
MUMPS Based Approach to Parallelize the Block Cimmino
Algorithm

Carlos Balsa1, Ronan Guivarch2, João Raimundo2, and Daniel Ruiz2

1 Instituto Politécnico de Bragança, Portugal
balsa@ipb.pt

2 IRIT–ENSEEIHT, Toulouse, France
{guivarch, jraimund, ruiz}@enseeiht.fr

Abstract. The Cimmino method is a row projection method in which the original linear
system is divided into subsystems. At every iteration, it computes one projection per sub-
system and uses these projections to construct an approximation to the solution of the linear
system.
The usual parallelization strategy applied in block algorithms is to distribute the different
blocks on the different available processors. In this paper, we follow another approach where
we do not perform explicitely this block distribution to processors whithin the code, but
let the multi-frontal sparse solver MUMPS handle the data distribution and parallelism.
The data coming from the subsystems defined by the block partition in the Block Cimmino
method are gathered in an unique matrix which is analysed, distributed and factorized in
parallel by MUMPS. Our target is to define a methodology for parallelism based only on
the functionalities provided by general sparse solver libraries and how efficient this way of
doing can be.
We relate the development of this new approach from an existing code written in Fortran
77 to the MUMPS-embedded version. The results of the ongoing numerical experiments will
be presented in the conference.

Avant-propos

Our original proposal for this conference was called ”Parallelization of BlockCGSI Algorithm” and
was based on former work still under progress.

For various reasons, we had to change the direction of our investigations and developments.
Actually, we focus on the parallelization of the Block Cimmino Algorithm, which is the inner
iterative part of the BlockCGSI Algorithm mentioned above. Starting from a sequential Fortran
77 version of a solver based on this algorithm, and following the idea discussed in the abstract, we
are currently working on the first parallel version of the method.

This change of direction which occured after some preliminary investigations has induced some
delays in our former schedule and, in particular, in the experimental phase which remains to be
performed and will only be shown in a future release of this article. For this inconvenience, we
please ask the readers of this extended abstract to forgive us.

1 Introduction

As we have already stated in abstract, the Cimmino method is a row projection method in which
the original linear system is divided into subsystems. At each iteration, it computes one projection
per subsystem and uses these projections to construct an approximation to the solution of the
linear system. The Block-CG method can also be used inside the Block Cimmino Iteration to
accelerate its convergence rate. Therefore, we present an implementation of a parallel distributed
Block Cimmino method were the Cimmino iteration matrix is used as a preconditioner for the
Block-CG.

In this work we propose to investigate a non usual methodology for parallelization of the Block
Cimmino method where the direct solver package MUMPS (MUltifrontal Massively Parallel sparse

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153408664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


direct Solver [1, 2]) is incorporated in order to schedule and perform most of the parallel tasks. This
sparse solver library offers to the user the facilities to call the different phases of the solver without
taking care of the distribution of data and processes. It also implements various functionalities,
like residual computation (for iterative refinement), etc, which can also be exploited at different
steps of the iterative solver.

The outline of the paper is the following: the Block Cimmino Algorithm is described in sec-
tion 2, the parallelization strategy will be exposed in section 3 and the current status of the
work is presented in section 4. We finish by a conclusion where we list all the improvements and
developments still to be done.

2 Block Cimmino Algorithm

The Block Cimmino method is a generalization of the Cimmino method [3]. Basically, we partition
the linear system of equations:

Ax = b, (1)

where A is a m× n matrix, into l subsystems, with l ≤ m, such that:
A1

A2

...
Al

 x =


b1

b2

...
bl

 (2)

The block method [4] computes a set of l row projections, and a combination of these projections
is used to build the next approximation to the solution of the linear system. Now, we formulate
the Block Cimmino iteration as:

δi(k)
= Ai+bi −PR(AiT )x

(k) (3)

= Ai+
(
bi −Aix(k)

)
x(k+1) = x(k) + ν

l∑
i=1

δi(k)
(4)

In (3), the matrix Ai+ refers to the classical pseudoinverse of Ai defined as: Ai+ = AiT
(
AiAiT

)−1

.

