
Help   Sitemap

LOG IN
For Authors, Editors, Board Members

Username

••••••••Publishers of distinguished academic, scientific and professional
journals Remember me Forgotten?

Home For Authors Orders News

International Journal of Environment and Waste
Management (IJEWM)

Volume 8 - Issue 3/4 - 2011
Special Issue on Metal Ions Removal from Liquid Effluents: Part One

Guest Editor: Professor K.A. Matis
   Table of Contents   Preface  

Pages Title and authors

215 - 228 Two- and three-phase simulations of an ill-functioning dissolved-air
flotation tank
Vasiliki A. Emmanouil; Thodoris D. Karapantsios; Kostas A. Matis
DOI: 10.1504/IJEWM.2011.042632

229 - 240 Removal of copper and lead ions from aqueous solutions by
adsorbent derived from sewage sludge
YunBo Zhai; GuangMing Zeng; LaFang Wang; XianXun Wei; CaiTing Li;
ShanHong Li
DOI: 10.1504/IJEWM.2011.042633

241 - 257 Removal of Pb2+ and Zn2+ ions from Acidic Soil Leachate: a
comparative study between electrocoagulation, adsorption and

 

» Objectives
» Readership
» Contents
» Subject Coverage
» Editorial Board
» Specific Notes for Authors
» Sample issue
» Forthcoming Papers
»  Latest TOC

Inderscience	
  Publishers:	
  publishers	
  of	
  dis3nguished	
  academic,	
  scien3fic	
  and	
  professional	
  jo... h;p://www.inderscience.com/browse/index.php?journalID=75&year=2011&vol=8&issue=3/4

1	
  de	
  3 05/07/12	
  12:03



chemical precipitation processes
Patrick Drogui; Nathalie Meunier; Guy Mercier; Jean-Francois Blais
DOI: 10.1504/IJEWM.2011.042634

258 - 272 Batch sorption of lead (II) from aqueous solutions using natural
kaolinite
Xue-Song Wang
DOI: 10.1504/IJEWM.2011.042635

273 - 285 A hybrid flotation: microfiltration cell for effluent treatment
Efrosyni N. Peleka; Nick K. Lazaridis; Kostas A. Matis
DOI: 10.1504/IJEWM.2011.042636

286 - 304 A critical review of the separation of arsenic oxyanions from dilute
aqueous solution (the contribution of LGICT)
Eleni A. Deliyanni; Efrosini N. Peleka; George P. Gallios; Kostas A. Matis
DOI: 10.1504/IJEWM.2011.042637

305 - 324 Lariat ethers with a novel proton-ionisable groups: new generation
of collectors in ion flotation process
Pawel Maciejewski; Malgorzata Ulewicz; Waldemar Robak; Wladyslaw
Walkowiak
DOI: 10.1504/IJEWM.2011.042638

325 - 340 Cr(III) uptake by marine algal biomass: equilibrium and kinetics
Vítor J.P. Vilar; Olga M.M. Freitas; Pedro M.S. Costa; Cidalia M.S.
Botelho; Ramiro J.E. Martins; Rui A.R. Boaventura
DOI: 10.1504/IJEWM.2011.042639

341 - 352 Uptake of heavy metals from aqueous solution by non-conventional
adsorbents
S.J. Patil; A.G. Bhole; G.S. Natarajan
DOI: 10.1504/IJEWM.2011.042640

353 - 365 Development of an on-site Fe0 system for treatment of copper- and
zinc-contaminated roof runoff

Browse Recent Issues:

» 2012  Vol.9 No. 3/4
» 2012  Vol.9 No. 1/2
» 2011  Vol.8 No. 3/4
» 2011  Vol.8 No. 1/2
» 2011  Vol.7 No. 3/4
» 2011  Vol.7 No. 1/2
» 2010  Vol.6 No. 3/4
» 2010  Vol.6 No. 1/2
» 2010  Vol.5 No. 3/4
» 2010  Vol.5 No. 1/2
» 2009  Vol.4 No. 3/4
» 2009  Vol.4 No. 1/2
» 2009  Vol.3 No. 3/4
» 2009  Vol.3 No. 1/2
» 2008  Vol.2 No. 6
» 2008  Vol.2 No. 4/5
» 2008  Vol.2 No. 3
» 2008  Vol.2 No. 1/2
» 2007  Vol.1 No. 4
» 2007  Vol.1 No. 2/3
» 2006  Vol.1 No. 1

Inderscience	
  Publishers:	
  publishers	
  of	
  dis3nguished	
  academic,	
  scien3fic	
  and	
  professional	
  jo... h;p://www.inderscience.com/browse/index.php?journalID=75&year=2011&vol=8&issue=3/4

2	
  de	
  3 05/07/12	
  12:03

clarisse



Contact us  | About Inderscience  | OAI Repository  | Privacy & Cookies Statement  | Terms & Conditions  |  Copyright © 2012 Inderscience
Enterprises Ltd.

