is also NP-

hard.  

Yalaoui and Chu (2003) and Tahar et al. (2006) developed a 

two step heuristic algorithm for the identical parallel machine 

scheduling problem with job splitting and with sequence 

dependent setup times, aiming at minimizing the makespan. 

In the first step the problem is reduced into a single machine 

scheduling problem with sequence dependent setups and 

transformed into a travelling salesman problem that they 

solve using Little’s method. In the second step Yalaoui and 

Chu (2003) try to improve the solution obtained in step one 

using a step by step procedure, taking into account setup 

times and job splitting, while Tahar et al. (2006) use a linear 

program to determine the size of the lots. The main 

differences between our problem and the one studied by 

Yalaoui and Chu (2003) and Tahar et al. (2006) are that: i) 

they minimize the makespan, while we consider the 

minimization of a function that involves total tardiness and 

the deviation between the completion time of a product and 

the completion times of all the component lots of that 

product; ii) they consider sequence dependent setups, while 

we do not and iii) they consider that all the machines can 

process all the jobs, while we restrict job assignments to 

specific machines. 

Sheen and Liao (2007) present a network flow technique to 

solve a preemptive scheduling problem with identical parallel 

machines with availability constraints. Their goal is to 

minimize the maximum lateness. In their problem, each job 

can only be processed in specific machines. They solve this 

problem using a series of maximum flow problems. They 

propose a polynomial time two-phase binary search algorithm 

to verify the feasibility of the problem and to solve the 

scheduling problem optimally if a feasible schedule exists. 

This problem is related to ours, but there are two important 

differences: in our problem, a job can be split into several 

lots, while in their problem a job can be preempted (but can 

not be processed at the same time in different machines); and 

the objectives are different. 

The remainder of this paper is structured as follows: in 

Section 2 a list scheduling constructive heuristic, which 

explores the specific characteristics of the practical problem, 

is developed, and in Section 3 an illustrative example is 

presented. In Section 4, the computational experiments are 

presented and finally, in Section 5, the main conclusions of 

this work are summarized. 

2. LIST SCHEDULING ALGORITHM 

In this section a list scheduling algorithm for the lot splitting 

and scheduling problem defined in Section 1 is presented. A 

list scheduling (LS) algorithm is a constructive heuristic that 

determines a schedule for a given ordering of jobs (Hurink 

and Knust, 2001). In a LS algorithm, a schedule is obtained 

in two steps. In the first step an ordered list of jobs is created 

according to some pre-defined priorities. After that, in a 

second step, the jobs of the ordered list are iteratively 

selected one by one, and assigned and scheduled in a given 

machine. The machine is selected from the set of available 

parallel machines, using pre-defined criteria. Our LS heuristic 

performs three steps. In step 1 an ordered list of products is 

created. In step 2, an ordered list of components is created 

based on the list defined in step 1. Finally, in step 3, the 

components are selected one by one and for each component 

one or more machines are selected to schedule the component 

under analysis, following the order defined in step 2. A 

detailed description of the LS algorithm is presented below. 

Step 0. Initialization: consider the set of products N, the set of 

components J, the set of machines M and the set of 

components that belong to product n, S(n). Let Dn be the 

demand of product n, dn the due date of product n, rm the 

ready time of machine m, aj the unit production time of 

component j, bjm a compatibility indicator that takes value 1 if 

component j can be processed in machine m and takes value 0 

otherwise and fjn the number of units of component j required 

to produce one unit of product n (nϵS(n)). 

Step 1. Build ordered list of products: sort the set of products, 

N, in increasing order of due date dn. To break ties, choose 

the product n with the lowest total number of compatible 

machines. The total number of compatible machines is given 

by the sum of compatible machines of each component j that 

belongs to product n ( ∑ ∑
∈∈ ∈)n(Sj|Jj Mm

jm
b ). To break ties, choose 

the product n with higher total unit production time. The total 

unit production time of a product n is the sum of unit 

production times of all the components that belong to that 

product ( ∑
∈∈ )n(Sj|Jj

j
a ). To break ties, select arbitrarily a product 

n. 

Step 2. Build ordered list of components: for each product n 

of the ordered list defined in step 1, do:  



 

 

     

 

sort the components j that belongs to product n in increasing 

order of number of compatible machines. The number of 

compatible machines of a given component j is given 

by∑
∈Mm

jm
b . To break ties, choose the component j with higher 

unit production time. To break ties, select arbitrarily one of 

the components j that belongs to product n. 