However, the Block Cimmino method will converge for any other pseudoinverse of Ai and in our

parallel implementation we use a generalized pseudo-inverse [5], Ai−
G−1 = G−1AiT

(
AiG−1AiT

)−1

,
were G is some symmetric and positive definite matrix. The PR(AiT ) is an orthogonal projector

onto the range of AiT

.
We use the augmented systems approach, as in [6] and [7], for solving the subsystems (3)[

G AiT

Ai 0

] [
ui

vi

]
=

[
0

bi −Aix

]
(5)

with solution:

vi = −
(
AiG−1AiT

)−1
ri

ui = Ai−
G−1(bi −Aix) (6)

= δi

The Block Cimmino method is a linear stationary iterative method with a symmetrizable iteration
matrix [8]. The symmetrized iteration matrix is symmetric positive definite (SPD), and we can
accelerate its rate of convergence with the use of Block Conjugate Gradient method (Block-CG).



The Block-CG method [9, 10] simultaneously searches for the next approximation to the sys-
tem’s solution in a given number of Krylov subspaces, and this number is given by the block size
of the Block-CG method. The Block-CG method converges in a finite number of iterations in
abscense of roundoff errors.

3 Parallelization strategy

With block algorithms, a way to parallelize, which seems to be the more naturaly exploited in
general, is to distribute the different blocks on the different available processors as developed
in [11]. An easy distribution could be, in this case, to assign a block per processor. This natural
way becomes not so easy when we try to find a distribution which aims to improve the load-
balancing:

– if we have a high number of processors, we can create the same number of blocks; but the
convergence of blocked algorithms often decreases when the number of blocks increases;

– if the blocks are too small, the cost of communication will be prohibitive relatively to the
computations.

In this paper, we follow another approach where we will forget this block distribution to
processors by letting the sparse direct solver package MUMPS handle the data distribution and
the parallelization. The data coming from the subsystems defined by the block partition (2) in
the Block Cimmino method are gathered into an unique matrix. This block diagonal matrix is
then given to MUMPS to be distributed, analyzed and factorized in parallel. Then, at each Block-
CG iteration, MUMPS solves the system involved during the preconditioner step. Finally, we let
MUMPS taking care of the distribution with respect of the structure and properties of the matrix
in order to have the best factorization and load balancing. The added advantage of this way of
doing, is that the sparse linear solver will handle (without any extra development for us) all the
levels of parallelism available, and in particular those coming from sparsity structure and BLAS3
kernels on top of the block partitioning. This also give us more degrees of freedom when partioning
the matrix as in (2), with the possibility to define less blocks than processors but larger ones, that
may help to increase the speed of convergence of the method with still good parallelism in the end
since the three levels of parallelism above are managed together.

After each solution of the preconditioner step, there is some operations to perform in the Block-
CG algorithm, such as daxpy, ddot, residual computation, . . . The first step in our development was
to start from an existing code written in Fortran 77 by improving it (dynamic memory allocation,
see section 4). We then implemented the preconditioner step with the use of the MUMPS package.
However, after this step, we gather the distributed results on a a master processor to perform
the remaining Block-CG operations (daxpy, ddot, etc) still in sequential. The next step to achieve
our goal will be to perform most of these operations in parallel by letting the data in place after
distribution and factorization by MUMPS, and these operations will be performed by means of
the MUMPS-embedded functionalities for data management and communications.

4 Parallelization

In the existing code written in Fortran 77, all the memory allocation is made statically; the
dynamic memory allocation being first available only in Fortran 90. To handle the memory in a
static manner, a particular strategy is adopted. Two arrays of size defined by the programmer are
created, IPool and DPool, and used as a memory stack to store all integer and double precision
major variables respectively. In this way, it is assured that during the execution of the program no
more memory than that specify by the programmer will be used. There are two extra variables,
FinIPool and FinDPool indicate at any time during the execution the amount of memory occupied
in each array. This is flexible enough to have variables that are no longer needed being overridden
by new variables, thus allowing some memory management and less memory waste.



The main issue about the original code is that, in order to use the direct solver MUMPS, it
is necessary to have dynamic memory allocation management of the variables used by the solver.
So, to allow a greater flexibility in the program, we started to change all variables stacked in IPool
and Dpool to dynamic allocatable arrays.

