
A service-oriented middleware for composing context aware mobile services

João Paulo Sousa
Departamento de Informática e Comunicações

Instituto Politécnico de Bragança
Bragança, Portugal

jpaulo@ipb.pt

Eurico Carrapatoso
Faculdade de Engenharias

Universidade do Porto
Porto, Portugal

emc@ipb.pt

Benjamin Fonseca
CITAB/Universidade de Trás-os-Montes e Alto Douro,

Vila Real, Portugal
benjaf@utad.pt

Abstract— Recent advances in wireless networks and mobile
devices have brought about new scenes for the provision of
services to end-users. Besides traditional services, new ones
may be provided that transparently adjust and adapt to the
user context. The user would have more choice and flexibility
if, besides using the services, he could also compose his own
services in an ad-hoc way. This paper presents iCas, an
architecture to create context-aware services on the fly and
discusses its main components. Also an application scenario is
briefly described.

Keywords: Context-aware, Services composition, Semantic
Web, Web Services

I. INTRODUCTION
It is predictable that in the near future the network mobile

environment will be characterized by interaction between
services and that those services will be provided to users
dynamically and transparently. In this scenario, the use of
captured contextual information related to issues such as
location, current activities, objects in the neighbourhood and
device features, plays a crucial role in the simplification of
the interaction between humans and the digital world.

Often the user only assumes the role of consumer of
services provided by third parties. For those users a set of
useful services and information is provided, but they are
aimed at a general market, leaving aside users that would
like to take advantage of more personalized services. Our
goal is to create an open infrastructure for a mobile network
environment, in which a user can receive in his mobile
device (e.g. PDA, netbook, notebook) context-aware
information (e.g. location, time, neighbourhood, user profile)
and have a set of useful services sensitive to his current
context. The user can also compose services dynamically in
real time to create a new highly personalized service with
more features and use or share it as many times as he wants.

The remainder of this paper is structured as follows:
section 2 discusses related work, section 3 introduces an
ontology to describe context. Section 4 discusses the several
approaches to composing Web Services and the OWL-S
ontology. Section 5 presents the iCas architecture and
describes the details of each component. Section 6 describes
the scenario for using iCas, followed by the first performance

evaluation, in section 7. Finally, we provide some
conclusions and future work, in section 8.

II. RELATED WORK
A number of context-aware systems have been developed

to demonstrate the usefulness of context-aware technology
such as ParcTab [1], which was one of the first systems to
offer a general context-aware framework; and
ContextToolkit [2], which presents a modular context-aware
framework with reusable components. This allows the
programmers to build more easily, interactive context-aware
systems based on sensors. These systems don’t have an open
context model because often the context is described in an
object-oriented base and so the information is strongly
coupled with the programming model.

More recently several studies appeared to support
context-aware composition of services, one more generic and
others dedicated to mobile environments [3] [4] [5] [6] [7].

In [3] the authors present a distributed architecture and
associated protocols for service composition in mobile
environments. This study emphasizes some factors that allow
the composition of services in ad-hoc networks such as
mobility, dynamic changing service topology, device
heterogeneity, fault tolerance and reliability.

In [4] the authors propose a framework for dynamic
composition of context-aware mobile services. The main
features are service adaptation to the devices and network,
and service adaptation to the user preferences and user
location. However the study does not specifies which
approach is used to compose new services.

The SOCAM [5] presents, a middleware architecture for
building rapid context-aware services. It provides support for
discovering, acquiring, interpreting and accessing context
information. It also presents one of the first ontologies that
define the main classes of context: person, location, activity
and computer entity. Nevertheless, this architecture does not
allow the composition of services. MyCampus [6] is a
semantic web environment that uses agents able to find
context information for enhancing everyday campus life. The
MyCampus architecture is composed by eWallets (static
knowledge containers), which support automated discovery
and access to the context. The users can subscribe task-

2009 Fourth International Conference on Internet and Web Applications and Services

978-0-7695-3613-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIW.2009.59

357

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153408745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specific agents to assist them in different context tasks using
the semantic information in eWallets. These agents are able
to discover, execute and compose automatic semantic Web
Services using the OWL ontology for services (OWL-S) [8].

In [7] the authors present CACS, a framework that
enables context-aware composition of Web Services. This
framework supports capability matches and goal-driven
composition services flow. The CASC architecture uses
software agents to discover, compose, select, and
automatically execute Web Services using OWL-S.

