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ABSTRACT 

 

Intermolecular interactions play essential roles in several life processes and 

understanding these interactions is critical for pharmaceutical and functional foods 

industries. Mushrooms represent an unlimited source of compounds with antitumor and 

immunostimulating properties and mushroom intake has been shown to reduce the risk 

of breast cancer. In this work, two in silico studies were performed in an attempt to 

elucidate potential mechanisms of mushroom bioactivity. First, a QCAR (Quantitative 

Composition-Activity Relationships) modelling approach was used to study and predict 

mushroom antioxidant activity. Next, molecular docking and virtual ligand screening 

(VLS) studies were performed in an attempt to elucidate possible mechanisms of 

mushroom anti-breast cancer activity. 

For the initial QCAR study a PLS (Partial Least Square) statistical technique 

was applied to evaluate the relationship between antioxidant potential (scavenging 

effect on free radicals and reducing power) and chemical composition of twenty three 

samples from seventeen Portuguese wild mushroom species. A wide range of analytical 

parameters including ash, carbohydrates, proteins, fat, monounsaturated fatty acids, 

polyunsaturated fatty acids, saturated fatty acids, phenolics, flavonoids, ascorbic acid 

and β-carotene was studied and the data was analyzed by the PLS regression analysis to 

find correlations between all the parameters. Antioxidant activity correlated well with 

phenolic and flavonoid contents. A QCAR model was constructed, and its robustness 

and predictability was verified by internal and external cross-validation methods. This 

model proved to be a useful tool in the prediction of mushrooms reducing power. 

For the VLS study, molecular docking software AutoDock 4 was used in order 

to evaluate which wild mushroom low molecular weight (LMW) compounds, including 

antioxidants, could be involved in anti-breast cancer activity. A representative dataset of 

43 LMW compounds (individual phenolic acids, flavonoids, tocopherols, carotenoids, 

sugars and fatty acids) was selected and molecular docking was carried out against three 

known protein targets involved in breast cancer (Aromatase, Estrone Sulfatase and 17-

β-hydroxysteroid dehydrogenase 1). The top ranked LMW compounds with breast 

cancer inhibition activity was predicted and the information provided showed several 

interesting starting points for further development of inhibitors of the mentioned 
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proteins. 4-O-caffeoylquinic acid, naringin and lycopene stand out as the top ranked 

potential inhibitors for Aromatase, Estrone Sulfatase and 17β-HSD-1, respectively.  

The performed chemoinformatic studies allowed valorisation of mushrooms as 

functional foods and could be used in Industries focused on developing new 

nutraceuticals or functional foods.  
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RESUMO 
 

 

As interacções intermoleculares desempenham um papel essencial nos diversos 

processos biológicos, sendo fundamental a compreensão destas interacções nos Sectores 

das Indústrias Farmacêuticas e de Alimentos Funcionais. Os cogumelos representam 

uma fonte ilimitada de compostos com propriedades antitumorais e imunoestimulantes, 

e o seu consumo foi já relacionado com a redução do risco de cancro da mama. No 

presente trabalho, foram desenvolvidos dois estudos in silico com o intuito de melhor 

compreender quais os mecanismos moleculares responsáveis por diferentes 

propriedades bioactivas dos cogumelos. Primeiro utilizou-se uma metodologia de 

modelação QCAR (Relações Quantitativas Composição – Actividade) para estudar e 

prever a actividade antioxidante de cogumelos. Num segundo estudo utilizaram-se 

ferramentas de “docking” molecular e “virtual ligand screening” (VLS) para tentar 

elucidar possíveis mecanismos de actividade dos cogumelos contra o cancro da mama. 

