
GRAPHICAL SIMULATION OF NUMERICAL ALGORITHMS
An aproach based on code instrumentation and java technologies

Carlos Balsa1, Luís Alves1 , Maria J. Pereira1, Pedro J. Rodrigues1 and Rui P. Lopes1
1Polytechnic Institute of Bragança, campus de Sta. Apolónia apartado 1134, Bragança, Portugal

{balsa,lalves,mjoao,pjsr,rlopes}@ipb.pt

Keywords: E-Learning Tool, Numerical Methods, Octave, Code Instrumentation, Inspector Functions, XML, OpenGL,
Website, Servlet, open source.

Abstract: We want to create a working tool for mathematics teachers and a corresponding learning tool for students,
namely a graphical simulator of mathematical algorithms (GraSMa). To achieve it we try two different
strategies. We started by annotate manually the original algorithm with inspector functions. Now we are
testing a new approach that aims to automatically annotate the original code with inspector functions. To
achieve this we are developing a language translator module that enables to comment automatically any
code written in Octave language. The run of the annotated code gated by one of these two ways, records in a
XML (eXtensible Markup Language) file everything that happened during the execution. Subsequently, the
XML file is parsed by a Java application that graphically represents the mathematic objects and their
behaviour during execution. The final application will be accessed on-line through a website (WebGraSMa)
which is currently under development. In this paper we report and discuss about the procedures followed
and present some intermediate results.

1 INTRODUCTION

We assume that the geometric representation helps
to understand mathematical concepts. From this
perspective, the numerical methods are no longer
seen as a sequence of lines of code. We are
developing an open source tool (Graphical Simulator
of Mathematical Algorithms - GraSMA) that can be
used by teachers and students in the class of
Numerical Methods. GraSMA will help to
understand concepts as approximated solution,
iteration, convergence, error, etc.

Currently there are several software modules
in the field of mathematics education. Some are
commercial and other free. Most of them focus on
secondary education. Subjects taught in graduate
education, particularly on the subject of numerical
methods, are scare. In these series, we highlight the
"Interactive Educational Modules in Scientific
Computing," available online at the site
http://www.cse.illinois.edu/iem/. In this software,
each module is a Java applet that is accessible
through a web browser. For each applet, we can
select, from a list, problem data and algorithm
choices interactively and then receive immediate
feedback on the results, both numerically and

graphically. Our approach differs from this because
it is open source and generic, open to the inclusion
of new mathematical methods that can be illustrated
graphically

In previous work (Balsa et al, 2010), we put
out several important questions namely: How to
retrieve the information about the sequence of
algorithm iterations (data flow and control flow)?
How to represent internally that information? Is the
representation in XML pretty generic? Which
Technology should be used to visualize graphically a
mathematical algorithm (Java and OpenGL)?

We begin by answering to these questions in
sections 2, where we show the principals step that
conduce to the current GraSMA implementation.
After that, in sections 3, we illustrate the GraSMA
utilization with the Newton Raphson’s method. In
section 4 we discuss about GraSMA improvements
that we are currently developing.

2 GRASMA IMPLEMENTATION

To retrieve the information about the sequence of
algorithm iterations we choose the Code
instrumentation. This technique is very well known

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153408628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in the area of program comprehension, see for
instance (Berón et al, 2007) and (Cruz et al, 2009),
and usually is adopted when the objective is to
visualize programs written in a specific language.
The main idea is to annotate the source code with
inspector functions. This will allow retrieving static
and dynamic information of the program execution.
Regarding the second question, a Document Type
Definition (DTD) will be created in order to
generate an intermediate representation in XML
(eXtensible Markup Language) (Ramalho and
Henriques, 2002). That DTD allows representing
information about the algorithm execution. One of
the first challenges of this work is to determine a
XML file format that can be used for drawing a very
great number of different algorithms.

In order to visualize the algorithms, the Java
programming language (Cadenhead and Lemay,
2007) and OpenGL API (Shreiner, 2009) are used
and the visualizations are based on fundamental
mathematical.