In [3], [4], [6], [7] we saw that these systems don’t have
an open model to describe context, which cause some lacks
on sharing context knowledge and context reasoning with
external systems. The [3], [4], [7] studies present
architectures that support the automatic composition of
services. The user makes a request to the architecture, most
of the times to a software agent, that collects context
information and tries to find the most suitable service, which
agrees with the request’s description. If the agent doesn’t
find the service or it doesn’t exist, then the software agent
decomposes the request into multiple sub-goals in order to
find the matched services.

In all the cases that use automatic composition, it is a
hard task to maintain the details about the rules of services’
invocation. These approaches also do not have an open
model to describe context, which causes some limitations
regarding the sharing of context knowledge and context
reasoning with external systems.

III. SEMANTIC MODEL
Contextual information models based on ontologies have

been explored in several architectures that support context-
aware services (e.g. [5] [9] [10]). These models allow the
cooperation among objects and the discovering, acquisition,
inference, and distribution of contextual information.

To describe the context, we decided to use the semantic
model SeCoM (Semantic Context Model), presented in [10].

The use of a semantic model brings several advantages:
• the possibility of having a high degree of

expressiveness and formalism to represent concepts
and relations in a context-awareness scenario; it
allows reasoning about context;

• the use of a semantic information context model,
based on Semantic Web standards, makes the
exchange, reuse and, sharing of context information
between context aware applications easier;

• it decouples the information context model from the
programming model, unlike some architectures
presented in the previous section.

SeCoM is composed of six main ontologies: Actor,
Activity, Spatial, Spatial Event, Temporal Event, Device,
Time; and six support ontologies: Contact, Relationship,
Role, Project, Document, Knowledge.

IV. WEB SERVICES COMPOSITION
The composition of services allows developers and users

to create new services or applications, based on a Service
Oriented Architecture (SOA) that supports description,

discovery and communication. One of the most used SOA
technologies is Web Services, due to the advantages already
known to the scientific community [11] [12] [13].

Web Services have often been used for the composition
of services. Nowadays there are six approaches to the Web
Services composition [14]: WSBPEL [15], Semantic Markup
for Web Services (OWL-S) [16], Web Components [17],
Algebraic Process Composition [18], Petri Nets [19] and
Model Checking and Finite-States Machines [20]. The
previous approaches intended to solve the problems found in
services composition such as syntax and semantic
verification, resource reservation, QoS or deadlocks. In [14]
and [21] the authors compare several solutions, based on
characteristics such as automatic composition, composition
verification, scalability, goal satisfaction, connectivity and
non-functional properties.

When the purpose is to implement the composition of
mobile services, we have to consider some concerns such as
the complexity of the services to be built. For this purpose,
one must find a compromise between simplicity in service
creation and flexibility. A more flexible service requires
more complex rules and probably specific technical
knowledge. In this case the simplicity offered to end users is
lost.

To achieve this goal, we chose to compose services in an
interactive way: the user gradually generates the composition
with ad-hoc forward or backward selection of services. To
use this approach for composing Web services requires that
they can understand their features and how they interact
together. WSDL specifies a standard way to describe the
interfaces of a Web Service at the syntactic level. However,
WSDL does not support the semantic description of services.
OWL-S has appeared to fulfill this limitation and uses the
OWL language to describe Web Services. OWL-S provides
Web services with a set of markup language constructs for
describing the properties and capabilities in an unambiguous
interpretable form to the software agents. OWL-S is a
framework that enables automatic discovery and
matchmaking tasks, and composition and execution of Web
Services.

OWL-S consists of the following classes: ServiceProfile -
specifies how the services are announced to the world;
ServiceModel - specifies how to interact with the service;
ServiceGrounding - specifies the details of how an agent can
access the service.

V. PROPOSED ARCHITECTURE AND IMPLEMENTATION
To support the composition of context-aware services on

the fly and provide context-aware information to the users,
we propose a service oriented architecture (SOA) based on
ontologies. We divide the architecture into four essential
engines to explore the potential of context, showed in Fig. 1.

When a user selects the service composition IDE, the
service discovery component gets the preferences,
parameters configuration and interests. With this information
and the OWL-S services descriptions, the service discovery
and selection selects the services from the service repository
to perform a context-based selection, and then delivers it as a
list to the IDE.

358

When a user starts a composition, maybe he knows
clearly which tasks he wants to achieve with the composition
or perhaps he starts to compose, choosing compatible
services that can suggest the creation of a new service. In
either situation the service composition is an ongoing
process, where the user can add or remove services
interactively.