No estudo QCAR inicial foi utilizada a técnica estatística dos Mínimos 

Quadrados Parciais (PLS) para avaliar a relação entre o potencial antioxidante (efeitos 

bloqueadores de radicais livres e poder redutor) e a composição química de vinte e três 

amostras de dezassete espécies de cogumelos silvestres Portugueses. Estudaram-se 

vários parâmetros analíticos tais como cinzas, hidratos de carbono, proteínas, gorduras, 

ácidos gordos monoinsaturados, ácidos gordos polinsaturados, ácidos gordos saturados, 

fenóis, flavonóides, ácido ascórbico e β-caroteno, e os seus resultados foram analisados 

por PLS de forma a estabelecer correlações entre todos os parâmetros. A actividade 

antioxidante mostrou estar correlacionada com o teor em fenóis e flavonóides. Foi 

construído um modelo QCAR, cuja robustez e capacidade de previsão foram verificadas 

por métodos de validação cruzada internos e externos. Finalmente, este modelo provou 

ser uma ferramenta útil na previsão do poder redutor de cogumelos.  

Nos estudos de VLS foi utilizado o software de “docking” molecular Autodock 

4 com o objectivo de identificar compostos de baixo peso molecular (LMW), incluindo 

antioxidantes, presentes em cogumelos e potencialmente envolvidos na actividade 

contra o cancro da mama. Foi seleccionado um grupo representativo de 43 compostos 

de LMW (ácidos fenólicos, flavonóides, tocoferóis, carotenóides, açúcares e ácidos 

gordos) e efectuou-se “docking” molecular usando como alvo três proteínas envolvidas 

no cancro da mama (Aromatase, Esterona Sulfatase e 17-β-hidroxi-esteróide 
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desidrogenase 1). Os compostos LMW foram classificados quanto à sua capacidade de 

inibição do cancro da mama. A informação obtida estabelece um bom ponto de partida 

para o desenvolvimento de inibidores das proteínas mencionadas. O ácido 4-o-

cafeoilquínico, a naringina e o licopeno revelaram-se, respectivamente, os melhores 

inibidores para Aromatase, Esterona Sulfatase e 17β-HSD1.  

Os estudos de Química Computacional realizados permitiram a valorização dos 

cogumelos como alimentos funcionais, podendo ser muito úteis para Indústrias que 

visem o desenvolvimento de novos nutracêuticos ou alimentos funcionais. 
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I. INTRODUCTION 

 

1. Functional foods  

 

In the last decades consumer demands in the field of food production has 

changed considerably. Consumers more and more believe that foods contribute directly 

to their health. Today foods are not intended to only satisfy hunger and to provide 

necessary nutrients for humans but also to prevent nutrition-related diseases and 

improve physical and mental well-being of the consumers. In this regard, functional 

foods play an outstanding role. The increasing demand on such foods can be explained 

by the rapid advances in science and technology, increasing cost of healthcare, changes 

in food laws affecting label and product claims, the steady increase in life expectancy, 

the desire of older people for improved quality of their later years, and rising interest in 

attaining wellness through diet (Siro et al., 2008). 

According to the Institute of Medicine‟s Food and Nutrition Board “Functional 

Foods” are foods or dietary components that may provide a health benefit beyond basic 

nutrition. We can take greater control of our health through the food choices we make, 

knowing that some food can provide specific health benefits (Hasler, 1998). The 

European Commission‟s Concerted Action on Functional Food Science in Europe 

(FuFoSE), coordinated by International Life Science Institute (ILSI) Europe defined 

functional food as follows: „„a food product can only be considered functional if 

together with the basic nutritional impact it has beneficial effects on one or more 

functions of the human organism thus either improving the general and physical 

conditions or/and decreasing the risk of the evolution of diseases. The amount of intake 

and form of the functional food should be as it is normally expected for dietary 

purposes. Therefore, it could not be in the form of pill or capsule just as normal food 

form‟‟ (Siro et al., 2008). 

