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ABSTRACT 

Wild mushrooms have become attractive as a source of physiologically beneficial 

compounds including antioxidants such as phenolic compounds and tocopherols.  The 

concentrations of antioxidant compounds (phenolics and -tocopherol) and EC50 values 

of antioxidant activity (concentration required to achieve 50% of radical scavenging 

activity and lipid peroxidation inhibition, or 0.5 of absorbance in reducing power) were 

analyzed by partial least square (PLS) regression analysis. Three QCAR (Quantitative 

Composition-Activity Relationship) models were constructed and their robustness and 

predictability were verified by internal and external cross-validation methods. 

Antioxidant activity correlated well with phenolics and -tocopherol contents, the major 

antioxidants in wild mushrooms. The models proved to be useful tools in the prediction 

of mushrooms radical scavenging activity, reducing power and lipid peroxidation 

inhibition. 
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1. Introduction 

 

An excess of reactive oxygen and nitrogen species (ROS and RNS) leads to oxidative 

stress, resulting in oxidative DNA, proteins and lipids damage which have been related 

to degenerative processes inherent to several diseases such as cancer, Alzheimer’s, 

Parkinson’s, arthritis, asthma, diabetes and cardiovascular diseases [1].  The increasing 

interest in human health, nutrition and disease prevention has enlarged consumers’ 

demand for functional foods [2].   

Mushrooms have become attractive as a source of physiologically beneficial 

compounds including antioxidants such as phenolic compounds (mostly phenolic acids) 

[3-6] and tocopherols [7-10]. Accumulating chemical, biochemical, clinical and 

epidemiologic evidence supports the chemoprotective effects of phenolic antioxidants 

against oxidative stress-mediated disorders [11].  The pharmacological actions stem 

mainly from their free radical scavenging activity and metal chelating properties as well 

as their effects on cell signaling pathways and on gene expression [11]. Due to its role 

as scavenger of free radicals, -tocopherol is also believed to protect our organism 

against degenerative malfunctions, mainly cancer and cardiovascular diseases [12].  

Numerous tests have been used for measuring the antioxidant capacity of mushrooms 

including 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA), 

reducing power (RP) and inhibition of lipid peroxidation (ILP) [4,7,8,10]. The 

mentioned tests were applied to mushrooms from different countries such as Brasil, 

China, India, Korea, Spain, Taiwan, Turkey and Portugal [13]. 

In a previous report our research group established a Quantitative Composition-Activity 

Relationships (QCAR) model to predict the reducing power of mushrooms based on 
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their phenolics and flavonoids concentrations [14].  Nevertheless, despite our attempts it 

was not possible to construct a robust model to predict free radical scavenging activity 

and lipid peroxidation inhibition based on those parameters. Herein we describe the 

establishment of QCAR models to predict different aspects of antioxidant activity 

(RSA, RP and ILP) of wild mushrooms based on phenolics and -tocopherol 

concentrations. 

 

2. Methods 

2.1. Data set 

A total of seventeen samples from seventeen Portuguese wild mushroom species were 

used in this study (Table 1). The samples were collected in Bragança (Northeast of 

Portugal), in autumns of 2008. Phenolics and α-tocopherol concentrations, radical 

scavenging activity (RSA), reducing power (RP) and inhibition of lipid peroxidation 

(ILP) EC50 values were obtained from a previous report of our research group [10]. 

Phenolic contents were determined by Folin-Ciocalteu’s spectrophotometer assay, while 

-tocopherol concentrations were obtained for high performance liquid chromatography 

(HPLC) coupled to fluorescence detection.  

For antioxidant activity data, the results of three in vitro assays were used: scavenging 

activity on DPPH radicals- RSA, reducing power- RP, and inhibition of lipid 

peroxidation- ILP. The RSA was calculated as a percentage of DPPH discolouration 

using the equation: % RSA = [(ADPPH-AS)/ADPPH]  100, where AS is the absorbance of 

the solution when the sample extract has been added at a particular level, and ADPPH is 

the absorbance of the DPPH solution. The RP was obtained by measuring the 
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absorbance of the product obtained by the reduction of the ferric ion to the ferrous form; 

a higher absorbance indicates higher RP. The inhibition of lipid peroxidation was 

evaluated through -carotene bleaching inhibition, using the equation: (-carotene 

content after 2h of assay/initial -carotene content)  100. 

To make RSA, RP and ILP data homogenous and comparable, all the values were 

reported as EC50 (expressed in mg/ml, concentration required to achieve 50% of RSA 

and ILP, or 0.5 of absorbance in RP).  

 

2.2. QCAR models 

To build the three QCAR models the complete data set (Table 1) and the Partial Least 

Square (PLS) method implemented in SIMCA-P v12 statistics software, were used [15]. 