Each time a service is selected to be part of the
composition, the service discovery and selection module
searches for services (Fig. 2) using data collected from the
context engine core and returns further possibilities based on
the current context and user policies. The search and
selection is only possible due to the OWL-S service
description, which allows creating relationships with other
ontologies that can describe details about a service type and

its features.
The search is performed using the description of the

ServiceProfile class, which contains what the services can
do, and specifies the input/output types, preconditions and
effects. The first selection of services is performed using the
ServiceProfile hierarchies, which choose the services from a
particular category. Then a matching is performed, selecting
the services whose input is syntactically compatible with the
output of the current service.

Finally a scoring is carried out using the weights of the
evaluation parameters defined in the ServiceProfile and a
particular evaluation policy, which depends on the service
category.

The ongoing user composition is supported by the service
composition function, which generates a workflow of

Figure. 2 Overview of iCas architecture.

 Overview of iCas architecture.

Figure. 1 Overview of iCas architecture.

359

services calls (Fig 3).
By the time that user finishes the composition, the entity

service composition has created a composite service that
contains a workflow. This workflow is a composite service
that has the three key descriptions of an OWL-S service:
service profile, grounding and model, as mentioned in the
end of section IV. This newly composed service can be
saved, executed or used into another service composition
task. To store the service, the service composer component
uses the service management, and to execute the service it
calls the service execution.

The service management component deals with the
services stored in the services container, providing
operations such as adding, removing and sharing services
using the policies properties. The service container only
stores the OWL-S description of this service (service profile,
model and grounding). The service functionality is still
provided by a third party (e.g. e-learning platform Web
service).

The service execution module, using the OWL-S API,
provides an execution engine to invoke atomic processes
described by WSDL or UPnP groundings, and composite
processes that uses control constructs sequences, unordered,
and split. All the execution processes that depend on
conditional statements, such as if-then-else and repeat-until,
are not supported by the API. When the service execution
promotes a composition, it follows a workflow to call each
individual service and exchange data between them,
according to the flow constructed by the user.

The context engine is responsible for managing all
related context data and for reasoning about context. All
context information is stored in a permanent OWL ontology
storage system. The context engine core uses the Jena API to
store the RDF models of SeCoM using a Postgre DB. This
engine is also responsible for extracting knowledge from the
SeCoM ontology, using SPARQL queries and for making
inferences to derive additional statements that are not

described explicitly in the SeCoM model (e.g. “if a user is
located in the library, so he is in university campus”, or if a
user has interests in “ontologies” and context-awareness is
related to “semantic web”, hence the user is also interested in
“semantic web”).

The context aggregators keep in memory (non-
persistent), highly changing dynamic data that is captured
from various sources related to an entity (e.g. user, object).
For each entity an instance is created that relates that entity
with the data that come from the sources (e.g. user’s location
and data sensor). This component removes the computational
charge caused by the frequent data updates into the persistent
ontology.

The profiles and preferences management is responsible
for managing the explicit user profile and interests
information. Using the administration panel this component
allows the user or administrator to manage explicit context
such as insert, update and remove profiles parameters and
user preferences.

The actions history storage captures each action
performed by the context engine core and stores it in actions
history DB. The main actions are search, insert, update and
remove, and they are saved in the following format: Action +
target Triplet (e.g. update: Bob isMemberOf the Sciences
Students Group).

The profile and preferences learning component can
change preferences and profile data through a learning
algorithm (e.g. if a student queries many times for a
particular book in the library services, the theme category of
that book is added to the hasInterestesIn property of the
knowledge ontology). The profile and preferences learning is
an independent component. It searches for particular actions
stored in the actions history DB, and counts the number of
times that an action appears and, accordingly, changes
specific parameters defined to be learned. Although this is
not an optimal approach, a good solution can only be
achieved with a large-scale utilization of iCas architecture

Figure. 3 Overview of iCas architecture.

360

and the collecting of user feedback. In the future the
algorithm may also evolve to an AI algorithm, searching for
patterns in the database.

The context data acquisition engine collects data from
several sources, such as location devices, sensors and
external services, and prepares the data to be used by the
content engine and context engine (e.g. convert units values
from a data sensor, or transform the coordinates user’s
location to a referential location (room 2.1)).

The content engine is composed by two components: the
content selection is a timer function that periodically selects
the user interests information from the context engine and
delivers it to the content adaptation module for
transformation. To be able to consult information in arbitrary
devices, the information content must be provided in a
device-independent way. iCas provides the context
information as RSS feeds that are adapted by the content
adaptation component. To do that this component adapts the
information to the user’s device features, using XHTML
Modularization [22].

