Journal of Electromyography and Kinesiology 21 (2011) 141-147

Contents lists available at ScienceDirect S oo
ELECTROMYOGH

=

MYOGRAPHY
KINESIOLOGY

Journal of Electromyography and Kinesiology

journal homepage: www.elsevier.com/locate/jelekin

Effect of unaccustomed eccentric exercise on proprioception of the knee

in weight and non-weight bearing tasks

Carolina Vila-Ch3?, Simone Riis?, Ditte Lund ?, Anders Moller?, Dario Farina *°, Deborah Falla *P*

2 Centre for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, D-3, DK-9220, Aalborg, Denmark
b Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, Georg-August University of Géttingen, Gottingen, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 2 July 2010

Received in revised form 14 September
2010

Accepted 1 October 2010

Keywords:
Proprioception
Quadriceps
Eccentric exercise
DOMS

The study investigates the effects of eccentric exercise of the quadriceps on proprioception of the knee in
weight and non-weight bearing tasks. Proprioception of the exercised leg was assessed at 120° and 150°
of knee extension in 15 healthy adults (age 25.0 + 3.6 yrs) before, immediately after, and 24 h following
eccentric exercise of the quadriceps. Three tests of proprioception were performed: 1. matching the posi-
tion of the exercised leg (right leg) to the reference leg (left leg) in sitting (non-weight bearing matching
task); 2. repositioning the exercised leg after active movement in sitting (non-weight bearing reposition-
ing task); 3. repositioning the exercised leg after active movement in standing (weight bearing task).
Maximum knee extension force was reduced by 77.0 + 12.3 % immediately after the exercise, and by
82.7 £ 16.2% 24 h post exercise, with respect to baseline (P < 0.001). The absolute error in the non-weight
bearing matching task at 120° of knee extension was greater immediately following eccentric exercise
(12.3+£5.6, P<0.001) and 24 h after exercise (8.1 +4.5, P<0.05) compared to baseline (5.8 +2.7). Simi-
larly, the absolute error in the non-weight bearing repositioning task at 120° was greater both immedi-
ately (5.9 +3.1°, P<0.01) and 24 h post exercise (5.2 +3.0°, P <0.05) compared to baseline (4.5 £ 2.6°).
Therefore, in both non-weight bearing tasks, the subjects matched the position of their leg after eccentric
exercise by adopting a more extended knee position of the exercised limb. Furthermore, the subjects
showed higher variability in their performance immediately post exercise (P < 0.05, compared to base-
line) but not 24 h after. In contrast, eccentric exercise did not affect the repositioning errors in the weight
bearing task. In conclusion, eccentric exercise of the quadriceps impairs proprioception of the knee both
immediately after and 24 h post exercise, but only in non-weight bearing tasks.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

et al., 2004; Allen and Proske, 2006; Givoni et al., 2007). Further-
more, these studies show that the degree of matching errors is

Unaccustomed eccentric exercise typically leads to myofibrillar
damage, disturbance of the extracellular matrix and an inflamma-
tory reaction (Howell et al., 1993; Jones et al., 1987; Yu and Thornell,
2002). The sensation of pain and muscle stiffness normally begins
several hours after unaccustomed eccentric exercise, reaches a peak
24-48 h after and may even persist for several days (Armstrong,
1984; Jones et al., 1987). This phenomenon - delayed-onset muscu-
lar soreness (DOMS) - is associated with prolonged muscle force
loss, reduction of joint range of motion, a sensation of unsteady limbs
and clumsiness in precision movements (Brockett et al., 1997; Ho-
well et al., 1993; Paschalis et al., 2007; Proske et al., 2003; Saxton
et al., 1995), and impaired proprioception (Proske and Allen, 2005).