The seventeen samples were first divided in two groups: training and test sets. The 

training set, representing about 3/4 of the total number of samples (13 samples), was 

used to build the QCAR models. The remaining 1/4 (4 samples) was assigned to the test 

set and used to validate the model. The division was made to cover all the antioxidant 

activity scale [16,17] and the samples included on the training set were randomly 

selected within each group [18]. 

The goodness of fit of the models was evaluated using the following statistical 

parameters: squared correlation coefficient (R
2
), standard deviation of regression (S), 

significance of the model (P) and Fisher ratio value (F).  

The predictive stability and robustness of the models was first verified by internal cross-

validation calculating the following parameters: Q
2

LOO
 

(“Leave-One-Out”; 1-

PRESS/TSS were PRESS is the Predictive Error Sum of Squares and TSS the Total 
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Sum of Squares), permutation test of SIMC-P+ software and RMSE (training set) (Root 

Mean Squared Errors for the training set) [19-21]. Using the test set, the models were 

further checked by external cross-validation by calculating parameters: Q
2

ext (External, 

1-(PRESS/nEXT)/(TSS/nTR)) and RMSE (test set) (Root Mean Squared Errors for the test 

set). PRESS is defined as the sum of the squared difference between the observed value 

and the predicted value for each compound in the training set, nEXT is the number of 

observation in the external test set, TSS is defined as the sum of squared deviations 

from the data set mean and nTR is the number of observations in the training set [22].  

 

3. Results and Discussion 

 

3.1. QCAR models validation 

Three QCAR models were developed where the antioxidant activity of wild 

mushrooms, measured using different methods (RSA, RP and ILP), was correlated with 

phenolics and α-tocopherol content. To test the predictive power of all models a 

thorough statistical analysis was conducted and several parameters were calculated 

(Table 2). Special attention was paid to model validation and for this reason an external 

validation procedure was performed. This approach implied that the tested mushrooms 

species were randomly divided in training and test sets (Figure 1), with 13 and 4 species 

on each set respectively. Although a smaller number of species is used to build the 

models, the external validation approach is widely acknowledged as the best method to 

validate a predictive model, as it is usually immune to over-fitness and over-prediction. 

The robustness and predictive power of all models were confirmed by internal leave-
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one-out (LOO) validation, as demonstrated by R
2
 and Q

2
 values, and by external 

validation as demonstrated by Q
2

ext value. Also, both the RMSE values for the training 

and test sets were low and similar thus validating the models. 

Further validation was performed using a permutation test provided by SIMCA-P 

software (Figure 2) [19]. In this test the models were recalculated for randomly 

reordered response data (EC50 RSA, EC50 RP and EC50 ILP) and these permuted EC50 

RSA, EC50 RP and EC50 ILP values were related to intact predictor data by refitting the 

model and including cross-validation. For each model the intercepts of the two 

regression lines (for R
2

permutation test and Q
2

permutation test) indicate the degree of over-fit and 

over-prediction. Intercepts for R
2
permutation test and Q

2
permutation test below 0.30 indicate a 

valid model, as is the case for the three models. Figure 2 shows the results obtained 

from 100 permutations for each of the samples under study. 

Figure 3 shows plots of predicted versus experimental EC50 values for the three models 

(RSA, RP and ILP), were mushrooms from both the training and test sets are included. 

A good agreement is observed between predicted and experimental EC50 values 

confirming the predictability of QCAR models.  

Also, an analysis of possible outliers was conducted by plotting the residuals (predicted 

EC50–experimental EC50) versus experimental EC50 for the three models (Figure 4). The 

residual values in the three models were within the -3S to 3S standard deviation 

interval, usually considered the limits for spotting outliers, so none of the observation 

values was considered as an outlier. The random distribution of the residuals observed 

about zero on all models is also a measure of the robustness of the model. 
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3.2. QCAR models interpretation 

A good correlation between the RSA, RP and ILP with phenolics and α-tocopherol was 

only observed when the values were 

The correlation between RSA, RP and ILP with phenolics and α-tocopherol content was 

not linear rather exponential. This is an indication that higher contents of these 

compounds in mushrooms will significantly increase the antioxidant potential (lower 

RSA, RP and ILP EC50 values mean better antioxidant activity). Furthermore, the 

QCAR models confirm the powerful antioxidant properties of phenolics and 

tocopherols as also their significant contribution to the antioxidant properties reported 

for several wild mushrooms. Although the three models presented good statistical 

correlation, the RSA model presented the highest correlations both by internal 

(Q
2

LOO=0.895) and external (Q
2

ext=0.981) validation and can thus be considered the best 

model. 

