brought to you by T CORE

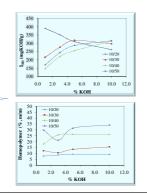
The Oxypropylation of Olive Stone and the Use of the Ensuing Polyols for the Synthesis of Novel Polyesters and Polyurethanes Based on Renewable Resources

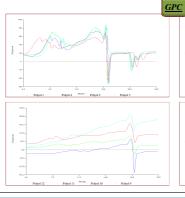
Marina Matos^{1,2}, M. Filomena Barreiro², Alessandro Gandini¹

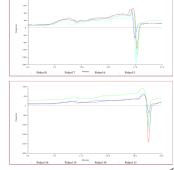
(1) CICECO and Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal (marina.matos@ua.pt and agandini@ua.pt)

(2) LSRE, Polytechnic Institute of Bragança, Campus de Santa Apolónia Ap. 1134, 5301-857 Bragança (barreiro@ipb.pt)

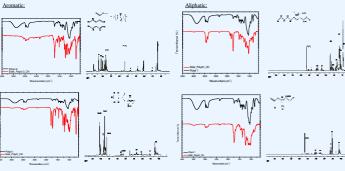
PO Homopolymer

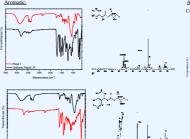

Objectives

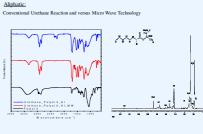

- The purpose of this investigation was the search of a more useful and promising way to exploit olive stone (OS), an abundant and renewable Mediterranean natural material;
- > In a first step we have undertaken an optimization study of the oxypropylation (transformation of the natural solid into a viscous polyol);
- In an second step the more promising polyols were selected for chemical modifications involving ester urethane formation


Introduction Oxypropylation can be applied to various OH bearing substrates (1): Oxypropylation Process: Monomers for the synthesis of Esters and Urethanes: Oxypropylation Total Oxypropylation Partial Oxypropylation · Chitin and Chitosan · Different types of Ligni Starch grant · Olive Stone Grains · Olive Stone powder О+СН₂СН-О-}_Н

Oxypropylation: optimization study


Polyol	OS/PO (w/v, g/ml)	Cat./(Cat.+OS) (%, m/m)	Homopolymer %, (m/m)	Final Residue (%, m/m)	I _{OH} (mg KOH/g)	Viscosity (µ) (25°C, Pa.s)
1	10/20	1,0	7,8	0,1	389,2	n.m.
2		3,0	8,7	0,1	351,2	n.m.
3		5,0	9,3	≈ 0	309,5	350,0
4		10,0	9,1	≈ 0	261,6	230,6
5	10/30	1,0	12,3	1,1	215,3	n.m.
6		3,0	10,6	1,0	276,0	584,6
7		5,0	13,5	≈ 0	316,6	360,6
8		10,0	15,6	≈ 0	297,2	100,3
9	10/40	1,0	18,1	≈ 0	147,3	n.m.
10		3,0	25,8	≈0	220,5	75,7
11		5,0	26,3	≈ 0	256,1	74,9
12		10,0	26,3	≈ 0	312,9	11,6
13	10/50	1,0	29,7	≈0	169,6	77,1
14		3,0	21,2	≈ 0	243,7	41,9
15		5,0	31,3	≈ 0	286,9	12,4
16		10,0	34,0	≈0	315,8	7,1





Synthesis of Esters:

Synthesis of Urethanes:

Conclusions

- \triangleright Based on the optimization study, polyols 1 and 2 were chosen due to its higher I_{OH} and lower
- The chosen polyols were modified into esters and urethanes. These chemical modifications using monofunctional reactants are useful to modulate the final polyol properties, namely functionality;
- > Microwave-assisted technology, which is recognized as a powerful tool for green synthetic purposes, was successfully applied to produce polyurethanes.

References

Acknowledgments

Azeites Milénium, Lda Mirandela