Several studies have shown that immediately after either
eccentric or concentric exercise, the size of errors observed during
position- and force-matching tasks increases significantly (Walsh
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associated with the degree of force reduction due to either muscle
fatigue or DOMS (Walsh et al., 2004; Givoni et al., 2007). Although
proprioception can be impaired following both eccentric and con-
centric exercise, it appears to be affected more following eccentric
exercise (Walsh et al., 2004; Givoni et al., 2007). This is presumably
due to the greater reduction in force following eccentric compared
to concentric exercise (Walsh et al., 2004; Winter et al., 2005).
After eccentric exercise, the impairment in force lasts for 24-48 h
(Lephart and Fu, 2000; Proske and Morgan, 2001) and significant
matching errors are still observed after 24 h (Givoni et al., 2007).
These observations contributed to the effort hypothesis, which
suggests that the sense of effort or heaviness generated by central
motor commands play an important role in joint position sense
(for review see Proske and Gandevia, 2009). Since maximal force
is reduced after exercise, the effort required to support the limb in-
creases, altering the sense of effort (Walsh et al., 2006) resulting in
reduced joint position accuracy. Nevertheless, the effort hypothesis
has not been confirmed under all circumstances (Proske and
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Gandevia, 2009), indicating that other peripheral and/or central
mechanisms contribute to impaired proprioception.

Impairment of proprioception may influence joint stability and
has been associated with the occurrence of knee injuries in sports
and exercise (Granata et al., 1999; Givoni et al., 2007; Kelly, 2008;
Sanna and O’Conner, 2008). However, the majority of studies
examining the effects of exercise on proprioception have examined
the upper extremities in non-weight bearing positions (Walsh
et al., 2004; Proske et al., 2004; Allen et al., 2007). Knowledge on
the effect of exercise on proprioception in weight bearing positions
is also needed since most knee injuries occur in weight bearing
positions. For example, anterior cruciate ligament injuries com-
monly occur with change of direction in a weight bearing position
with a fixed distal extremity (Kelly, 2008; Sanna and O’Conner,
2008).

This study examines the immediate and delayed effects of
eccentric exercise on proprioception of the knee during weight
and non-weight bearing tasks. It was hypothesized that proprio-
ception would be less affected in weight bearing since propriocep-
tive feedback from other sources may compensate for the loss of
proprioception induced by eccentric exercise.

2. Materials and methods
2.1. Subjects

Fifteen healthy volunteers participated in the experiment (9
men; age, mean + SD, 25.0 + 3.6 yrs). To control for potential learn-
ing effects, an additional 10 healthy subjects were recruited as a
control group (5 men; age, 22.0 £ 0.8 yrs). The participants were
free of lower limb injuries. The study was conducted in accordance
with the Declaration of Helsinki and approved by the Local Ethics
Committee (N-20070019). Subjects provided informed written
consent prior to participation in the study.

2.2. Procedure

Maximum voluntary knee extension force and proprioception of
the right knee were tested at baseline, immediately following
eccentric exercise, and 24 h after eccentric exercise. To confirm
the presence of DOMS 24 h post exercise, participants marked their
area of pain on a body chart and verbally rated their perceived pain
on a scale from 0 (“no soreness”) to 10 (“worst soreness imagin-
able”). The subjects were asked to rate the average pain intensity
in the quadriceps during their regular activities of daily living
(e.g. descending stairs) since their last visit to the laboratory (over
the past 24 h).

2.2.1. Eccentric exercise

The eccentric exercise protocol was performed in a KinCom
dynamometer (Chattanooga Group Inc.). The subject sat comfort-
ably on the adjustable chair of the KinCom with the hip in 90° flex-
ion. The chair position was modified until the knee axis of rotation
(tibio-femoral joint) was aligned with the axis of rotation of the
dynamometer’s attachment arm. The subject was fixed with straps
secured across the chest and hips. The right leg was secured in 90°
knee flexion to the attachment arm with a Velcro strap and an addi-
tional strap was placed over the subjects’ thigh. Subjects performed
4 sets of 25 maximum voluntary eccentric knee extension contrac-
tions at a speed of 60°/sec between 170° to 90° of knee extension
(180¢°: full knee extension). A resting period of 3 min was given be-
tween each set of contractions. During the exercise, the subject was
provided with visual feedback of force and was constantly encour-
aged to maintain maximal force for each repetition.