R. Rangsivek; M.R. Jekel
DOI: 10.1504/IJEWM.2011.042641

366 - 382 11 Å tobermorite ion exchanger from recycled container glass
Nichola J. Coleman
DOI: 10.1504/IJEWM.2011.042642

383 - 403 Nano-structured calcium silicate as sorbent in a study of artificial
mining waste
Thomas Borrmann; Mathew J. Cairns; Bradley G. Anderson; Wolfgang H.
Holl; James H. Johnston
DOI: 10.1504/IJEWM.2011.042643

Pages Title and authors

Inderscience	
  Publishers:	
  publishers	
  of	
  dis3nguished	
  academic,	
  scien3fic	
  and	
  professional	
  jo... h;p://www.inderscience.com/browse/index.php?journalID=75&year=2011&vol=8&issue=3/4

3	
  de	
  3 05/07/12	
  12:03



 1 

Cr(III) Uptake by Marine Algal Biomass: Equilibrium and Kinetics 1 
 2 

Vítor J. P. Vilar1, Olga M.S. Freitas2, Pedro M. S. Costa3, Cidália M. S. Botelho4, Ramiro J.E. Martins5, 3 
Rui A. R. Boaventura6∗ 4 

 5 
1Pos-Doc Researcher, Laboratory of Separation and Reaction Engineering 6 

Department of Chemical Engineering, Faculty of Engineering, University of Porto 7 

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal 8 

E-mail: vilar@fe.up.pt 9 

 10 

2Assistant Professor, Department of Chemical Engineering, 11 

School of Engineering SEP, Polytechnic Institute of Porto 12 

Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal 13 

E-mail: omf@fe.up.pt 14 

 15 

3Chemical Engineer, Hydrological Quality Centre of the Health National Institute, 16 

Dr. Ricardo Jorge, Largo 1º de Dezembro, 4049-019 Porto, Portugal 17 

E-mail: pmsc@netcabo.pt 18 

 19 

4Auxiliar Professor, Laboratory of Separation and Reaction Engineering 20 

Department of Chemical Engineering, Faculty of Engineering, University of Porto 21 

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal 22 

E-mail: cbotelho@fe.up.pt 23 

 24 

5Assistant Professor, Department of Chemical and Biological Technology, 25 

Polytechnic Institute of Bragança, Campus de Santa Apolónia, 26 

Apartado 1134, 5301-857 Bragança, Portugal 27 

E-mail: rmartins@ipb.pt 28 

6Principal Investigator, Laboratory of Separation and Reaction Engineering 29 

Department of Chemical Engineering, Faculty of Engineering, University of Porto 30 

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal 31 

E-mail: bventura@fe.up.pt 32 

* Corresponding author 33 



 2 

Abstract 34 
 35 
In this work, biosorption of trivalent chromium by the marine brown algae Sargassum muticum was 36 
studied in a batch system. The effect of the solution pH on Cr(III) uptake by Sargassum was 37 
investigated. Kinetics and equilibrium experiments were conducted at different pH values (3.0, 4.0 and 38 
5.0). Equilibrium data are well described by the Langmuir and Langmuir-Freundlich isotherms and 39 
kinetics follows the pseudo-second-order model, at different pH values. The two mass transfer models 40 
give comparable results, but they did not provide a perfect representation of the sorption data. The 41 
homogeneous diffusivity, Dh, was found to be around 1.6×10-8 cm2 s-1 for 100 mg l-1 Cr(III) 42 
concentration. 43 
Sargassum muticum was compared with the brown algae Laminaria hyperborean and the red algae 44 
Gelidium sesquipedale in terms of uptake capacity. The maximum uptake capacities for Sargassum, 45 
Laminaria and Gelidium were, respectively, 56 ± 3, 70 ± 4 and 18 ± 1 mg Cr(III) g-1, at pH = 5. 46 
 47 
Keywords: Sargassum, Gelidium, Laminaria, Equilibrium, Kinetics, Marine Algae 48 
 49 
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Botelho, C.M.S., Martins R.J.E. and Boaventura, R.A.R. (xxxx) ‘Cr(III) Uptake by Marine Algal 51 
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Nomenclature 100 
 101 
ap specific area of thin plate particles (cm-1) 102 
Ci and Cf initial and final metal concentrations in the solution (mg l-1) 103 
Ceq residual metal concentration in solution (mg l-1) 104 