Functional food could not exist without nutraceutical compounds, the bioactive 

compounds that give functional properties to food. A nutraceutical can be defined as a 

substance that may be considered a food or part of a food and provides medical or 

health benefits like the prevention and treatment of disease. Nutraceuticals may range 

from isolated nutrients and dietary supplements to genetically engineered “designer” 
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foods, herbal products and processed products such as cereals, soups and beverages 

(Andlauer and Furst, 2002). 

The term „„functional food‟‟ itself was first used in Japan, in the 80s, for food 

products fortified with special constituents that possess advantageous physiological 

effects (Hasler, 1998; Siro et al., 2008). Functional foods may improve the general 

conditions of the body (e.g. pre- and probiotics), decrease the risk of some diseases (e.g. 

cholesterol-lowering products), and could even be used for curing some illnesses. It was 

recognized that there is a demand for these products as different demographical studies 

revealed that the medical service of the aging population is rather expensive. The 

European market for functional foods was estimated to be between 4 and 8 billion US$ 

in 2003 depending which foods are regarded as functional. This value has increased to 

around 15 billion US$ by 2006. The current market share of functional food is still 

below 1% of the total food and drink market. Germany, France, the United Kingdom 

and the Netherlands represent the most important countries within the functional food 

market in Europe (Siro et al., 2008). 

The design and development of functional foods is a scientific challenge that 

should rely on a stepwise process. The process begins with basic scientific knowledge 

relevant to functions that are sensitive to modulation by food components, which are 

pivotal to maintenance of well-being and health, and that, when altered, may be linked 

to a change in the risk of a disease. The exploitation of this knowledge in the 

development of markers that can be shown to be relevant to the key functions is the 

second step. Next is a new generation of hypothesis-driven human intervention studies 

that will include the use of these validated, relevant markers and allow the establishment 

of effective and safe intakes. Last is the development of advanced techniques for human 

studies that, preferably, are minimally invasive and applicable on a large scale. The 

targets for functional food science may include: Gastrointestinal functions; Redox and 

antioxidant systems; Metabolism of the macronutrients; Development in fetal and early 

life; Xenobiotic metabolism and its modulation by non-nutritive dietary components; 

Mood and behaviour or cognition and physical performance (Roberfroid, 2000).  

The development of functional foods provides a unique opportunity to contribute 

to improvement of the quality of the food offered to consumers who want to benefit 

their health and well-being. Only a rigorous scientific approach producing highly 

significant results will guarantee the success of this new discipline of nutrition. It is 

clearly a challenge for the food industry (Roberfroid, 2000). 



3 

2. Mushrooms as Functional Foods 

 

Mushrooms are something special in the living world, being neither plant nor 

animal. They have been placed in a kingdom, called Myceteaea. The word mushroom 

may mean different things to different people and countries. In a broad definition 

“mushrooms are macrofungus with a distinctive fruiting body, which can be either 

epigeous or hypogeous and large enough to be seen with naked eye and to be picked by 

hand”. Thus, mushrooms can be Ascomycetes that can grow underground and have a 

non-fleshy texture and need not be edible (Miles and Chang, 1997).  

Edible mushrooms have been widely used as human food for centuries and have 

been appreciated for texture and flavours as well as some medicinal and tonic attributes. 

However, the awareness of mushrooms as a healthy food and as an important source of 

biological active substances with medicinal value has only recently emerged. Various 

activities of mushrooms have been studied which includes antibacterial, antifungal, 

antioxidant, antiviral, antitumor, cytostatic, immunosuppressive, antiallergic, 

antiatherogenic hypoglycaemic, anti-inflammatory and hepatoprotective activities 

(Lindequist et al., 2005). In the present work we will focus on antioxidant and antitumor 

activities. 

 

2.1 Nutritional Value  

  

Mushrooms are considered a healthy food because they are low in calories and 

fat but rich in protein and dietary fibers (Cheung et al., 2003; Manzi et al., 1999). 

 The crude protein content of edible mushrooms is usually high, but varies 

greatly and is affected by factors such as species and stage of development. The crude 

protein content of some common edible mushrooms varies from 15.0 to 23.2% w/w. 