2.2.2. Maximal voluntary contraction

Maximal voluntary isometric contraction (MVC) force was mea-
sured for the knee extensors using the KinCom isokinetic Dyna-
mometer. Visual feedback of torque was provided on a screen
positioned in front of the subject. With the knee flexed to 90°,
the subject was asked to perform three MVCs of 3-5 s duration,
with 2 min of rest in between with verbal encouragement to ex-
ceed the previous force level. The reference MVC value corre-
sponded to the maximal force exerted in the three trials.

2.2.3. Proprioception tasks

With the subjects blindfolded, proprioception of the right knee
was assessed at 120° and 150° of knee extension in 3 tasks: 1.
Matching the position of the exercised leg (right leg) to the refer-
ence leg (left leg), which was held at the predetermined angles
(non-weight bearing position matching task - POSy_wg); 2. Reposi-
tioning the exercised leg to the predetermined angles following ac-
tive movement (non-weight bearing repositioning task — REPOSy.
ws); 3. Repositioning the exercised leg after active movement in
a weight bearing position (weight bearing repositioning task — RE-
POSwg). For the first two tasks, the subjects were seated in an ele-
vated chair so that their legs were freely moving, whilst for the
third task the subjects were standing (Fig. 1). To provide a measure
of knee joint angle, an electro-goniometer (Biometrics Ltd) was at-
tached to the subject’s right knee. The output was calibrated for
knee joint angle and recorded during the proprioception tasks.

For the POSn.ws task, the left leg was positioned at an angle of
120° or 150° using a manual goniometer and the subjects were
asked to move their right leg to match the position of the left leg
as accurately as possible. For the REPOSy.wg, the right leg was

Fig. 1. Illustration of the three proprioception tasks. (A) non-weight bearing
position matching; (B) non-weight bearing repositioning; (C) weight bearing
repositioning.
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positioned to either 120° or 150° using the manual goniometer and
the subjects were asked to move their leg towards 90° of knee
extension (relaxed positioning in sitting) and then return their
leg to the initial angle as accurately as possible. Finally, for RE-
POSwg, the subjects were instructed to stand on their right leg,
bend their knee to either 120° or 150°, which was established using
a manual goniometer, straighten their leg into full extension
(standing upright) and then return their right knee to the initial an-
gle as accurately as possible.

Participants were allowed to practice each task and then re-
peated each task twice in a random order. The average of the two
repetitions was used for further analysis. For each trial the joint po-
sition error was assessed by computing the absolute error and con-
stant error between the start angle and final angle. The constant
error was assigned a positive value when the right leg passed the
correct angle in the direction of knee extension and negative when
in flexion. Additionally the variable error was calculated which pro-
vides and indication of the variability of the subject’s performance.

2.2.4. Control measures

The 10 control subjects performed the same repositioning task
in sitting as the main subject group and proprioception errors were
measured at baseline, 10 min after baseline, and 24 h later. The
control group did not perform the eccentric exercise protocol.

2.3. Statistical analysis

A one-way repeated-measures ANOVA was used to analyze
maximum voluntary knee extension torque, with time as the re-
peated measure (baseline, immediately post exercise, and 24 h
post exercise). A two-way repeated-measures ANOVA was used
to analyze the joint position error for each task, with angle (120°
and 150°) and time (baseline, immediately post exercise, and
24 h post exercise) as repeated measures. For the control group,
a two-way repeated-measures ANOVA was used to analyze the
joint position error with angle (120° and 150°) and time as re-
peated measures (baseline, 10 min after baseline, and 24 h post
baseline). A three-way repeated-measures ANOVA was also used
to compare the absolute error across all three proprioception tasks
with time, proprioception task and angle as repeated measures.
Significant differences revealed by ANOVA were followed by post
hoc Student-Newman-Keuls (SNK) pair-wise comparisons. Results
are reported as mean and SD in the text and SE in figures. Statistical
significance was set at P < 0.05.

3. Results

Fig. 2 presents the areas of pain reported by the subjects. 41% of
the subjects reported soreness only over the vastus lateralis mus-
cle, 12% only over vastus medialis, and 47% an area of soreness over
both vasti. Subjects rated their perceived pain intensity as 3.3 £ 1.9
(score out of 10) 24 h post exercise.