( )tCb  concentration of metal species in the liquid phase (mg metal l-1) 105 

0bC  initial metal concentration in the liquid phase (mg l-1) 106 
Dh homogeneous diffusion coefficient inside the particle (cm2 s-1) 107 
L half of the thin plate thickness (cm) 108 

ads,1k  biosorption constant of pseudo-first-order equation (min-1) 109 

ads,2k  biosorption constant of pseudo-second-order equation (min-1 g mg-1). 110 
KL equilibrium constant for the Langmuir equation (l mg-1) 111 
KLF equilibrium constant for the Langmuir-Freundlich equation (l mg-1) 112 
kp mass transfer coefficient for intraparticle diffusion (cm s-1) 113 
n empirical dimensionless parameter 114 
q metal uptake (mg metal g-1 of the biosorbent) 115 
qeq amount of the metal adsorbed on the biosorbent at equilibrium (mg g-1) 116 
qL and qLF maximum amount of metal per unit weight of biosorbent to form a complete monolayer on 117 
the surface, respectively for Langmuir and Langmuir-Freundlich equation (mg g-1) 118 

( )t,zq  average metal concentration in the solid phase (mg g-1) 119 
qt concentration of metal in the sorbent at time t (mg g-1) 120 
rads(i) initial biosorption rate (mg g-1 min-1) 121 
V volume of solution (l) 122 

( )tyb  and ( )t,xy  dimensionless metal concentrations in liquid and solid phase 123 