RSA assay measures the reducing capacity of antioxidants toward DPPH (stable organic 

nitrogen radical with a deep purple colour. Therefore, phenolics and -tocopherol 

present in the mushrooms extracts, which have a high antioxidant activity, result in a 

rapid decline in the absorbance of the DPPH [23,24].  

In the reducing power assay the Fe
3+

/ferricyanide complex (FeCl3/K3Fe(CN)6) is 

reduced to the ferrous form (Fe
2+

). Therefore, in the presence of mushrooms extracts 

with phenolics and -tocopherol, the yellow colour of the test solution changes to 

various shades of green or blue, and this can be measured at 700 nm [24]. 

Decolourization of β-carotene can be monitored at 470 nm and can be employed as an 

assay of inhibition of lipid peroxidation. The β-carotene undergoes a rapid discoloration 
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in the absence of an antioxidant since the free linoleic acid radical attacks the β-carotene 

molecule, which loses the double bonds and, consequently, loses its characteristic 

orange colour [25]. Mushrooms antioxidants (phenolics and -tocopherol) can 

neutralize any free radicals formed within the system (e.g., the linoleate free radical) 

and, consequently, may delay decolourization of β-carotene [24,26]. 

The antioxidant activity of phenolic compounds (ArOH) seems to be related with the 

phenolic groups and transference of electrons or hydrogen atoms according to LOO
• 
+ 

ArOH  LOOH + ArO
• 

(ArO
• 

has to be stable enough to react slowly with LH, but 

rapidly with LOO
•
, interrupting the chain reactions) [27]. 

In the lipid peroxidation process, tocopherols can act as antioxidants by donating an 

hydrogen atom to peroxyl radicals produced from polyunsaturated fatty acids in 

membrane phospholipids or lipoproteins to yield a stable lipid hydroperoxide (LOOH) 

and a tocopheroxyl radical (TO
•
), which can react itself with other peroxyl or 

tocopheroxyl radicals to yield stable compounds: LOO
• 

+ TOH  LOOH + TO
•
. 

Tocopherols can also react with alkoxyl radicals (LO
•
) formed in the propagation step 

(LO
• 
+ TOH  LOH + TO

•
) or, in oxygen limited conditions and low hydroperoxides 

concentrations, can react directly with L
• 
radicals (L

• 
+ TOH  LH + TO

•
) [12].  

The three different QCAR models obtained for RSA, RP and ILP indicate that the 

mechanisms of action of phenolics and α-tocopherol in each assay is different, but 

probably of a synergistic nature in all the cases. Currently this integrated mode of action 

of mushrooms chemical compounds is acknowledged to the key element on several 

mushrooms beneficial biological activities. As investigation in the field of natural 

products starts to focus more on this synergistic view, cheminformatics studies 



 

 

 

10 

including QCAR modeling may become an important tool in understanding the active 

properties of natural extracts. 

 

Overall, three predictive QCAR models for mushrooms free radical scavenging activity, 

reducing power and lipid peroxidation inhibition, using phenolics and -tocopherol 

concentrations, were developed. Several internal and external validation protocols were 

used to confirm the predictive power of the QCAR models. Especially external 

validation is acknowledged to be the best rationale protocol to avoid over-prediction 

and over-fitting. These models will be useful tools in the study and prediction of 

antioxidant activity of more mushroom species.  
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Table 1. Phenolics (mg GAE/g extract), α-Tocopherol (g/g of dry weight), experimental and predicted antioxidant activity (reducing power- RP, 

radical scavenging activity- RSA and inhibition of lipid peroxidation- ILP) values (mg/ml) of wild mushrooms from Portugal.
a  

Species Phenolics  α-Tocopherol 
Experimental 

EC50 RSA 

Predicted 

EC50 RSA 

Residues 

RSA 

Experimental 

EC50 RP 

Predicted 

EC50 RP 

Residues 

RP 

Experimental 

EC50 (ILP) 

Predicted  

EC50 (ILP) 

Residues 

ILP 

Clitocybe alexandri 1.53 0.00004 28.72 26.77 1.95 7.01 5.25 1.76 4.45 3.14 1.31 

Cortinarius glaucopus 2.8 0.00011 16.59 13.45 3.14 3.04 3.64 -0.60 1.73 1.53 0.20 

Fistulina hepatica 4.44 0.00012 5.32 6.72 -1.40 2.24 2.46 -0.22 0.94 0.99 -0.05 

Hygrophoropsis aurantiaca 7.9 0.0002 1.20 1.35 -0.15 1.34 1.01 0.33 0.71 0.54 0.17 

Hypholoma capnoides
b
  1.71 0.00017 20.85 18.16 2.69 4.42 4.64 -0.22 2.90 2.24 0.66 