The software, based on Java and OpenGL, is
built around two predominant classes that are needed
to produce the visualization of the algorithm, they
are: the GLRenderer2D and the GLRenderer3D.

In the software application there is the class
OctaveCaller that generates the XML file. The
”Renderer” classes process and display on screen a
series of mathematical object representing a step or
iteration of a numerical method.

That algorithm is represented, in Java, by the
class Algorithm, based on a representation of the
Octave algorithm through a list of iterations (each
iteration is itself a list of mathematical objects to be
displayed). This information is putted in a list of
iterations and is obtained via the Parser class that
can process an XML file to retrieve the iterations
data and thus place them in the corresponding field
in the instance of the Algorithm class.
When displaying an algorithm is launched two
different drawings: the first one has to draw some
standard elements that are always on the screen
(named the ”global” elements) during the
visualization of the algorithm. The second one has to
draw some elements that are showed only for the
current iteration that is being visualized. Those
elements will be replaced at the next iteration. That
is why one is able to see on the class Diagram that
the Algorithm class is linked to the MathObject
interface by two different links: an iterationList (that
is to mean a list of iteration where an iteration is a
list of MathObject), and a global list is just a list of
MathObject. A generic schema of all software
components can be seen in Fig. 1.

Figure 1: Generic shema of all software components

2.1 Annotation with inspector

functions

The software can display on the screen any type of
algorithm that uses some type of mathematical
objects that will be detailed in section 2.3. For this,
the algorithm coded in Octave linguage, must be
changed a second time to allow record data by each
iteration. This data is encapsulated in an XML file.

Two Octave functions, already defined, are
added to the Octave code:

init_global()
end_global()

These functions are to generate the early part of

“global” algorithm, i.e., all elements that appear on
the screen from iteration to iteration. For each
iteration, other functions are used:

init_data()
end_data()
init_iteration()
init_iteration_with_information()
end iteration()

The init_data is called on the beginning of a

list of iterations. This function will be followed by a
series of successive calls of init_iteration
function (with or without information) to declare the
beginning of a new iteration and a call of
end_iteration function to complete the
annotation. When all the iterations have been
reported with their mathematical objects inside, we

can call the end_data function to close the
iterations list.

Finishing the iteration annotation it is time to
declare the mathematical objects that appear in this
iteration. To do this, the following functions are
available in Octave:

 new_curve
 new_ellipse
 new_circle
 new_curve_with_parameters
 new_integral
 new_integral with parameters
 new_parameter
 new_point2d
 new_point3d
 new_vector
 end_curve_with_parameters
 end_integral_with_parameters

The Octave basic function should be amended to
bring up a parameter file_id as the first parameter
of the function. This file_id is the file identifier
for the XML backup of the execution of the
algorithm. This file identifier is created
automatically by GraSMA that will itself launch
Octave script with this parameter.
 If we wish to run the script manually in
Octave (it means in GNU Octave), you must have an
identifier file (see fopen function in Octave).
 All these Octave functions simply write lines
of XML in a file. Finally the XML file follows the
document type definition (DTM) that enables to be
understood by the Java code.

2.1.1 Example of code instrumentation

We present below the sequence of procedures done
for the graphical representation of the Newton-
Raphson method.
 The end users (students and teachers) are not
concerned with code annotation; they just chose the
algorithm and watch the generated visualizations.
 In this approach, code instrumentation is
performed by us in each Octave algorithm. It occurs
only once throughout the software lifetime. Octave
inspector function calls are added to code in order to
register in the XML file ”what is happening”.
 We start first by changing the header function
to add a new argument file_id.
 As an example, we are going to present the
basic Newton-Raphson in Octave. The original
implementation of this method is:

function[x, res,
nbit]=nle_newtraph(f, df, x0, itmax,
tol, varargin)