( )t,xy  dimensionless metal concentration inside the particle 124 

eqy  dimensionless metal concentration in the solid phase 125 
x dimensionless axial coordinate inside the particle 126 
z distance to the symmetry plane (cm) 127 
W dry weight of biosorbent (g) 128 
ξ  dimensionless factor for the batch capacity 129 
τd particle diffusion time constant (s) 130 
 131 
1 Introduction 132 
 133 
Chromium main uses are in alloys, such as stainless steel, chrome plating leather tanning, and metal 134 
ceramics. Chromium plating was once widely used to give steel a polished silvery mirror coating; it is 135 
used in metallurgy to impart corrosion resistance and a shiny finish; as dyes and paints, its salts colour 136 
glass an emerald green and it is used to produce synthetic rubies; to make moulds for the firing of 137 
bricks (WHO, 1988). 138 
Chromium(III) is an essential nutrient for humans and shortages may cause heart conditions, 139 
disruptions of metabolisms and diabetes. But the uptake of too much chromium(III) can cause health 140 
harmful effects as well, for instance skin rashes (WHO, 1988). 141 
Chromium, and most trivalent chromium compounds, have been listed by the National Toxicology 142 
Program (NTP) as having inadequate evidence for carcinogenicity in experimental animals, but a long-143 
term exposure to Cr(III) is known to cause allergic skin reactions and cancer (Lide, 2006). 144 
Crops contain systems that arrange the chromium-uptake to be low enough not to cause any harm. But 145 
when the amount of chromium in the soil rises, this can still lead to higher concentrations in crops. 146 
Acidification of soil can also influence chromium uptake by crops (Lide, 2006). 147 
Chromium is not known to accumulate in the bodies of fish, but high concentrations of chromium, due 148 
to the disposal of metal bearing wastewaters in surface waters, can damage the gills of fish that swim 149 
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near the point of discharge. Chromium can cause respiratory problems in animals, a lower ability to 150 
fight disease, birth defects, infertility and tumour formation (Lide, 2006). 151 
In result of chromium toxicity, discharge limits have been regulated by most industrialized countries. 152 
Conventional treatment of these effluents rich in chromium, as chemical precipitation, 153 
oxidation/reduction, ion exchange and others, are extremely expensive (reagents consumption, safe 154 
disposal of toxic sludge, technology) or inefficient for chromium removal from diluted solutions 155 
(Volesky, 2003). 156 
Nowadays, it has been confirmed that several low cost biological materials are able to effectively 157 
remove chromium by sorption, as brown seaweed Ecklonia sp. (Yun et al., 2001), Sargassum 158 
(Kratochvil et al., 1998), Laminaria japonica (Kang et al., 2004), blue-green algae Spirulina sp. 159 
(Chojnacka et al., 2005), peat (Ma and Tobin, 2003), waste industrial Mucor meihi biomass (Tobin and 160 
Roux, 1998), Saccharomyces cerevisiae residual cells from brewing industries (Ferraz et al., 2004), etc. 161 
Metal uptake by biosorption is the result of a combination of different reactions that can occur in the 162 
cell wall, as complexation, coordination and chelation of metals, ion exchange, adsorption and 163 
microprecipitation (Volesky, 2003). The binding of chromium ions (Cr3+ and CrOH2+) by protonated 164 
brown alga Ecklonia biomass was attributed to carboxylic groups in the pH range 1-5, and the uptake 165 
capacity increased with pH. An equilibrium model including the hydrolysis reactions that chromium 166 
undergoes in the aquatic phase and the Cr3+ and Cr(OH)2+ reactions with the binding sites was able to 167 
predict the equilibrium data (Yun et al., 2001). Carboxyl groups are acidic, so at low pH they will be 168 
protonated and thereby become less available for binding metals, which explains why the uptake of 169 
many metals increases with increasing pH (Crist et al., 1991). 170 
Protonated or Ca-form Sargassum seaweed biomass bound up to 40 mg g-1 of Cr(III) by ion exchange 171 
at pH 4. An ion-exchange model assuming that only species taken up by the biomass was Cr(OH)2+ 172 
successfully fitted the experimental biosorption data for Cr(III) (Kratochvil et al., 1998). 173 
Waste industrial Mucor meihi biomass was found to be an effective biosorbent for the removal of 174 
chromium from industrial tanning effluents. Sorption levels of 1.15 and 0.7 mmol g-1 were observed at 175 
pH 4 and 2, respectively. Acid elution of biosorbed chromium increased with decreasing eluant pH to a 176 
maximum value of ca. 30% at pH near zero (Tobin and Roux, 1998). 177 
Kinetic, equilibrium and dynamic (packed bed column) adsorption studies have been performed 178 
successfully, using as adsorbate Pb(II), Cu(II), Cd(II) and Zn(II) ions, and the red algae Gelidium 179 
sesquipedale as biosorbent (Vilar et al., 2006a, Vilar et al., 2006c, , 2007).The metal ion uptake was 180 
attributed to the carboxylic groups present in the structure of the algae, determined by potentiometric 181 
titration (Vilar, 2006). A continuous model, considering a heterogeneous Sips distribution of the 182 
binding equilibrium constants fitted well the equilibrium experimental data (Vilar et al., 2006c). The 183 
kinetic data in batch and continuous systems were also well described by a mass transfer model (Vilar 184 
et al., 2006a, 2006b, Vilar et al., 2007). 185 
Until now biosorption of trivalent chromium by algae Sargassum muticum has not been described. 186 
Large quantities of these algae are available in the Portuguese coast and can be used for metal removal. 187 
Ria Formosa, in the south of Portugal, has been invaded by Sargassum muticum, putting in danger the 188 
ecosystem biodiversity. So, it’s a matter of concern to remove this algal biomass, and find out an 189 
interesting application for the large quantities available. 190 
 191 
2 Material and methods 192 
 193 
2.1 Biosorbents 194 
 195 
The brown seaweeds Sargassum muticum and Laminaria hyperborea were collected along Portuguese 196 
northern coast. The red algae Gelidium sesquipedale was harvested from central and southern coast. 197 
The algae were washed with tap water and distilled water to remove most salts, air-dried during two 198 
days to remove odours and most water and, after that, dried at 60ºC and crushed in a mill. Algal 199 
particles were then sieved (AS200 digit Retsch shaker) to obtain a fraction of 0.5-0.85 mm. The 200 
equivalent length and width of the particles were about 2.5 mm and 0.6 mm, respectively, and thickness 201 
0.1 mm. 202 
 203 
2.2 Chromium solutions 204 
 205 
Chromium(III) solutions were prepared by dissolving a weighted quantity of nonahydrated chromium 206 
(III) nitrate (Carlo Erba, 98%) in distilled water. Solution pH values were controlled during kinetic and 207 
equilibrium experiments to 5.0, 4.0 and 3.0 by addition of HNO3 0.01/0.1 M and NaOH 0.01/0.1 M 208 
solutions. 209 
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 210 
2.3 Sorption kinetic studies 211 
 212 
In order to determine the contact time required to reach equilibrium, biosorption dynamic experiments 213 
were performed. Batch experiments were carried out in a 1-liter capacity glass vessel, equipped with a 214 
cooling jacket (Grant type VFP) to ensure a constant 20 ºC temperature during the experiment. The pH 215 
was monitored and controlled with a WTW 538 pH/temperature meter. For kinetic experiments the 216 
vessel was filled with 0.5 l of distilled water and a known weight of adsorbent was added. The 217 
suspension was stirred for 10 min at 600 rpm stirring rate (magnetic stirrer Heidolph MR 3000) for 218 
initial solution pH correction, and then the metal solution (0.5 l of a 200 mg l-1 solution, which leads to 219 
an initial concentration of 100 mg l-1) was added maintaining the same stirring rate. 5 ml samples were 220 
taken out at pre-determined time intervals ranging from 1 to 10 minutes after addition of the metal 221 
solution. Samples were centrifuged (Eppendorf Centrifuge 5410) and the supernatant stored for Cr(III) 222 
analysis. 223 
 224 
2.4 Sorption equilibrium studies 225 
The experiments were performed in duplicate, using 100 ml Erlenmeyer flasks, at pH = 5.0, 4.0 and 226 
3.0 and temperature 20ºC. The initial metal concentration was changed between 10 and 200 mg l-1. A 227 
given amount of biomass was suspended in 100 ml metal solution and stirred at 100 rpm. The solution 228 
pH was adjusted by using 0.01 M NaOH and HCl solutions and temperature was maintained constant 229 
(20ºC) by using a HOTTECOLD thermostatic refrigerator. Once equilibrium was reached, samples 230 
were taken out and centrifuged (Eppendorf Centrifuge 5410) for Cr(III) analysis in the supernatant. 231 
 232 
2.5 Analytical procedure 233 
 234 
Metal concentration was determined by atomic absorption spectrometry (GBC 932 Plus Atomic 235 
Absorption Spectrometer). The amount of metal adsorbed per gram of biosorbent was calculated from 236 
the metal mass balance. 237 
 238 
3. Results and discussion 239 
 240 
3.1 Equilibrium 241 
 242 
Biosorption of Cr(III) ions by Sargassum muticum is highly pH dependent, as can be seen in Fig. 1. 243 
The pH influences both metal binding sites on the cell surface and metal chemistry in solution. 244 
According to the chromium speciation diagram in aqueous solution (Haug and Smidsrod, 1970), for 245 
the pH range 1.5-5, the predominant Cr(III) species in solution are Cr3+ and Cr(OH)2+ (Cr(OH)+ also 246 
exists at this pH range but in a very low concentration). For pH < 2.5, Cr(OH)2+ is no more present in 247 
solution, and Cr3+ starts to precipitate as Cr(OH)3 at pH > 5.0. Two major species, Cr3+ and Cr(OH)2+, 248 
can bind with functional groups present on the surface of the biosorbent. 249 
 250 