Albumins (24.8%), globulins (11.5%), glutelin-like material (7.4%), glutelins (11.5%), 

prolamins (5.7%) and prolamine-like material (5.3%) are the main proteins present in 

mushrooms. Several authors referred mushrooms as a good source of essential amino 

acids such as: leucine, valine, threonine, lysine, methionine and tryptophan. Leucine and 

valine were found to be the most abundant essential amino acids, comprising 25–40% of 

the total amino acid content. Wild mushroom proteins also contain considerable 

amounts of non-essential amino acids such as alanine, arginine, glycine, glutamic acid, 
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aspartic acid, proline and serine. They are important in providing structure to cells, 

tissues and organs and therefore essential for growth and repair (Diez and Alvarez, 

2001; Kalac, 2009; Manzi et al., 1999).  

Mushrooms are recognized as an excellent choice for low energy diets, as they 

have high water and low fat content (average of 2–6% of dry weight). Fat in mushrooms 

contains all classes of lipid compounds including free fatty acids, mono-, di-, and 

triglycerides, sterols, sterol esters and phospholipids.. Within fatty acid composition, 

polyunsaturated linoleic acid (C18:2n-6), monounsaturated oleic acid (C18:1n-9) and 

nutritionally undesirable saturated palmitic acid (C16:0) prevail. The proportions of 

nutritionally neutral saturated stearic acid (C18:0), and especially of desirable α-

linolenic acid (C18:3n-3), are low. Other fatty acids are present at only low levels 

(Heleno et al., 2009a). Contents of odd- and branched-chain acids and hydroxy fatty 

acids are negligible. The occurrence of trans fatty acids in mushrooms has not been 

reported and it is not expected. Phosphatidylcholine was the major phospholipid present 

in 55 of 58 wild growing mushroom species of several families. The nutritional value of 

wild growing mushroom lipids is thus limited, due to low total lipid content and a low 

proportion of desirable n-3 fatty acids (Kalac, 2009). 

Cultivated mushrooms are a good source of several vitamins, such as riboflavin, 

niacin, and folates, with concentrations that vary within the range of 1.8-5.1, 31-65, and 

0.30-0.64 mg/100g dry weight, respectively, depending on the species. The vitamin B2 

content in mushrooms is higher than than generally founds in vegetables, and in some 

varieties even at a level found in egg and cheese. Mushrooms contain moderately high 

amounts of folates at concentrations that are of the same magnitude as is generally 

found in vegetables.  In addition to riboflavin, niacin and folates, cultivated mushrooms 

also contain small amounts of vitamin C and vitamin B1 and traces of vitamins B12 and 

D2 (Clifford et al., 1991; Mattila et al., 2001).  

The carbohydrate content of edible mushrooms varies with species and ranges 

from 3 to 65% dry weight. Glucose, mannitol and trehalose are the main representatives 

of monosaccharides, their derivatives and oligosaccharide groups, respectively. Usual 

contents of glucose and trehalose are low; the content of mannitol, which participates in 

volume growth and firmness of fruiting bodies, differs widely. Reducing sugars are only 

a small part of carbohydrates content since wild edible mushrooms are rich in non-

starch polysaccharides (dietary fiber, 3–32% dry weight), such as glycogen (animal and 

fungi reserve polysaccharide), β-glucan and chitin (structural polymers). Edible 



5 

mushrooms are believed to contain a high levels of oligosaccharides and only a low 

levels of total soluble sugars (Bano and Rajarathnam, 1988; Kalac, 2009). 