Step 3. Assignment and scheduling of components: for each 

component j of the ordered list defined in step 2, do:  

repeat while total unscheduled production time of component 

j (given by ( )nSjfaD
jnjn

∈×× ) is greater than zero:  

Assignment: select the machine compatible with component j 

that allows scheduling it closest to its objective date. If j is 

the first component lot of product n to be scheduled, its 

objective date is equal to the due date of product n, to which 

component j belongs. If j is the first component of product n 

to be scheduled, but one or more lots of component j are 

already scheduled or if j is not the first component of product 

n to be scheduled, its objective date will be equal to the last 

completion time (considering all the lots of product n already 

scheduled). Component j will be scheduled in the selected 

machine in the free interval closest to the objective date. To 

break ties, i. e., if in more than one compatible machine the 

free interval closest to the objective date ends at the same 

time, choose the machine with more idle time. The idle time 

of a machine is the sum of all its free intervals, from its 

release date, rm, until the completion time of the free interval 

that is closest to the objective date. To break ties, select 

arbitrarily one of the machines.  

Scheduling: schedule component j in the selected machine. If 

the length of the free interval closest to the objective date (in 

the selected machine) is smaller than the total unscheduled 

production time of component j, schedule component j in that 

interval, fully occupying the interval, and update the 

unscheduled production time of component j. However, if the 

length of the free interval closest to the objective date (in the 

selected machine) is greater than or equal to the total 

unscheduled production time of component j, schedule the 

total unscheduled production time of component j in that 

interval, and update the total unscheduled production time of 

component j to zero.  

If it is not possible to schedule component j in any of the 

compatible machines before its objective date, meaning that 

all the compatible machines with component j are fully 

occupied until the objective date, that component will be late. 

In that case, divide the unscheduled production time of 

component j by the number of compatible machines with 

component j (getting a number of lots equal to the number of 

compatible machines) and schedule each of the lots in each of 

the compatible machines, closest to the objective date. In this 

case the objective date is equal to the due date of product n, 

to which component j belongs. 

The worst-case computational complexity of LS algorithm is 

determined in step 3, and is O (JK
2
M), where J is the number 

of components, K is the maximum number of lots of a 

machine, and M is the number of machines. Steps 1 and 2, 

corresponds to sorting two lists. 

3. ILLUSTRATIVE EXAMPLE 

Consider a problem with five products that must be 

scheduled, at most, in five machines, in the next 48 hours. 

The data associated with this example is presented in Table 1 

and in Table 2. 

Table 1. Illustrative example data 

Unit Total

Due Compatible processing processing

date machines time time

(hours) (minutes) (hours)

CM1F 0,1,2,3,4 1 40

CM1C 0,1,2,3,4 0.9 36

CM2F 0,3,4 1 33.33

CM2C 0,3,4 0.9 30

CM3F 0,1,2,3 1 8.33

CM3C 0,1,2,3 0.9 7.5

CM3M 0,1,2,3,4 0.6 10

CS1F 0,2,3 1 6.67

CS1C 0,2,3 0.9 6

CS1M 0,1,2,3,4 0.6 8

CS2F 0,1,2,3,4 1 10

CS2C 0,1,2,3,4 0.9 9

CS2M 0,1,2,3,4 0.6 12

ComponentProduct

CM1

CM2

CM3

CS1

CS2

24

48

24

24

48

 

Table 2. Release times of machines 

Machine Release time (hours)

0 0

1 1

2 0

3 1

4 2  

The products ordered list of step 1 of the LS algorithm, for 

the example is CM1, CS1, CM3, CM2, CS2, and the 

components ordered list of step 2 is CM1F, CM1C, CS1F, 

CS1C, CS1M, CM3F, CM3C, CM3M, CM2F, CM2C, CS2F, 

CS2C, CS2M. In Table 3 the auxiliary information used 

during step 1 is presented. 

Table 3. Information used during step 1 

Total number of Total unit 

compatible machines production time

CM1 24 10 1.9

CM2 48 6 1.9

CM3 24 13 2.5

CS1 24 11 2.5

CS2 48 15 2.5

Product Due date

 

Figure 1 presents the Gantt chart of the schedule obtained in 

step 3 of the LS algorithm. The total tardiness of this 

schedule is 2.63 hours, due to product CM3, the total 

deviation is 78.4 hours and the average machine utilization is 

equal to 92%. The machine utilization of a given machine M 

is given by: 100
 Mof date Release - Horizon Time

 Mof time occupied Total
× . 