3.1. Maximum voluntary knee extension force

Maximum voluntary knee extension force was reduced to
77.0 £ 12.3% (P < 0.001) immediately following the eccentric exer-
cise and remained reduced at 82.8 + 16.2% 24 h post exercise com-
pared to baseline measurements (P < 0.001; Fig. 3).

3.2. Proprioception tasks

The absolute joint position error exhibited by the control group
in the REPOSy_wg task did not change over time (error at baseline:
3.5+ 1.5°; 10 min after baseline: 2.0 + 1.8°; 24 h after baseline:

Fig. 2. Area of pain reported by the subjects 24 h post eccentric exercise. Subjects
were asked to draw the area of soreness experienced during their regular activities
of daily living (e.g. walking, climbing stairs) in the preceding 24 h.
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Fig. 3. Mean £ SE of the maximum voluntary knee extension force recorded at
baseline, immediate post exercise (IP), and 24 h post exercise (24 h). P<0.001
relative to baseline.

2.9 + 1.4° for 120°, error at baseline: 2.4 + 1.2°; 10 min after base-
line: 2.6 + 1.6°; 24 h after baseline: 1.5 + 0.9° for 150°). These results
on the control group confirmed the absence of a learning effect.

No difference was observed for the absolute joint error across
the three different proprioception tasks at baseline (pooled data
for 120° and 150°) (P> 0.53; Fig. 4). However, immediately after
eccentric exercise, the absolute error observed during the POS\.
ws task (8.7 +5.9°) was significantly higher than the absolute er-
rors observed in the REPOSy.wp (5.1+2.9°) and REPOSwsp
(4.9 +2.7°; P> 0.53; Fig. 4) tasks. Twenty-four hours after exercise,
no differences were observed between the absolute errors pro-
duced in the three tasks (P > 0.30; Fig. 4).

3.3. Position matching task (POSn.ws)

At 120° of knee extension, the absolute error was greater imme-
diately post exercise (12.3 + 5.6°; P<0.001) compared to baseline
(5.8 £ 2.7°). The absolute error decreased in the period immediately
post exercise to 24 h (P <0.001) but remained greater compared to
baseline values (8.1 +4.5°, P<0.05; Fig. 5A). The subjects moved
into a more extended knee position relative to the reference leg,
as indicated by the constant error (Fig. 5B). At baseline the constant
error was +6.15 + 4.2° at 120° and +3.41 + 3.2° at 150°. Immediately
following eccentric exercise, the constant error increased for the
POSN.wp task at 120° (+12.0 £ 5.8°, P < 0.05) and remained increased
24 h after (+7.73 £5.8°, P<0.05). The degree of the absolute and
constant errors were different for the two angles (main effect for
angle: P <0.001); the errors for the task of POSy.wg at 150° were
generally smaller than the errors for 120° (Fig. 5A, B). No significant
changes in positioning accuracy (measured either by the absolute
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Fig. 4. Mean + SE of the absolute joint position error recorded at baseline,
immediate post exercise (IP), and 24 h post exercise (24 h), for the non-weight
bearing position matching (POSn.wg), the non-weight bearing repositioning
(REPOSn.wg) and weight bearing repositioning (REPOSwg) tasks. The values
represent the average of the errors obtained at 120° and 150° of knee extension. "
P <0.001.

or constant error) were observed for the position matching task at
150° of knee extension (Fig. 5A and B).

Subjects also became less consistent in their performance after
the eccentric exercise. For the task at 120°, the variable error was
significantly higher immediately post exercise (5.8%3.2,
P<0.001) compared to baseline (2.9 +2.2) (Fig. 5C). Although
24 h after exercise the variable error remained higher (4.3 £3.1)
than baseline, no statistical differences were observed (Fig. 5C).
For the positioning task at 150°, the consistency of performance
was not significantly affected by the exercise protocol (Fig. 5C).