 

 

2.2 Antioxidant activity  

  

2.2.1 Oxidative stress 

Free radicals are produced in the normal natural metabolism of aerobic cells, 

mostly in the form of reactive oxygen species (ROS). Once produced, most of the free 

radicals are neutralized by cellular antioxidant defences (enzymes and non-enzymatic 

molecules). Beneficial effects of ROS occur at low or moderate concentrations and 

involve cellular physiological roles of signalization and regulation. Nevertheless, the 

equilibrium between ROS production and antioxidant defences might be displaced 

either by the overproduction of ROS or by the loss of the cell antioxidant defences. This 

disequilibrium is known as oxidative stress (Ferreira et al., 2009). 

Oxidative stress might have natural causes such as extreme exercise or 

inflammation processes, or non-natural causes such as the presence of xenobiotics in the 

organism or situations related to several diseases (Figure 1).  

 

 

 

 

Figure 1. Major causes for over production of free radicals (oxidative stress), possible cellular targets and 

conditions associated to oxidative stress. Source: Ferreira et al., 2009. 
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In fact, the non-controlled production of free radicals has been related to more 

than one hundred diseases including several kinds of cancer, diabetes, cirrhoses, 

cardiovascular diseases, neurological disorders, among others. The overproduction of 

ROS has also been related to the aging process. 

Several ROS production pathways and the main endogenous antioxidant 

defences of the cell are described in Figure 2. 

 

 

 

 

Figure 2. Overview of the main reactions involving reactive Oxygen species (ROS) / reactive Nitrogen species 

(RNS), and major endogenous enzymatic and non-enzymatic antioxidant defences in the cell. The most 

representative endogenous sources (traced rectangles) of ROS/RNS are presented and include: Mitochondrial ETS 

(Electron transport system), NADPH oxidases, Xanthine oxidase for ROS and NO synthases for RNS. The main 

antioxidant defences are presented in shaded rectangles and the enzymes involved are presented in italic. Molecular 

Oxygen (O2), superoxide anion (O2
•−

), hydrogen peroxide (H2O2), hydroxyl radical (HO
•
), hydroxide ion (HO

-
) 

membrane lipids (LH), lipid radical (L
•
), peroxyl radical (LOO

•
), hydroperoxide lipid (LOOH), lipid alkoxyl radical 

(LO
•
), nitric oxide (NO

•
), radicals (R

•
), non-radicals (R),  alcohols (LOH), glutathione (GSH), glutathione disulphide 

(GS-SG), α-tocopherol or vitamin E (vit. E), vitamin E radical (vit. E
•
), vitamin C (vit. C), vitamin C radical (vit. 

C
•
), S-nitrosoglutathione (GSNO), nicotidamide adenine dinucleotide phosphate: oxidized (NADP

+
), reduced 

(NADPH). Enzymes: Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione 

redutase (Gred), glutathione-S-transferases (GST), Mitochondrial ETS (electron transport system), nitric oxide 

synthase (NOS). Adapted from Ferreira et al., 2009. 
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Superoxide anion (O2
•− 

- “primary” ROS) is mostly produced in mitochondria, 

due to a small but continuous “leak” of the electrons in the mitochondrial electron 

transport system (ETS). Superoxide anion can also be produced by different 

endogenous enzymatic systems present in the cell like NADPH oxidases and xanthine 

oxidase. Even though O2
•−

 is not a very active radical, it can interact with other 

molecules generating what are considered as “secondary” ROS, such as hydrogen 

peroxide (H2O2) and hydroxyl radical (OH
•
). Hydroxyl radical has a very short life time 

but is considered to be the most toxic among all ROS, being responsible for the attack 

to DNA molecules, damaging purins and pyrimidines and the structure of desoxyribose 

DNA. Mitochondria are the most important source of ROS, but they are also the first 

targets of these radicals because ROS have an easy access to the membrane lipids, 

which are susceptible to free radicals attack. This attack is called lipid peroxidation and 

promotes the production of different types of ROS (Figure 2). The lipid peroxidation 

usually begins with the extraction of a hydrogen atom from a polyunsaturated lipid 

(LH) chain, through the action of reactive species such as HO
•
. This generates a highly 

reactive lipid radical (L
•
) that can react with O2 to form a peroxyl radical (LOO