 

 

     

 

 

Figure1. Gantt chart for the solution of example 

4. COMPUTATIONAL EXPERIMENTS 

In this section the computational results for the list 

scheduling algorithm are presented. The test instances were 

randomly generated taking into account data obtained at the 

company. For example, the number of machines of each 

gauge is the same as in the company and the demands of 

different product types and the processing times were 

randomly generated within intervals defined by data provided 

by the company. The instance set is made up of 54 instances, 

grouped by gauge (18 instances of gauge 21, 18 of gauge 24 

and 18 of gauge 27). The instances size is presented in Table 

4. The first 18 instances belong to gauge 21, the next 18 to 

gauge 27, and the last 18 to gauge 24. 

Table 4. Instances size 

Number Number Number

of of of

products components machines

Inst20T1.1.G21 8 18 5

Inst20T1.2.G21 9 25 5

Inst20T1.3.G21 9 17 5

Inst30T1.1.G21 18 50 5

Inst30T1.2.G21 20 56 5

Inst30T1.3.G21 20 60 5

Inst40T1.1.G21 20 58 5

Inst40T1.2.G21 24 69 5

Inst40T1.3.G21 27 74 5

Inst50T1.1.G21 29 74 5

Inst50T1.2.G21 30 74 5

Inst50T1.3.G21 33 99 5

Inst60T1.1.G21 26 70 5

Inst60T1.2.G21 30 77 5

Inst60T1.3.G21 29 77 5

Inst70T1.1.G21 30 90 5

Inst70T1.2.G21 33 83 5

Inst70T1.3.G21 39 116 5

Inst20T1.1.G27 31 89 11

Inst20T1.2.G27 32 84 11

Inst20T1.3.G27 29 84 11

Inst30T1.1.G27 41 107 11

Inst30T1.2.G27 38 103 11

Inst30T1.3.G27 44 128 11

Inst40T1.1.G27 53 142 11

Inst40T1.2.G27 42 112 11

Inst40T1.3.G27 47 125 11

Inst50T1.1.G27 43 120 11

Inst50T1.2.G27 65 174 11

Inst50T1.3.G27 60 154 11

Inst60T1.1.G27 71 197 11

Inst60T1.2.G27 76 210 11

Inst60T1.3.G27 67 181 11

Inst70T1.1.G27 70 182 11

Inst70T1.2.G27 81 221 11

Inst70T1.3.G27 67 187 11

Inst20T1.1.G24 34 94 13

Inst20T1.2.G24 37 108 13

Inst20T1.3.G24 34 98 13

Inst30T1.1.G24 51 139 13

Inst30T1.2.G24 49 135 13

Inst30T1.3.G24 38 90 13

Inst40T1.1.G24 57 152 13

Inst40T1.2.G24 64 174 13

Inst40T1.3.G24 57 157 13

Inst50T1.1.G24 55 152 13

Inst50T1.2.G24 70 197 13

Inst50T1.3.G24 70 184 13

Inst60T1.1.G24 81 216 13

Inst60T1.2.G24 69 188 13

Inst60T1.3.G24 81 232 13

Inst70T1.1.G24 82 226 13

Inst70T1.2.G24 94 254 13

Inst70T1.3.G24 108 277 13

Instance

 



 

 

     

 

We coded the list scheduling heuristic in visual C++, and the 

tests were run in a personal computer with a Pentium 4 

processor, with 1 GB of RAM. In our implementation we set 

K, the maximum number of lots of a machine, to: number of 

components × planning horizon in days. In Table 5 we 

present the results for the instance set. The performance 

measures considered were: total tardiness (column 2), 

number of products late (column 3), total deviation (column 

4), number of lots (column 6), average number of lots per 

component (column 7), average deviation per product 

(column 8) and average deviation per lot (column 9). 