3.4. Repositioning tasks

Non-weight bearing task (REPOSy.wg) — The size of the absolute
and constant errors were significantly higher at 120° than at 150°
(main effect for angle: P < 0.001 for both). At 120° of knee exten-
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sion, the absolute error increased from a baseline value of
4.5+2.6°-5.9+3.1° (P<0.01) immediately post exercise and re-
mained greater than baseline (5.3 £ 2.6°; P < 0.05) 24 h post exer-
cise (Fig. 6A). Likewise, the absolute errors at 150° of knee
extension increased from a baseline value of 1.5+ 0.9°-3.2 +1.9°
(P<0.01) immediately post exercise and remained at 3.1 +2.3°
(P<0.05) 24 h post exercise. Consistent with the POSy.wg task,
during the REPOSn.ws, the subjects also perceived the joint posi-
tion as more extended (Fig. 6B). When the data of both angles were
pooled, the constant error observed immediately after exercise in-
creased from +3.25 +1.2° to +4.5+1.2° (P < 0.01). After 24 h, the
constant error decreased to+3.8 + 1.1°. The consistency of the sub-
ject’s performance during the REPOSy.wg Was also affected by the
exercise (interaction between time and angle: P < 0.01; Fig. 6C. At
120° and immediately after exercise, the variable error was signif-
icantly higher (4.6 £2.3) than at baseline (2.8 +2.6) (Fig. 6C).
Twenty-four hours after exercise the variable error was similar to
baseline values (2.1 + 2.4). The variable error was not affected by
the exercise protocol at the knee angle of 150° (Fig. 6C).

Weight bearing task (REPOS\) — Fig. 7 shows the joint position
errors for the REPOSy task at 120 and 150°. Smaller absolute and
constant errors were observed at 150° compared to 120° of knee
extension at all test periods (P < 0.005), except for the constant er-
ror 24 h after exercise; Fig. 7A and B. The size of the absolute and
constant errors was not affected by eccentric exercise (main effect
for time P > 0.23, for both errors). Although immediately post exer-
cise the subjects appeared less consistence in their performance,
no statistical differences was observed when compared to baseline
(main effect for time P> 0.12).

4. Discussion

Eccentric exercise of the quadriceps impaired proprioception of
the knee both immediately after and 24 h after exercise when
tested in a non-weight bearing position. In contrast, eccentric exer-
cise did not affect knee proprioception when tested in a weight
bearing position.
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Fig. 5. Mean  SE of absolute joint position error (A), constant error (B) and variable error (C) recorded at baseline, immediately post (IP) and 24 h post eccentric exercise, for
the non-weight bearing position matching task (POSy.wg) performed at 120° and 150° of knee extension. P < 0.05, P < 0.01, 'P<0.001 and P < 0.0001 compared to baseline.
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Fig. 6. Mean * SE of absolute joint position error (A), constant error (B) and variable error (C) recorded at baseline, immediately post (IP) and 24 h post eccentric exercise
(24 h), for the non-weight bearing repositioning task (REPOSy.wg) preformed at 120° and 150° of knee extension. P<0.05 and “P<0.01 compared to baseline. For the

constant error a time effect was observed (P < 0.01).
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Fig. 7. Mean z SE of absolute joint position error (A), constant error (B) and variable error (C) recorded at baseline, immediately post (IP) and 24 h post eccentric exercise, for
the weight bearing repositioning task (REPOSwg) performed at 120° and 150° of knee extension. No significant change in joint position error was observed either immediately

or 24 h after exercise.
4.1. Muscle performance

A reduction in maximal knee extension force was observed both
immediately and 24 h after eccentric exercise which is in agree-
ment with previous studies (Givoni et al.,, 2007; Hedayatpour
et al,, 2010). A prolonged force reduction following eccentric exer-
cise is considered the most valid and reliable indirect measure of
muscle damage (Clarkson and Hubal, 2002). The reduction in force
may be due to disruption of sarcomeres and myofibrils especially
in type Il muscle fibers (Cheung et al., 2003). However, other alter-
ations induced by unaccustomed eccentric exercise, such as muscle
soreness (Jones et al., 1987), shift of the length-tension relationship
of the muscle (Howell et al., 1993; Proske and Allen, 2005) and
alterations in muscle activation (Dartnall et al., 2009) may contrib-
ute to the observed changes in maximal force.