INSERT FIG.1 251 
 252 
As the pH increases, the active sites, such as carboxyl and sulphate groups carry negative charges and 253 
subsequently attract metal ions. So, biosorption onto cell surfaces increases. Yun et al. (2001) studied 254 
the biosorption of trivalent chromium on brown alga Ecklonia biomass, and concluded that, even at pH 255 
> 3.35, the contribution of Cr3+ binding to the chromium uptake was significant (identical 256 
concentrations of Cr3+ and Cr(OH)2+ in aqueous phase), indicating that Cr3+ has higher affinity to the 257 
binding sites than Cr(OH)2+. 258 
Fig. 2 presents obtained equilibrium data for Cr(III) adsorption on algae Sargassum muticum at three 259 
different pH (3.0, 4.0 and 5.0). Two equilibrium models were used to describe the equilibrium data: 260 
Langmuir isotherm equation (Langmuir, 1918): 261 

eqL

eqLL
eq CK

CKq
q

+
=

1
 (1) 262 

Langmuir-Freundlich (LF) isotherm, derived from the Langmuir and Freundlich models (Sips, 1948): 263 

( )( )

( )( )neqLF

neqLFLF
eq

CK

CKq
q

1

1

1+
=  (2) 264 
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where Ceq and qeq represent the residual metal concentration in solution and the amount of the metal 265 
adsorbed on the biosorbent at equilibrium, respectively, qL and qLF are the maximum amount of metal 266 
per unit weight of biosorbent to form a complete monolayer on the surface, KL is a coefficient related 267 
to the affinity between the sorbent and the metal ions, KLF is the equilibrium constant, and n is an 268 
empirical dimensionless parameter. 269 
 270 

INSERT FIG. 2 271 
 272 
Experimental equilibrium data are well predicted by Langmuir and Langmuir-Freundlich adsorption 273 
isotherms. Model parameters, including statistical ones, are presented in Tables 1 and 2. No statistical 274 
difference was found between the two models, as given by the application of the test F for a 95% 275 
confidence level. So, results will be compared using Langmuir model. 276 
 277 

INSERT TABLES 1 AND 2 278 
 279 
Fig. 3 compares the adsorption behaviour of three different algae species, brown algae Sargassum 280 
muticum and Laminaria hyperborea, and red algae Gelidium sesquipedale, at pH = 5 and T = 20ºC. 281 
Brown algae present a higher uptake capacity for chromium than red algae Gelidium, because they 282 
have more surface carboxyl groups (≈ 2.6 mmol g-1) (Figueira et al., 2000, Lodeiro et al., 2005) when 283 
compared with algae Gelidium (≈ 0.36 mmol g-1) (Vilar, 2006). Carboxyl groups are mainly due to 284 
alginic acid (brown algae) and agarose (Gelidium). The values of LL Kq ×  presented in Table 1, 285 
indicate metal ions affinity for surface groups. Results show that metal ions bind with brown algae 286 
functional groups more easily than with algae Gelidium. Alga Laminaria is the best biosorbent as it 287 
can accumulate a greater amount of metal ions, principally for equilibrium concentrations higher than 288 
20 mg l-1. 289 
 290 