Table 5. Results 

Total Number of Total Average machine Number Average Average Average

tardiness products deviation utilization of number of lots deviation deviation

(hours) late (hours) (%) lots by component by product by lot

Inst20T1.1.G21 5.60 1 254.36 46.27 23 1.28 31.80 11.06

Inst20T1.2.G21 3.38 1 1094.73 102.10 41 1.64 121.64 26.70

Inst20T1.3.G21 20.98 2 622.91 80.68 45 2.65 69.21 13.84

Inst30T1.1.G21 77.52 5 2208.37 103.87 117 2.34 122.69 18.87

Inst30T1.2.G21 2.26 1 533.33 68.60 78 1.39 26.67 6.84

Inst30T1.3.G21 41.42 5 755.74 92.68 132 2.20 37.79 5.73

Inst40T1.1.G21 0.00 0 609.20 99.37 77 1.33 30.46 7.91

Inst40T1.2.G21 5.50 2 1109.36 101.93 112 1.62 46.22 9.91

Inst40T1.3.G21 0.00 0 267.97 79.26 101 1.36 9.92 2.65

Inst50T1.1.G21 0.00 0 395.91 87.61 94 1.27 13.65 4.21

Inst50T1.2.G21 7.56 1 1483.99 104.54 114 1.54 49.47 13.02

Inst50T1.3.G21 0.00 0 629.01 86.39 129 1.30 19.06 4.88

Inst60T1.1.G21 0.00 0 1207.00 98.03 99 1.41 46.42 12.19

Inst60T1.2.G21 38.92 3 977.02 66.35 114 1.48 32.57 8.57

Inst60T1.3.G21 15.82 3 475.85 96.00 121 1.57 16.41 3.93

Inst70T1.1.G21 114.34 14 578.99 59.29 250 2.78 19.30 2.32

Inst70T1.2.G21 0.00 0 933.28 60.12 106 1.28 28.28 8.80

Inst70T1.3.G21 0.00 0 345.41 79.24 140 1.21 8.86 2.47

Inst20T1.1.G27 0.00 0 836.37 88.12 132 1.48 26.98 6.34

Inst20T1.2.G27 15.84 2 1247.35 89.10 178 2.12 38.98 7.01

Inst20T1.3.G27 2.20 1 1211.50 63.88 120 1.43 41.78 10.10

Inst30T1.1.G27 0.00 0 454.94 81.95 159 1.49 11.10 2.86

Inst30T1.2.G27 40.67 9 2461.20 105.90 372 3.61 64.77 6.62

Inst30T1.3.G27 0.00 0 1061.65 95.57 183 1.43 24.13 5.80

Inst40T1.1.G27 0.00 0 938.34 95.74 191 1.35 17.70 4.91

Inst40T1.2.G27 0.00 0 1077.09 95.37 174 1.55 25.65 6.19

Inst40T1.3.G27 34.28 5 1964.49 75.92 289 2.31 41.80 6.80

Inst50T1.1.G27 0.00 0 1668.75 99.55 196 1.63 38.81 8.51

Inst50T1.2.G27 16.80 5 1595.13 103.63 368 2.11 24.54 4.33

Inst50T1.3.G27 0.00 0 646.32 83.72 204 1.32 10.77 3.17

Inst60T1.1.G27 0.00 0 1857.14 99.73 264 1.34 26.16 7.03

Inst60T1.2.G27 298.15 25 1727.42 80.24 901 4.29 22.73 1.92

Inst60T1.3.G27 94.50 9 1535.01 96.90 486 2.69 22.91 3.16

Inst70T1.1.G27 361.68 20 2239.87 97.52 700 3.85 32.00 3.20

Inst70T1.2.G27 251.45 19 2339.09 98.55 728 3.29 28.88 3.21

Inst70T1.3.G27 146.32 15 2362.96 91.28 651 3.48 35.27 3.63

Inst20T1.1.G24 0.00 0 500.37 95.64 148 1.57 14.72 3.38

Inst20T1.2.G24 22.29 4 2256.61 91.80 287 2.66 60.99 7.86

Inst20T1.3.G24 126.32 8 2205.99 96.57 426 4.35 64.88 5.18

Inst30T1.1.G24 0.00 0 816.46 82.71 195 1.40 16.01 4.19

Inst30T1.2.G24 2.89 1 2832.25 101.77 240 1.78 57.80 11.80

Inst30T1.3.G24 30.54 4 2082.22 97.45 271 3.01 54.80 7.68

Inst40T1.1.G24 1.88 1 2364.74 91.16 235 1.55 41.49 10.06

Inst40T1.2.G24 0.00 0 499.41 82.53 226 1.30 7.80 2.21

Inst40T1.3.G24 98.31 10 2008.03 94.77 569 3.62 35.23 3.53

Inst50T1.1.G24 0.00 0 322.24 65.38 204 1.34 5.86 1.58

Inst50T1.2.G24 426.55 20 2606.13 114.00 906 4.60 37.23 2.88

Inst50T1.3.G24 6.05 4 1403.93 96.34 378 2.05 20.06 3.71

Inst60T1.1.G24 0.00 0 797.37 90.49 284 1.31 9.84 2.81

Inst60T1.2.G24 12.10 2 3239.33 103.89 327 1.74 46.95 9.91

Inst60T1.3.G24 0.96 1 2476.19 100.60 335 1.44 30.57 7.39

Inst70T1.1.G24 0.00 0 973.29 88.50 295 1.31 11.87 3.30

Inst70T1.2.G24 99.09 10 2720.66 109.79 746 2.94 28.94 3.65

Inst70T1.3.G24 17.04 12 2342.35 101.51 752 2.71 21.69 3.11

Instance

 

All the instances tested were solved in less than 0.03 seconds. 

In some instances, the total tardiness is large. This may occur, 

because the products due dates are generated randomly, and 

there may be a huge order with a due date that can not be 

fulfilled even if all the resources were assigned to it. 

There is a positive correlation between the size of the 