4.2. Muscle soreness

The subjects reported soreness in the quadriceps muscle 24 h
post exercise, confirming the presence of DOMS. The average sore-
ness level was 3.3 £ 1.9 (score out of 10), which is in accordance
with similar studies on the quadriceps (Newham et al., 1987).
Although the mechanisms leading to DOMS are not clearly estab-
lished, it has been proposed that the inflammatory process ob-
served in the epimysium of the exercised muscle plays an
important role (Clarkson et al., 1992; Crameri et al., 2004). It is sug-
gested that eccentric exercise induces tears within intramuscular
connective tissue, which leads to an increase in interstitial inflam-
matory mediators (Crameri et al., 2007). Consequently, the inflam-
matory substances activate muscle nociceptors and trigger a pain
response (Crameri et al., 2007; Proske and Allen, 2005).

Participants reported soreness more frequently in the area of
the vastus lateralis compared to vastus medialis. This difference
may be due to greater loading of the vastus lateralis muscle during
the eccentric exercise protocol, leading to a greater sensation of
DOMS. Furthermore, the vastus lateralis is composed of a higher
proportion of type Il muscle fibers compared to vastus medialis
(Johnson et al., 1973) and type II muscle fibers are more suscepti-
ble to exercise-induced disruption (Cheung et al., 2003).

4.3. Proprioception

Since the repetition of a task may be associated with learning,
the results obtained after eccentric exercise were compared to
those obtained by a group of subjects who repeated a propriocep-
tion task without the exercise intervention. The consistent reposi-
tioning error in the control group confirmed that the observed
changes in the study group were not influenced by learning.

Impaired joint position sense was observed both immediately
and 24 h after eccentric exercise particularly for the non-weight
bearing tasks at 120° of knee extension. The subjects matched

the predetermined knee position by adopting a more extended po-
sition of the tested limb. Similar results have been obtained previ-
ously, suggesting that after eccentric exercise the subjects
perceived their exercised muscle to be longer than it is (Givoni
et al., 2007; Paschalis et al., 2007). This disturbance of propriocep-
tion was also accompanied by high variability in task performance.

During voluntary movement, the muscle spindles are consid-
ered to be the principal peripheral receptor involved in the sense
of limb position and moment (Goodwin et al., 1972). Peripheral
signals from stretch receptors in the skin may also contribute to
this sense (Edin, 2001). Conversely, the contribution of joint recep-
tors seems to be small (Burke et al., 1988). Thus, one interpretation
of the findings could be an abnormal function of the muscle recep-
tors following eccentric exercise. However, animal studies have
shown that after intense eccentric exercise the responsiveness of
muscle spindles is not disturbed despite extensive muscle damage
(Gregory et al., 2004). Moreover, recent studies have shown that
immediately after concentric exercise - where no disruption of
muscle spindles is expected - the sense of joint position is also im-
paired (e.g. Walsh et al. 2004). Thus the disturbance in propriocep-
tion may be attributed to alterations in central commands rather
than to abnormal function of the muscle receptors (Allen et al.,
2010).

Disturbance of joint position sense may arise from the altered
sense of effort induced by exhaustive exercise. Nevertheless, as ex-
plained by Givoni et al. (2007), if the sense of effort generated by
supporting the lower limb against the force of gravity contributes
to joint position sense, the extra effort necessary to support the fa-
tigued leg would have led the subjects to perceive that their knee
was more extended that it was (i.e., the subjects assumed a more
flexed knee position). Instead the subjects perceived their knee
as more flexed than it was and adopted a more extended knee po-
sition (Givoni et al., 2007; Paschalis et al., 2007). The results of the
present study also support these observations, which is in dis-
agreement with the effort hypothesis.

Recently, it has been suggested that the effects of exercise on
proprioception resides on the operation of an internal forward
model (Allen et al., 2007; Bays and Wolpert, 2007). This model esti-
mates the sensory feedback expected for a particular limb position
based on past memories and compares it with the actual sensory
feedback arising from the fatigued limb. Based on previous experi-
ence, the sensory feedback from the fatigued muscle might be
greater than anticipated from the motor command. After eccentric
exercise, increased muscle activity is required to support the same
force level (e.g. lower limb) (Semmler et al., 2007; Turner et al.,
2008). Subsequently additional motor unit recruitment can in-
crease alpha-gamma motoneuron co-activation resulting in in-
creased muscle spindle firing (Ploutz et al., 1994). This would
lead to a discrepancy between the actual and expected feedback,
increasing the size of the position errors (Allen et al., 2007; Givoni
et al., 2007). Increased muscle activation is also accompanied by



146 C. Vila-Cha et al./Journal of Electromyography and Kinesiology 21 (2011) 141-147

enhanced neuronal noise (Berg et al., 2007), which makes the sen-
sory estimation more imprecise and consequently the movement
more variable (Bays and Wolpert, 2007). This may partially explain
the inconsistency of the subject’s performance after exercise.