The iCas system is implemented integrally in Java (JDK
1.6.0). The iCas middleware architecture is composed of:

• Composition engine and context information system:
Glassfish v2, JAX-WS 2.1, JAXB 2.1, Jena 2.5.4
and OWL-S 1.1.

• Context, profiles and preferences management DB:
Postgre 8.2.8.

• Actions history storage management DB: Postgre
8.2.8.

• Ontologies models: SeCoM and OWL-S.
All four engines are implemented in the Glassfish v2

application server, which provides the functions to the GUI
client through HTTP, as Web Services. This configuration
was chosen to support the ad-hoc composition of services in
mobile devices, bringing the reasoner’s computational
requirements to the server side.

VI. EXAMPLE OF APPLICATION
We chose a university campus as a scenario for using

iCas (Fig. 4).
This architecture aims the support students and teachers

in their campus life, helping them to keep updated and
improve their social and pedagogical interaction. When a

student arrives at the campus and connects his
pda/netbook/laptop to the wireless network he will have to
authenticate. This authentication is used to identify the user
in a wireless system and in the iCas architecture.

The campus university already has a location system
based on the wireless network, which is used to locate the
users inside the campus. Besides the service location, the
campus also has other services that can provide useful
information integrated to the iCas system. Some of the most
important services are: an e-learning platform that provides
news about lessons, classes contents and others pedagogical
information; library services; academic services that can
provide administrative information such as official news and
administrative services.

The main features of iCas consist of providing context-
aware information and the dynamic composition of services.
For this purpose the user’s GUI client has four panels:
informative, services composition, maps and administration.
In the information panel the user can consult campus
information based on his context (e.g., activities, events,
news). To compose services in an ad-hoc away the user can
use the services composition panel. If the user uses any
service that has location output format, information will
appear on the maps panel. Any task related with
administration, such as changing user profile data and other
explicit information, has to be done in the administration
panel.

VII. PERFORMANCE AND EVALUTION
The implementation presented in the previous section is

ongoing work. To get the first performance evaluation, we
made some preliminary tests of some components that we
consider critical to the viability of our approach.

In our test scenario we used two machines connected to
the campus wireless network, with access points Cisco
aironet 1100, which support IEEE 802.11g standard.

The machine 1 (M1) is an Intel Core 2 Duo 7400
(2.4Ghz) 3GB DDR2 with OS X 10.5.5, and runs the iCas
architecture middleware described in Section V.

The Glassfish, that runs third party Web Services, is
installed in machine 2 (M2), an Intel Core 2 Duo T8600 4
GB DDR2 with Linux (kernel 2.6.24) as its operating
system. Some of the third party services installed in this

Figure. 4 iCas usage scenario in a university campus.

361

machine are services provided by the library, and e-learning
platform.

We intended to get some preliminary results from the
following main components that are exposed to
computationally and I/O intensive processes: context engine
core (inserting data and querying for derived contexts),
service composition and service execution. We excluded
services discovery and selections because the selection is
highly dependent on the context engine core.

With the objective of gaining some feedback on how the
context engine core performs, a high rate of data was
inserted into a persistent ontology. The test was performed in
M1 with 5000 users’ information (username, hasName,
hasSurname, hasFriend), which belongs to the two
ontologies (actor.owl and relationship.owl). The time to add
each user was less than 7ms; to update the same information
it took less than 15ms.

To test the reasoning component we made several
SPARQL queries, that generated information from three
ontologies, and the results were between 10ms and 150ms.
These preliminary results showed us that the use of persistent
ontologies seems to be performing well.

To test service composition and service execution we ran
a client in M1, which launched 500 threads. Each thread
intended to simulate a user that orders a service composition
and its execution. The resulting service consisted of two
services joined in a pipeline. The services that were part of
this composition were provided by the application server
running in the M2 machine, and had an execution time of
20ms. Our intention was to see how the application server
performed with a charge of service composition and
execution. In this test all the requests were successfully
completed and the average of time to finish the task was less
than 300ms.

VIII. CONCLUSION
In this paper we have presented iCas, a service-oriented

architecture that uses an ontological context model to
provide personal and contextual information and to support
the composition of context-aware services. The two major
contributions of our work are the joint use of a semantic
context model (SeCoM), to describe and explore the
expression of contextual information, along with the support
of dynamic composition, of context-aware services by the
user.