x=x0;
nbit = 0;
err=tol+1;
fx= feval(f,x,varargin{ : });
if fx==0;
 x=x0; res=0; nbit=0;
 return
end
while err > tol & nbit <= itmax
 aux = x;
 fx = feval(f,x,varargin{ : });
 dfx = feval(df,x,varargin{ : });
 x = x−fx/dfx;
 err = abs(aux−x);
 nbit = nbit+1;
end
res = feval(f,x,varargin{ : });
if nbit > itmax
 printf([”nle_newtraph stopped

without converging to the desired
tolerance”,…

 ”because the maximum number of
iteration was reached .\n”]);

end
endfunction

 The programming user must decide what he
wants to display on the screen. Let’s imagine that he
wants to show the target function ()f x and to
display different tangent lines representing the
evolution of the algorithm in each iterations.
 Then, before the first iteration of the
algorithm, we declare the elements that will be
global, i.e. the mathematical elements that will be
continuously displayed on the screen. The functions
init_global and end_global must imperatively
be called even if the list of elements inside is empty:

Init_global(file_id);
put what you want here
for example: new curve (file_id, f);
end_global(file_id);

 After the declaration of global elements,
init_data function is called in order to prepare the
annotation of the iterations. Next, at each iteration
we will find at first the init_iteration call (or
init_iteration_with_parameter, which can
also take a string that represents the additional
information to be displayed by the application) and,
at the end, the end_iteration function call.
All these functions (which records data in an XML
file) have always as first parameter file_id. After

the end of the list of iterations, a call to end_data
function is necessary.
 Finally, it remains only to make a call to
init_error and end_error before closing the data
tag (end_data). One can put a list of errors
(new_error_point) after the call to init_error.
We show the last modification of Octave code,
including all the inspector function calls needed to
retrieve all the information we want to visualize:

function[x, res, nbit] =
 nle_newtraph(file_ide, f, df, x0,
 itmax, tol, varargin)

x=x0;
nbit = 0;
err=tol+1;
oldvect=0;
fx= feval(f,x,varargin{ : });
init_global(file_id)
new_curve(file_id,f)
end_global(file_id)
init_data(file_id)
if fx==0;
 init_iteration(file_id)
 x=x0; res=0; nbit=0;
 end_iteration(file_id)
 end_data(file_id)
 return
end
while err > tol & nbit <= itmax
init_iteration(file_id,’Info test’)
 aux = x;
 fx = feval(f,x,varargin{ : });
 dfx = feval(df,x,varargin{ : });
 dim=2;
 x = x−fx/dfx;
new_vector(file_id,dim,x,0,aux,fx,’t

 rue’,’magenta’,’normal’)
 new_vector(file_id,dim,x,0,x,1,’tr

 ue’,’black’,’dotted’);
 if (oldvect !=0)
 new_vector(file_id,dim,oldvect,0,o

 ldvect,1,’true’,’black’,’dotted’);
end
 oldvect=x;
 err = abs(aux−x);
 nbit = nbit+1;
 init_iteration(file_id,’Info

 test’)
end
res = feval(f,x,varargin{ : });
init_erro(file_id)
end_erro(file_id)
end_data(file_id)
if nbit > itmax
 printf([”nle_newtraph stopped

without converging to the desired
tolerance”,…

 ”because the maximum number of
iteration was reached .\n”]);

end
endfunction

2.2 Document type definition

Document Type Definition (DTD) is a structure of
mark-up declarations that defines a document type
for SGML-family languages (SGML, XML,
HTML). A DTD is a kind of XML schema.
 DTDs use a brief formal syntax that declares
the structure and the elements and its attributes of
one type of document. Each case of the DTD will
follow the same organization and it has the same
elements. Part of the DTM used is:

<!ELEMENT algorithm (global, data,
error)

<!ATTLIST algorithm name NMTOKEN
#REQUIRED > < !ELEMENT c i r c l e
EMPTY >

<!ATTLIST algorithm type NMTOKEN
#REQUIRED >

<!ATTLIST circle EMPTY>
<!ATTLIST circle color (black |

magenta | yellow | white | blue | red)
#IMPLIED>

<!ATTLIST circle radius NMTOKEN
#REQUIRED> < !ATTLIST c i r c l e r
a d i u s NMTOKEN #REQUIRED >