4.3.1. Position matching vs. repositioning tasks

Position matching and repositioning tasks are commonly used
by clinicians to assess proprioceptive acuity. Each task reflects dif-
ferent cognitive demands (Goble, 2010). During the repositioning
task, the same limb serves to establish both reference and match-
ing locations, which involves a memory component. On the other
hand, during the position matching task the reference joint angle
is given by the opposing limb. In this task, more interhemisheric
communication is required to transfer proprioceptive information
(Goble, 2010). The present results showed that at baseline no dif-
ferences were observed between the joint position errors produced
in the non-weight bearing repositioning task and non-weight bear-
ing position matching task. Immediately post exercise however,
the joint position errors were greater for the position matching
task This may be due to a discrepancy between the sensory infor-
mation arising from the non-exercised (reference leg) and exer-
cised leg. During position matching tasks both limbs are
compared and their difference is used to position the test limb (Al-
len et al., 2007; Givoni et al., 2007). As previously mentioned, sen-
sory feedback arising from the exercised leg would be greater after
exercise, thus the expected sensory feedback (predicted from the
position of the non-exercised leg) would be matched at shorter
quadriceps muscle lengths, i.e. at more extended knee positions.

During the non-weight bearing repositioning task, the subject’s
leg was moved into the predetermined joint position just prior to
the test. Thus despite exercise induced alterations in sensory feed-
back, this short experience of the joint position just prior to the test
would have allowed the sensory inflow associated with the central
representation of the limb position to be updated. The constant up-
date of the body maps or body schema (Maravita et al., 2003) may
have led to a lower discrepancy between the expected and actual
sensory feedback from the tested leg, contributing to smaller posi-
tion errors after exercise in this task.

4.3.2. Non-weight vs. weight bearing repositioning tasks

In contrast to the non-weight bearing tasks, proprioceptive acu-
ity was unaffected in a weight bearing task immediately following
and 24 h after eccentric exercise. Even though muscle fatigue and
DOMS occurred after the eccentric exercise and therefore sensory
feedback arising from the muscles was altered, the correct joint po-
sition was maintained during the REPOSy task. Additional propri-
oceptive information may generate from compression through the
soles of the foot, contraction of other non-affected muscle groups
or from the vestibular system.

4.3.3. Time course of the changes in proprioception

During the non-weight bearing position matching task, greater
joint position errors occurred immediately post exercise compared
to 24 h later. While immediately after eccentric exercise the effects
of muscle fatigue would be the predominant mechanism underly-
ing impaired proprioception, in the following 24 h DOMS is likely
to be the main cause.

The presence of pain may divert the attention level devoted by
the subjects to the proprioceptive tasks, disturbing their perfor-
mance accuracy and consistency. However, recent studies suggest
that pain per se is not sufficient to impair proprioception (Wee-
rakkody et al., 2008) or postural control (Corbeil et al., 2004; Hirata
et al.,, 2010) unless the site of pain has a crucial proprioceptive role
at the joint involved in the task (Weerakkody et al., 2008). Pain
predominately affects motor control via disturbance to sensorimo-
tor processes rather than via cognitive resources related to the per-

ception of pain (Corbeil et al, 2004; Hirata et al, 2010;
Weerakkody et al., 2008). In the present study the sensation of pain
did originate from muscles involved in the positioning tasks, and
therefore pain likely contributed to impaired knee proprioception
24 h after eccentric exercise.

5. Conclusion

Eccentric exercise of the quadriceps impairs proprioception of
the knee both immediately after and 24 h post exercise, but only
in non-weight bearing tasks.
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