Laccaria amethystina 2.85 0.00005 15.72 15.24 0.48 3.03 3.82 -0.79 1.23 1.72 -0.49 

Laccaria laccata 1.59 0.00022 21.95 16.90 5.05 5.22 4.32 0.90 3.69 2.30 1.39 

Lactarius aurantiacus 0.58 0.00003 30.00 40.43 -10.43 7.91 6.62 1.29 7.48 7.98 -0.50 

Lactarius salmonicolor 4.14 0.00004 7.80 9.22 -1.42 2.39 2.86 -0.47 1.01 1.27 -0.26 

Lepista inversa 3.6 0.00028 10.57 6.43 4.14 2.92 2.54 0.38 1.08 1.05 0.03 

Lepista sordida
b
 4.1 0.00002 9.82 9.84 -0.02 2.95 2.58 0.37 1.03 1.43 -0.40 

Mycena rosea
b
 3.56 0.00011 10.58 9.86 0.72 3.05 2.94 0.11 1.15 1.23 -0.08 

Russula delica 2.23 0.00001 20.53 21.63 -1.10 4.41 4.60 -0.19 2.28 2.79 -0.51 

Russula vesca 6.61 0.00002 3.91 3.53 0.38 1.53 1.64 -0.11 0.91 0.92 -0.01 

Suillus collinitus 3.16 0.00006 14.05 13.11 0.94 2.97 3.52 -0.55 1.20 1.52 -0.32 

Suillus mediterraneensis
b
 7.46 0.00004 2.90 2.38 0.52 1.32 1.47 -0.15 0.81 0.74 0.07 

Tricholoma sulphureum 4.76 0.00006 4.69 6.82 -2.13 2.19 2.43 -0.24 0.93 1.04 -0.11 

a
Data obtained in previous work [10]. 

 b
Test set observations.
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Table 2. Statistical parameters and formulas of the models radical scavenging activity 

(RSA), reducing power (RP) and inhibition of lipid peroxidation (ILP) using PLS 

method. 

Model N R
2 

Q
2

LOO F P S 

RMSE 

(training set) 

 

Q
2

ext 

RMSE 

(test set) 

RSA 13 0.932 0.895 42.4 1.30  10
-5

 2.32 3.999 0.981 1.416 

PR 13 0.887 0.791 18.9 3.96  10
-4

 2.18 0.824 0.974 0.234 

ILP 13 0.890 0.84 26.3 1.05  10
-4 2.25 0.649 0.956 0.388 

Formulas 

RSA (mg/ml) = 10
(-0.8991 * Phenolics (mg GAE/g) - 0.2238 * α-Tocopherol (g/g) + 2.49503)

 

PR (mg/ml) =10
(-0.89308 *  Phenolics (mg GAE/g) - 0.16294 * α-Tocopherol (g/g) + 2.11326) 

ILP (mg/ml) = 10
(-0.913313 * log (Phenolics (mg GAE/g)) -0.162591 * log (α-Tocopherol (g/g)) + 0.438538) 

 

N- number of samples, S- standard deviation, R
2
- squared correlation coefficient, P- 

significance, F- Fisher ratio, Q
2

LOO- “Leave-One-Out” correlation coefficient and 

RMSE- Root Mean Squared Errors for the training  set and test set. 
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Fig. 1. Distribution of radical scavenging activity (RSA), reducing power (RP) and 

inhibition of lipid peroxidation (ILP) versus number of samples for the training set 

(black) and test set (grey) of the QCAR models. 
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Fig. 2. Results of the permutation test. The R
2
 and Q

2
 values were obtained from 100 

permutations for the three developed PLS models. Intercepts: (I) RSA: (R
2
) R

2
permutation 

test=0, -0.0595, (Q
2
)
 
Q

2
permutation test =0, -0.273; (II) RP: R

2
=0, -0.0139, Q

2
=0, -0.23; (III) 

ILP R
2
=0, -0.0525, Q

2
 =0, -0.285. The figure shows on the vertical axis, for each 

selected y-variable (RSA, RP or ILP), the values of R
2
 and Q

2
 for the original model 

(far to the right) and of the y-permuted models further to the left. The horizontal axis 

shows the correlation between the permuted y-vectors and the original y-vector for each 

selected y-variable. The original y has the correlation 1.0 with itself, defining the high 

point on the horizontal axis [15]. 
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Fig. 3. Predicted versus experimental EC50 RSA, EC50 RP and EC50 ILP, for the training 

() and test sets (O). 
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Fig. 4. Residual vs. Experimental EC50 RSA, EC50 RP and EC50 ILP, for the training () 

and test sets (O).  
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