<!ATTLIST circle x NMTOKEN
#REQUIRED>

<!ATTLIST circle y NMTOKEN
#REQUIRED>

<!ELEMENT curve (parameter*)>
<!ATTLIST curve color (black |

magenta | yellow | white | blue | red)
#IMPLIED >

<!ATTLIST curve value CDATA
#REQUIRED>

<!ELEMENT data (iteration+)>
<!ELEMENT error EMPTY >
<!ELEMENT global (circle | curve |

integral)* >
…

2.3 Visualization of mathematical
objects

The fundamental mathematical objects that we can
visualize are: vectors, lines, curves (functions),
integrals, circles, ellipses and 3D surfaces. Each of
these objects corresponds to a Java class that
implements the interface MathObject.
 For instance, the semantic representation in
the XML file that matches with the mathematical
object Integral is:

<integral value=”@(x) sin(x)”

 color=”green” lowerbound=”−2”
 upperbound=”8”> </integral>

 The display of integrals was necessary to see
the evolution of the Simpson method (Fig. 2), used
in numerical analysis, for numerical integration. The
first attempt to draw the integrals was based on
polygons (because the polygons are one of the basic
designs of OpenGL). This was not conclusive
because the full draw on the basis of a polygon is
possible only if, on the interval over which the
integral is calculated, the function does not change
its sign. So we used even more basic integrals: using
only lines, and different colours that work in all
cases. Use 15-point type for the title, aligned to the
center, linespace exactly at 17-point with a bold font
style and all letters capitalized. No formulas or
special characters of any form or language are
allowed in the title.

Figure 2: Visualization of the Simpson’s method.

3 GRASMA UTILIZATION

At the opening of GraSMA system, 3 choices are
possible: (1) Display of an algorithm that is already
registered ; (2) Create a new view of an algorithm
that is already octave changed; (3) Import an
existing XML file that corresponds to a previous
DTD and which is therefore possible to display it on
the screen.
 In the case (1), you have just to click on the
left list, on the algorithm, previously implemented,
of your choice. In the case (3), one simply has to
click on Files in the menu and then on Import to
select the XML file.
 In the case (2) of creating a new view of an
algorithm already changed in Octave, the process is
more complex. First we select Files, then New, and

it simply shows the steps on a new window. In this
stage the completion of function parameters is done:
- The parameter Algorithm_Type can take any
value (it is no longer necessary, this setting may
therefore, in the future, never to be asked – there is
just for compatibility).
- If we need to refer a function, we must think about
writing this function in Octave format (for example
@(x) sin(x) for the sinus function).
 The Fig. 3 illustrates the case of the call to
Newton-Raphson method applied to the
function 2()f x x= , with initial

approximation 0 1x = .

Figure 3: Example of a call to Newton-Raphson method.

 Once this information is supplied, the
algorithm visual representation appears on the
application left side.
The user interface is very simple with icons for:
 -Go to the next iteration
 -Go to the previous iteration
 -Make the animation of the algorithm
The progression of the algorithm is shown on the
application right frame and if any information has
been filled for a particular iteration in the modified
Octave file, then it will be displayed on the list box.
 Fig. 4 and Fig. 5 correspond to the two first
iterations of the Newton-Raphson method with setup
parameters shown in Fig. 3. The dashed line

corresponds to the approximate solution obtained by
the tangent function (straight pink) in the previous
iteration.

Figure 4: First iteration of Newton-Raphson method.

Figure 5: Second iteration of Newton-Raphson method.

 We can increase or decrease the zoom level
of the visualization by clicking with the left button
of the mouse.

4 GRASMA IMPROVEMENTS

We are planning to add new functionalities to
GRASMA. Currently we are working in the
automatic annotation of Octave code by means of a
compiler that generates annotated code. Other
current issue is the development of a website that
enables the online access to Grasma.