instance (measured in terms of the number of components 

and the number of machines) and the total deviation, 

particularly for the instances with higher average machine 

utilization, although this does not hold for all the set of 

instances tested (see for example Inst30T1.1.G21, one of the 

smaller instances with a total deviation of approximately 

2208 hours and an average machine utilization of 

approximately 104%, and Inst60.T1.1.G24, one of the greater 

instances with a total deviation of approximately 797 hours 

and an average machine utilization of 90.5%). The results 

show that there is not a direct relationship between the size of 

the instance and the total tardiness. Almost certainly, the total 

tardiness is more dependent of both the machines loads and 

the required due dates. The number of lots increases with the 

size of the instance. The average number of lots per 

component tends to increase with the size of the instance too, 

although there are exceptions (see for example 

Inst20T1.3.G21 and Inst70T1.1.G21). On the other hand, the 

average deviation by lot tends to decrease as the instance size 

increases. In the set of 18 instances of gauge 21, there are six 

instances with an average deviation by lot greater or equal to 

10 hours, in the set of 18 instances that belong to gauge 27, 

only one instance has an average deviation by lot greater or 

equal to 10 hours, and, finally, in the set of 18 instances that 

belong to gauge 24, there are three instances with an average 

deviation by lot higher or equal to 10 hours. 

There is a positive correlation between the average machine 

utilization and total tardiness. If we consider only the 

instances, of the set of 54 instances, that have an average 

machine utilization greater or equal to 98% (18 instances), 

only four of the eighteen instances do not have tardiness 

(Inst40T1.1.G21, Inst60T1.1.G21, Inst50T1.1.G27 and 

Inst60T1.1.G27). 

The instances with higher number of lots have higher total 

tardiness. This can be in part explained because the LS 

algorithm splits the components into more lots when they are 

late.  

There seems to exist a direct relationship between the total 

tardiness and the total deviation of a product, even though 

there are exceptions. The total tardiness and the total 

deviation have a positive correlation with: the average 

machine utilization, the number of lots, and the average 

number of lots per component. 

5. CONCLUSIONS 

The main motivation for this study arose from the interest of 

a Textile company to increase the efficiency of their knitting 

scheduling plans. As in such type of problems the solution 

times are a major concern, we developed a constructive 

heuristic for the lot splitting and scheduling problem existent 

in the knitting section of the factory. The heuristic is 

extremely fast, solving instances greater than the real ones in 

less than one second. The total tardiness and the total 



 

 

     

 

deviations are for some instances high, denoting a potential 

field of improvement. In the context of the real problem, the 

minimization of the total tardiness is very important to assure 

a high level customer service. Nonetheless, the total 

deviations are of major interest since the production process 

after the components knitting, is joining the several 

components that belong to the same product and that process 

can only occur after completing all the components 

production. The developed heuristic, takes both objectives 

into consideration. As far as we are aware, none scheduling 

published work consider this kind of objective. 
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