INSERT FIG. 3 291 
 292 
The adsorption of trivalent chromium ions has been studied, using different kinds of biosorbents: crab 293 
shell (Chinonecetes opilio obtained as waste from a crabmeat processing plant) (qL = 21 mg g-1, pH = 294 
5.0, T = 30ºC) (Kim, 2003), Sargassum sp. (Brazilian coast) (qL = 60 mg g-1, pH = 5.0, T = 30ºC) 295 
(Cossich et al., 2002), a residue of Sargassum sp. seaweed obtained after extraction of biological 296 
cosmetics (qL = 300 mg g-1, pH = 6.0, T = 55ºC) (Carmona et al., 2005), brown seaweed Ecklonia sp. 297 
(seashore of Pohand, Korea) (qL = 34 mg g-1, pH = 4, T = 20ºC), algal biomass spirogyra spp. treated 298 
with 0.2 M CaCl2 (qL = 30.21 mg g-1, pH = 5, T = 25ºC) (Bishnoi et al., 2006), carrot residues (qL = 40 299 
mg g-1, pH = 5.0, T = 25ºC) (Nasernejad et al., 2005), bacterium Pseudomonas aeruginosa (qL= 7 mg g-300 
1, pH not given, T = 25ºC) (Kang et al., 2006), milled peat form supplied by Bord and Mona 301 
(Newbridge, Co. Kildare, Ireland) (qL = 21 mg g-1, pH = 5, T = 22-25ºC) (Ma and Tobin, 2003), yeast 302 
Candida tropicallis (qL = 4.6 mg g-1) and filamentous bacterium Streptomyces noursei (qL = 1.8 mg g-1) 303 
(Mattuschka et al., 1993). These results show that the brown algae studied in this work are similar to 304 
the best biosorbents presented above, with respect to Cr(III) uptake capacity. 305 
 306 
3.2 Kinetics 307 
 308 
3.2.1 Kinetic models 309 
 310 
Fig. 4 shows that biosorption is a fast process, occurring mainly in the first 40 minutes. The adsorption 311 
process takes place in two different stages: an initial and fastest stage, when high affinity and more 312 
accessible sites are occupied and a second stage that corresponds to the occupation of low affinity and 313 
more internal sites (Vilar, 2006). 314 
 315 

INSERT FIG. 4 (a) AND (b) 316 
 317 
In this work, two kinetic models were used (Lagergren, 1898, Ho and McKay, 1998): 318 
           Pseudo-first-order model                                Pseudo-second-order model 319 

           ( )[ ]tkexp1qq ads,1eqt −−=               (3)                 
tqk1

tkq
q

eqads,2

ads,2
2
eq

t +
=               (4) 320 
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where qt is the concentration of ionic species in the sorbent at time t (mg metal g-1 biosorbent), ads,1k is 321 

the biosorption constant of pseudo-first-order equation (min-1) and ads,2k is the biosorption constant of 322 
pseudo-second-order equation (min-1 g biosorbent mg metal-1). 323 
Kinetic data in Fig. 4 are fitted by the pseudo-first order and the pseudo-second order models. The 324 
performance of both models was compared by using the F Test, which let us to conclude that the 325 
pseudo-second-order model fits better the kinetic data for the three pH values (95% confidence level). 326 
Model parameters are presented in Tables 3 and 4. The values of qeq confirm a stronger chromium 327 
uptake at high pH values, as it was concluded from the equilibrium experiments. The initial 328 
biosorption rate (rads(i)) was calculated as: 329 
                ( ) eqads,1ads qkir =           (5)        and            ( ) 2

eqads,2ads qkir =                          (6) 330 
for the pseudo-first order and pseudo-second order models, respectively. The initial biosorption rate 331 
increases with pH due to the increase of the affinity of the metal ions to the binding sites. 332 
 333 

INSERT TABLES 3 AND 4 334 
 335 
3.2.2 Mass transfer models 336 
 337 
In order to describe the dynamics of the biosorption process two mass transfer models were developed, 338 
a homogeneous diffusion model and a linear driving force model, that can be solved analytically 339 
(Rodrigues, 1974). The following assumptions were considered: (i) - negligible external diffusion, for 340 
an adequate stirring rate (600 rpm); (ii) - sorption rate controlled by homogeneous diffusion inside the 341 
particle or linear driving force approximation (LDF); (iii) - isothermal process; (iv) - equilibrium 342 
between bound and soluble metal concentrations, as formulated by Langmuir isotherm; (v) - particles 343 
as uni-dimensional thin plates. 344 
 345 
Homogeneous Diffusion Model 346 
Mass conservation inside the particles gives: 347 

( ) ( )
2

2

d x

t,xy1

t

t,xy

∂
∂=

∂
∂

τ
, 

h
d D

L2

=τ  (7) 348 

where dτ  is the time constant for diffusion of ionic species into the particle (min), Dh is the 349 
homogeneous diffusion coefficient inside the particle (cm2 s-1), and L is half of the thin plate thickness 350 
(cm). 351 
The initial and boundary conditions for Eq. (7) are:  352 

( ) 10y0t b ==  (8) 353 

( ) 00,xy1x0 =<≤  (9) 354 
( )

t
x

txy
x ∀=

∂
∂= 0

,
0  (10) 355 

( ) ( )[ ] ( )
1x

2
bL

d x

t,xy
t,xy1CK

t

t,xy
1x

0

=









∂
∂−−=

∂
∂=

τ
ξ

 (11) 356 

Dimensionless variables: 357 

( ) ( ) ( ) ( )
Lb

b
b q

t,zq
t,xy;

C

tC
ty;