4.1 Automatic code instrumentation

The main idea is to turn Grasma easily adaptable to
other algorithms. As these algorithms are
implemented in Octave language and we can extract
information in run-time in order to visualize the
execution process. For that, a language processor
will be used to automatically annotate Octave
programs with inspector functions. Till now, this
task was performed manually for each algorithm but
with this new front-end, Grasma can generate
visualizations of any algorithm coded in Octave
without modifying manually the source code.
To implement code instrumentation [CBHP09] we
insert inspection functions (or inspectors) in
strategic places of a program to capture its execution
flow. The information extracted along this
inspection can be used to show different views to
help understanding program behavior. This is a well
known technique for Program Comprehension.
To define a strategy to annotate the source code we
have to know: which information we need to extract;
and what are the strategic points in the source code.
To answer these questions we conceptualize the
program execution process as a state machine (SM).
The input values represent the initial state and the
final state can be represented by the variable values
after execution. The intermediate states are
represented by the variable values reached during
the program execution.
The transition between states is carried out through
the octave program functions. The values reached in
each algorithm step with be saved internally to
produce evolution graphical visualizations.

To implement this strategy we need to build a parser
for the source language extended with semantic
actions. These actions insert into the program new
statements that will allow to trace the state and the
transitions.
In order to construct the parser several compiler
construction [ASU86] tools can be used: Lex&Yacc
[LMB92], AntLR [Ter99] or LISA [HVMLGW05].

These tools are based on the language grammar and
they allow specifying the automatic recognition and
transformation of the program written in that
language. In our case the language to be recognized
is Octave and the transformation consists in adding
the inspector functions.

4.2 WebGRASMA

We are developing a website for the application
GRASMA which display the algorithms created on
the Canvas by the Java application by parsing the
XML files.
 Java application extracts the information out
of the XML files, by parsing them, and draws the
algorithms on the Canvas according to the retrieved
information.
 For achieving mentioned task, we made use
of HTML and Java Servelet technology to create the
desired website.

Figure 6: Snapshot of the Grasma website.

REFERENCES

Balsa, C., Alves, L., Pereira, M.J., Rodrigues, P.J. 2010.

Graphical Simulator of Mathematical Algorithm
(GraSMA). In Teaching and Learning 2010, Advances
in Teaching and Learning Research. IASK.

Berón M., Henriques P. R., Pereira M. J. V., Uzal R.,
2007. Static and Dynamic Strategies to Understand C
Programs by Code Annotation, In OpenCert'07, 1st
Int. Workshop on Fondations and Techniques for
Open Source Software Certification.

Ramalho J. C, Henriques P. R, 2002. XML & XSL: da

teoria à prática. FCA Editor. Lisbon, 1st Ed.

Cadenhead R. and Lemay L., 2007. Teach Yourself Java 6

in 21 Days. Sams, 5th Edition.

Shreiner D., 2009. OpenGL Programming Guide: The

Official Guide to Learning OpenGL, Versions 3.0 and
3.1. Addison-Wesley Professional, 7th Edition.

[CBHP09] Daniela da Cruz and Mario Béron and Pedro

Rangel Henriques and Maria João Varanda Pereira,
Code Inspection Approaches for Program
Visualization, Acta Electrotechnica et Informatica,
Linus Michaeli, Faculty of Electrical Engineering and
Informatics, Technical University of Kosice, Slovakia,
2009, Jul-Sep, 9(3), 32-42, ISSN: 1335-8243.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.
Compilers Principles, Techniques and Tools. Addison-
Wesley, 1986.

[LMB92] J.R. Levine, T. Mason, and D. Brown. Lex &
Yacc. Ed. Dale Dougherty. O’Reilly & Associates Inc.,
1992.

[Ter99] Terence Parr. Practical computer language
recognition and translation – a guide for building source-
to-source translators with antlr and java.
http://www.antlr.org/book/index.html, 1999.

[HVMLGW05] Pedro Henriques, Maria Jo˜ao Varanda,
Marjan Mernik, Mitja Lenic, Jeff Gray, and Hui Wu.
Automatic generation of language-based tools using lisa
system. IEE Software Journal, 152(2):54–70, April

2005,ISSN: 1462-5970.

