brought to you by $\widetilde{\mathbb{I}}$ CORE

Solution A high antioxidant activity of P. tridentatum flower water extract was assessed in good agreement with its ESI-MS spectrum that revealed the presence of several important phenolic compounds, such as rosmarinic acid, luteolin-O-(O-acetyl)-glucuronide and isorhamnetin-O-hexoside.

Results are presented as mean \pm SD of triplicates of experiments performed with 4 plant water extracts prepared in similar conditions. Statistics: * p < 0.05 as compared to control; " p < 0.05 as compared to R. officinalis. (Miller & Rice-Evans, 1997; Ismail, et al., 2004)

 101.8 ± 10.7

 112.3 ± 12.3

169.5 + 17.2 *.*

 111.6 ± 12.6

 143.0 ± 0.8

 144.8 ± 0.4

partum tridentatu

Rosmarinus officinalis

Toxicological evaluation:

Membrane permeability

300 400 500 600 700 800 900 1000 Time (s)

tridentatum flower permeabilisation to H^* and K^* by the inner membrane of rat liver mitochondria, evaluated by passive osmotic swelling of mitochondria suspended in potassium acetate. Where indicated International a supervised in poins an actual, where indexed by arrows, 1 μ M FCCP, *P. nidentatum* flower extract (250 and 500 mg.t⁻¹) or 1 μ g.m.t⁻¹ valinomycin (VAL) were added (Diogo et al., 2009).

Values of respiratory rates in state 3, state 4 and FCCP stimulated respiration (respectively V_{2s} , V_4 and FCCP) are expressed as numol O_{2s} mg protein⁴.mir⁴. Oxygen consumption of isolated mitochondria was determined polarographically at 30 °C with a Clark oxygen electrode, connected to a suitable recorder in a closed chamber with magnetic stirring (Estabrook, 1967). Respiratory control ratio (RCR) and P/O ratio were determined accordingly to Chance and Williams (1956). State 3 respiration was initiated by the addition of 100 munol ADP. Values are the means \pm SEM of triplicates performed with four different mitochondria preparations. Results are presented as mean \pm SEM of triplicates of experiments performed with 4 mitochondria preparations. Statistics: * p < 0.05 as compared to control. Mitochondria (1 mg protein) were incubated in 1 mL respiratory standard medium containing succinate (5 mM) and rotenone (1µM), for 5 min at 30 °C.

Similar Mitochondrial respiratory rates (state 4, state 3 and FCCP-stimulated respiration) and respiratory indexes (respiratory control and P/O ratios) showed no consistent decrease of respiratory and phosphorylative efficiencies for the concentrations tested (up to 500 µg.mL⁻¹), neither affects membrane permeability.

> Solution In the concentration range commonly used, *P. tridentatum* flowers usage can be regarded as harmless and trustworthy. Moreover, its great antioxidant properties can be useful to counteract diabetes mellitus associated diseases.

References

- Cardoso, S.M., et al., Oleuropein ligstroside isomers and their derivatives in Portuguese olive null wastewaters. Food Chemistry, 2011. 129 (2): 291-296 Chance, B. and G.R. Williams, The respiratory chain and oxidative phosphorylation. Adv. Enzymol., 1956. 17: p. 65-134.
 Diogo, C.V., et al., Mitochondrial toxicity of the phytotechemicals daphnetoxin and daphnoretin Relevance for possible anti-cancer application. Toxicology in Vitro, 2009. 25 Estabrook, R.F., Mitochondrial respiratory control and the polytographic measurement of ADPC ratios. Methods Enzymol., 1967. 10: 14-17.
 Ismain, A., Z.M. Magian, and C.W. Foong, Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 2004. 87(4): 555-559.
 Miller, N.J. and C. Kue-Cwans, *Fectors influencing the anisotytical activity of their scavenging effects on superovide radicals*. Food Chemistry, 1999. 64(4): 555-559.
 Miller, N.J. and C. Kue-Cwans, *J. Fectors influencing the anisotytical activity of their scavenging effects on superovide radicals*. Food Chemistry, 2019. 56(4): 555-559.
 Miller, N.J. and C. Kue-Cwans, *J. Scavens and explores and their scavenging effects on superovide radicals*. Food Chemistry, 2019. 64(4): 555-559.
 Miller, N.J. and C. Kue-Cwans, *J. Scavens and their scavenging effects on superovide radicals*. Rood Chemistry, 1999. 64(4): 555-559.
 Miller, N.J. and C. Kue-Cwans, *J. Scavens and their scavenging effects on superovide radicals*. Food Chemistry, 1999. 64(4): 555-559.
 Miller, N.J. and C. Kue-Cwans, *J. Scavens and their scavenging effects on superovide radicals*. Food Chemistry, 1999. 64(4): 555-559.