L

z
x

0

=== ;358 

( ) ( )
0b

L

L

eq
eq

L CV

qW
;

q

q
y;

q

t,zq
t,xy === ξ  359 

where V is the metal solution volume (l), W the mass of biosorbent (g), ( )tCb  and ( )t,zq  the 360 
concentration of metal species in the liquid phase (mg metal l-1) and the average metal concentration in 361 
the solid phase (mg metal g-1 biosorbent), respectively, z the distance (cm) to the symmetry plane, x the 362 
dimensionless axial coordinate inside the particle, 

0bC  the initial metal concentration in the liquid 363 

phase (mg metal l-1), ( )tyb  and ( )t,xy  the dimensionless metal concentrations in liquid and solid 364 
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phase, ( )t,xy  the average metal concentration inside the particle, eqy  the dimensionless metal 365 

concentration in the solid phase, given by the equilibrium law, and ξ  the dimensionless factor for the 366 
batch capacity. A collocation on finite elements method was used to solve the nonlinear parabolic PDE 367 
with the initial and boundary conditions for each model equation (Madsen and Sincovec, 1979). 368 
 369 
Linear Driving Force (LDF) 370 
If the average metal concentration inside the particle is used instead of a concentration profile, the 371 
following equations are obtained: 372 
Kinetic law: 373 

( ) ( )[ ]
L

1
a;tyyak

dt

tyd
peqpp =−=  (12) 374 

where kp is the mass transfer coefficient for intraparticle diffusion (cm s-1) and ap is the specific area of 375 
the thin plate particles (cm-1). 376 
Mass conservation in the fluid inside the closed vessel: 377 

( ) ( )( )ty1
1

ty b−=
ξ

 (13) 378 

Initial condition: 379 
( ) ( ) 0ty1ty0t b ===  (14) 380 

Substituting Eq. (13) and the dimensionless Langmuir equation in Eq. (12) the following expression is 381 
obtained, which can be solved analytically: 382 

( )
( ) ( ) 1ty1
tyCK1

CK

td

tyd

ak

1
b

bbL

bLb

pp 0

0 =













+

+
+

ξ
 (15) 383 

For a parabolic profile inside the particle, d
2

hpp 3LD3ak τ== , where pp ak  is the mass 384 
transfer intraparticle resistance (min-1). 385 
The mass transfer models, presented in this work, were solved for the operating parameters, resulting 386 
in the simulated curves presented in Figs. 5 (a) and (b). Both models adjust well the experimental data, 387 
confirming that the LDF approximation can be considered. Concentration profiles inside the particle 388 
for different values of dimensionless time (t/τp) are presented in Figure 6. It can be seen that the metal 389 
concentration inside the particle follows approximately a parabolic profile for low values of (t/τp) and a 390 
linear profile near the equilibrium. The average metal concentrations inside the particle given by the 391 
two models are initially very different, but as (t/τp) increases they become closer and equal at 392 
equilibrium. 393 
 394 

INSERT FIG. 5 (a), (b) AND (c) 395 
 396 
The values of the mass transfer intraparticle resistance, diffusion time and homogeneous diffusion 397 
coefficient are presented in Table 5. The thickness of the thin plates was determined by microscopic 398 
observation (L = 0.05 mm). Dh values are lower than the diffusivity of Cr3+ in water (5.85×10-6 cm2 s-399 
1), suggesting that a resistance to the diffusion process exists. 400 
The kinetic rate for the pseudo-first-order equation is defined as ( )teqads,t qqkdtdq −= 1 . When 401 
compared with the kinetic law used in the LDF model (Eq. (12)), k1,ads  has the same meaning that 402 

ppak . As, both values are of the same order of magnitude, the assumed mechanism is validated. 403 
 404 

INSERT TABLE 5 405 
 406 
5 Conclusion 407 
 408 
Biosorption of Cr(III) ions by brown seaweed Sargassum muticum can be considered as an innovative 409 
and effective process, giving good performances. Equilibrium is well described by Langmuir and 410 
Langmuir-Freundlich models. The maximum uptake capacity was obtained for the highest pH within 411 
the study range (3.0- 5.0). Biosorption kinetics is fast and well represented by the pseudo-second order 412 
model. The LDF model can be considered as a simple model, with an analytical solution, to describe 413 
mass transfer resistance in the biosorption process. 414 
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Table 1. Estimated Langmuir equilibrium model parameters (value ± standard deviation). 626 
 627 

Langmuir model 

Biosorbent pH 
Lq  

(mg g-1) 
LK  

(l mg-1)×102
 

LL Kq ×  

(l g-1) 