For a better structuration and understanding of the code, we took advantage of another feature
of Fortran 90, the modules. The module created in this case contains all the structure prototypes,
which, in turn contains all variables used with dynamic allocation.

With dynamic allocation implemented, the next step was to move from the original sequential
solver Ma57 [12] to the parallel solver MUMPS. The MUMPS package has two versions, a sequen-
tial and a parallel one. Because MA57 and MUMPS are direct solvers, the switch was not very
difficult: we just had to change the calls to these solvers in the three main phases, i.e Analysis,
Factorization and Solve.

However the data had to be transformed completely, and in particular matrix blocks and right
hand sides. These data are stored in MUMPS variables along with the three phases as they are
needed but, MUMPS doesn’t accept the matrices by blocks so, we had to group all the blocks
from the partitioning of the Cimmino method, in the according array variable in MUMPS.

After the sequential MUMPS was implemented, the next step was to implement the parallel
version. We just needed a new compilation of MUMPS with the parallel libraries (ScaLAPACK)
and several MPI function calls. One of the nice feature of this implementation is that, to go from
the sequential to parallel version of our code, only few changes are necessary, the interface of
MUMPS being the same in the two cases.

5 Ongoing works

We are currently working on the validation of the firt parallel version of the code described above.
We plan to perform various tests for performance, scalability, parallelism with some classical
matrices from Matrix Market.

These tests will enable us to differentiate the parallel part, the cost of communication and the
weight of the remaining sequential operations, with varying numbers of processors, matrices with
different sizes and structure, etc. We will also investigate different partitioning strategies, some
with few but large blocks and others with more but smaller blocks, and compare the trade-off
between the three levels of parallelism managed alltogether, the fill-in when factorization, and the
speed of convergence that may vary from one to the other partitioning strategy.

After that, to implement the final targeted parallel version, we will identify the basic embedded
functionalities already available in the MUMPS package, such as residual computation used in
iterative refinement for instance, and design new ones whenever necessary. We will also define the
user interfaces to adress directly these functionalities within the parallel iterative solver so as to
exploit the data distribution already established and handled by MUMPS.

References

1. Amestoy, P., Buttari, A., Combes, P., Guermouche, A., L’Excellent, J.Y., Pralet, S., Ucar, B.: Mul-
tifrontal massively parallel solver - user’s guide of the version 4.7. Technical Report 957, Toulouse,
France (2007)

2. Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 23 (2001) 15–41

3. Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equaziono lineari. In: Ricerca Sci. II.
Volume 9, I. (1938) 326–333

4. Arioli, M., Duff, I.S., Noailles, J., Ruiz, D.: A block projection method for sparse matrices. SIAM J.
Sci. Stat. Comput. (1992) 47–70

5. Campbell, S.L., Meyer, J.C.D.: Generalized inverses of linear transformations. Pitman, London (1979)
6. Bartels, R.H., Golub, G.H., Saunders, M.A.: Numerical techniques in mathematical programming.

In J.B. Rosen, O. L. Mangasarian, K.R., ed.: Nonlinear Programming. Academic Press, New York
(1970)



7. Hachtel, G.D.: Extended applications of the sparse tableau approach - finite elements and least
squares. In Spillers, W.R., ed.: Basic question of design theory. North Holland, Amsterdam (1974)

8. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press, London (1981)
9. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl.

29 (1980) 293–322
10. Arioli, M., Ruiz, D.: Block conjugate gradient with subspace iteration for solving linear systems.

In: Second IMACS International Symposium on Iterative Methods in Linear Algebra, Blagoevgrad,
Bulgaria (1995) 64–79

11. Arioli, M., Drummond, A., Duff, I.S., Ruiz, D.: A parallel scheduler for block iterative solvers in
heterogeneous computing environments. In: Proceedings of the seventh SIAM conference on Parallel
Processing for Scientific Computing, Philadelphia, USA, SIAM (1995) 460–465

12. Duff, I.: Ma57 - A new code for the solution of sparse symmetric definite and indefinite systems.
Technical Report RAL-TR-2002-024 (2002)