We also present the first performance evaluation, which
shows that our approach is viable. In the future we intend to
finish iCas implementation and test it in a real scenario on a
university campus. In this scenario we intend to determine
how the context-aware mobile technologies can be used to
improve pedagogical features and the socio-pedagogical
interaction of various types of users.

REFERENCES
[1] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg, J.

Ellis, and M. Weiser, "The Parctab Ubiquitous Computing
Experiment," Mobile Computing, pp. 45-101, 1996.

[2] D. Salber, A. Dey, and G. Abowd, "The Context Toolkit: Aiding the
Development of Context-Enabled Applications," 1999, pp. 434-441.

[3] D. Chakraborty, A. Joshi, T. Finin, and Y. Yeshadoi, "Service
Composition for Mobile Environments," Mobile Networks and
Applications, vol. 10, 2005.

[4] S. Panagiotakis and A. Alonistioti, "Context-Aware Composition of
Mobile Services", IT Professional, vol. 08, pp. 38-43, 2006.

[5] T. Gu, H. Pung, and D. Zhang, "A service-oriented middleware for
building context-aware services," Journal of Network and Computer
Applications, vol. 28, pp. 1-18, /01// 2005.

[6] M. Sheshagir, N. Sade, and F. Gandon, "Using Semantic Web
Services for Context-Aware Mobile Applications," in MobiSys 2004
Workshop on Context Awareness, Boston, 2004.

[7] L. Nan, Y. Junwei, L. Min, and S. Yang, "Towards Context-Aware
Composition of Web Services," in Fifth International Conference on
Grid and Cooperative Computing, Washington, DC, USA, 2006, pp.
494–499.

[8] W3C, "OWL-S: Semantic Markup for Web Services,"
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/,
2004.

[9] H. Chen, F. Perich, T. Finin, and A. Joshi, "SOUPA: standard
ontology for ubiquitous and pervasive applications," in Mobile and
Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. The First Annual International Conference
on, 2004, pp. 258–267.

[10] R. Bulcao and M. Campos, "Toward a Domain-Independent Semantic
Model for Context-Aware Computing," in Third Latin American Web
Congress (LA-Web’05), Washington, DC, USA, 2005, p. 61.

[11] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, "Web Services -
Concepts, Architectures and Applications," 2003.

[12] H. K. Cheng, Q. C. Tang, and J. L. Zhao, "Web Services and Service-
Oriented Application Provisioning: An Analytical Study of
Application Service Strategies," Engineering Management, IEEE
Transactions on, vol. 53, pp. 520-533, 2006.

[13] M. P. Papazoglou, "Service-oriented computing: concepts,
characteristics and directions," Web Information Systems
Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pp. 3-12, 2003.

[14] N. Milanovic and M. Malek, "Current Solutions for Web Service
Composition", IEEE Internet Computing, vol. 8, pp. 51-59, 2004.

[15] Oasis, "UDDI v3.0 Ratified as OASIS Standard,"
http://www.uddi.org/, 2005.

[16] A. Ankolekar, "DAML-S: Web Service Description for the Semantic
Web," 2002.

[17] J. Yang and M. Papazoglou, "Web Component: A Substrate for Web
Service Reuse and Composition," in CAiSE '02: Proceedings of the
14th International Conference on Advanced Information Systems
Engineering, London, UK, 2002, pp. 21-36.

[18] R. Milner, F. L. Bauer, W. Brauer, and H. Schwichtenberg, "The
polyadic pi-calculus: a tutorial," in Logic and Algebra of
Specification: Springer-Verlag, 1993, pp. 203-246.

[19] R. Hamadi and B. Benatallah, "A Petri net-based model for web
service composition," in ADC '03: Proceedings of the fourteenth
Australasian database conference, Darlinghurst, Australia, Australia,
2003, pp. 191-200.

[20] T. Bultan, X. Fu, R. Hull, and J. Su, "Conversation specification: a
new approach to design and analysis of e-service composition," in
WWW '03: Proceedings of the 12th international conference on
World Wide Web, New York, NY, USA, 2003, pp. 403-410.

[21] B. Srivastava and J. Koehler, "Web service composition - current
solutions and open problems," in ICAPS 2003 Workshop on Planning
for Web Services, 2003.

[22] W3C, "XHTML™ Modularization 1.1, W3C Proposed
Recommendation," http://www.w3.org/TR/xhtml-modularization/,
2008.

362