R2 
2
RS  

(mg g-1)2 
Fcal F1-α 

5.0 56 ± 3 6 ± 1 3.4 ± 0.6 0.960 11.2 1.1 2.2 

4.0 33 ± 1 12 ± 1 3.9  ±  0.3 0.982 2.07 1.1 2.2 Sargassum 

3.0 19 ± 1 9 ± 1 1.7 ± 0.2 0.987 0.41 1.2 2.2 
         

Laminaria 5.0 70 ± 4 4.2 ± 0.6 2.9 ± 0.6 0.971 12.9 1.9 2.1 
         

Gelidium 5.3 18 ± 1  2.1 ± 0.4 0.38 ± 0.08 0.933 1.38 1.1 2.3 

 628 
 629 
 630 
 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
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Table 2. Estimated Langmuir-Freundlich equilibrium model parameters (value ± standard deviation). 675 
 676 

Langmuir-Freundlich model 

Biosorbent pH 
LFq  

(mg g-1) 
LFK  

(l mg-1)×102
 

n  

R2 
2
RS  

(mg g-1)2 

5.0 50 ± 4 4 ± 1 0.8 ± 0.1 0.963 10.5 

4.0 32 ± 1 9 ± 2 0.85 ± 0.08 0.984 1.90 Sargassum 

3.0 22 ± 3 11 ± 2 1.3 ± 0.2 0.992 0.34 
       

Laminaria 5.0 54 ± 2 1.1 ± 0.5 0.57 ± 0.06 0.984 6.66 
       

Gelidium 5.3 25 ± 9 3.5 ± 0.9 1.4 ± 0.3 0.941 1.23 

 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 
 695 
 696 
 697 
 698 
 699 
 700 
 701 
 702 
 703 
 704 
 705 
 706 
 707 
 708 
 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
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Table 3. Estimated pseudo-first order model parameters (value ± standard deviation). 723 
 724 

Pseudo-first order model 

Biosorbent 
 

pH 
 

Ci 
(mg l-1) eqq  

(mg g-1) 

ads,k1   

(min-1) 
R2 

2
R

S  

(mg g-1)2 

( )iadsr  

 (mg g-1 min-1) 

Fcal F1-α 

5.0 102 29.6 ± 0.9 0.20 ± 0.04 0.918 8.15 6 ± 1 3.7 2.4 

4.0 109 24.7 ± 0.6 0.22 ± 0.03 0.932 3.85 5.4 ± 0.8 3.1 2.3 Sargassum 

3.0 104 14.7 ± 0.3 0.16 ± 0.01 0.975 0.62 2.4 ± 0.2 2.7 2.3 

 725 

 726 
 727 
 728 
 729 
 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 
 749 
 750 
 751 
 752 
 753 
 754 
 755 
 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 
 764 
 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 
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Table 4. Estimated pseudo-second order model parameters (value ± standard deviation). 773 
 774 

Pseudo-second order model 

Biosorbent 
pH 

 
Ci  

(mg l-1) eqq   

(mg g-1) 

adsk ,2   

(g mg-1 min-1) 
×102 

R2 
2
R

S  

(mg g-1)2 

( )iadsr  

 (mg g-1 min-1) 

5.0 102 31.9 ± 0.6 0.9 ± 0.1 0.977 2.21 9 ± 1 

4.0 109 26.1 ± 0.4 1.5 ± 0.2 0.977 1.23 10 ± 1 Sargassum 

3.0 104 15.9 ± 0.2 1.4 ± 0.1 0.991 0.23 3.5 ± 0.3 

 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
 790 
 791 
 792 
 793 
 794 
 795 
 796 
 797 
 798 
 799 
 800 
 801 
 802 
 803 
 804 
 805 
 806 
 807 
 808 
 809 
 810 
 811 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
 822 
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Table 5. Estimated parameters for the linear driving force (LDF) and homogeneous particle diffusion 823 
models. 824 
 825 

LDF model  Homogeneous diffusion model 

Biosorbent 
Ci 

(mg l-1) 
pH 

pp ak ×  

(min-1) 
dτ  

(min) 

2
RS  

(mg g-1)2 
 dτ  

(min) 

Dh 
(cm2 s-1) 

2
RS  

(mg g-1)2 

Dh (average) 
(cm2 s-1) 

102 5.0 0.12 25 15.9  25 1.7×10-8 11.5 

109 4.0 0.12 25 6.7  25 1.7×10-8 3.7 Sargassum 

104 3.0 0.11 27 1.0  27 1.5×10-8 0.5 

1.6×10-8 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 
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Figure 1. 883 
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Figure 2. 901 
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Figure 3. 919 
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Figure 4. 937 

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Time (min)

q t
 (

m
g/

g)

pH = 5.0
pH = 4.0
pH = 3.0
Pseudo-first-order
Pseudo-second-order

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 



 23 

Figure 5.  955 

(a) 956 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

Time (min)

C
b/

C
b0

pH = 5.0

pH = 4.0

pH = 3.0

a

 957 

(b) 958 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180

Time (min)

q t
 (

m
g/

g)

pH = 5.0

pH = 4.0

pH = 3.0

b

 959 

 960 

 961 

 962 

 963 

 964 

 965 



 24 

Figure 6.  966 
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