•
). If not 

neutralized by antioxidants defences, the peroxyl radical will react with other adjacent 

lipids producing hydroperoxides lipids (LOOH) that can easily be decomposed to form 

new L
•
 radicals, initiating a process that is known as chain propagation reactions. This 

process when not stopped, can lead to much superior damage than the ROS that started 

the reaction. It is also important to notice the existence of radicals with nitrogen called 

Reactive Nitrogen species (RNS). The principal RNS is nitric oxide (NO
•
) and it is 

generated in biological tissues by specific nitric oxide synthases (NOS), which 

metabolise arginine to citrulline (Figure 2) (Ferreira et al., 2009). 

Exposure to free radicals from a variety of sources has led organisms to the 

development of a series of defence mechanisms (Figure 2). These defences were the 

evolution response to the inevitability of the existence of oxygen radicals in aerobic life 

conditions, and can be classified into enzymatic and non-enzymatic. There are many 

different endogenous enzymatic antioxidant defences in the organism, either in 

intracellular or extracellular medium. Examples of these defences include superoxide 

dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), and glutathione 

redutase (Gred) among others. The endogenous non-enzymatic antioxidant defences 

include glutathione (GSH), α-tocopherol (vitamin E), ascorbic acid (vitamin C), lipoic 

acid, and other antioxidants (Ferreira et al., 2009).  
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The implication of oxidative and nitrosative stress in the etiology and 

progression of several acute and chronic clinical disorders has led to the suggestion that 

antioxidants can have health benefits as prophylactic agents. This suggests that changes 

in dietary behaviour, increasing consumption of plant-based foods, which contain 

significant amounts of bioactive phytochemicals, may provide desirable health benefits, 

beyond basic nutrition, to reduce the risk of chronic diseases. 

 

2.2.2. Contribution of mushrooms against oxidative stress 

 Natural products with antioxidant activity may help the endogenous defence 

system. In this perspective, the antioxidants present in the diet assume a major 

importance as possible protector agents reducing oxidative damage.  

Many studies have concluded that edible mushrooms possess potent 

antioxidants. Research conducted in Japan showed the antioxidant activity of the crude 

ethanol extract of 150 Japanese mushrooms using the peroxide value in the methyl 

linoleate system (Cheung, 2009). It showed that many mushrooms, especially those 

belonging to the Suillus genus, had a peroxide value 80% lower than the control. A 

study of methanol extracts from black (Auricularia mensenterica), red (Auricularia 

polytricha) and snow (Auricularia fuscosuccinea) ear mushrooms found that they had 

an inhibitory effect on lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical 

scavenging, hydroxyl radical scavenging, strong reducing power and ability to chelate 

ferrous ions. Similar studies of other mushrooms including, Dictyophora indusiata, 

Grifola frondosa, Hericium erinaceus , Tricholoma giganteum, Lentinula edodes, 

Pleurotus cystidiosus, and Pleurotus ostreatus, showed that these mushrooms also 

possess the afore mentioned antioxidant properties. It is therefore likely that most 

mushrooms possess hydroxyl and DPPH radical scavenging effects, inhibit lipid 

peroxidation, chelate metals, and has a strong reducing effect (Mau et al., 2001; Mau et 

al., 2002; Yang et al., 2002). Similar antioxidant properties have also been reported for 

other edible mushrooms, including Agrocybe cylindracea and Hypsizigus marmoreus, 

both of which belong to the Tricholomataceae family (Lee et al., 2007; Tsai et al., 

2006). 

Furthermore, several other mushrooms from Portugal (Lactarius deliciosus, 

Lactarius piperatus, Macrolepiota mastoidea, Macrolepiota procera, Sarcodon 

imbricatus, Agaricus arvensis, Agaricus bisporus, Agaricus silvicola, Agaricus 

silvaticus, Agaricus romagnesii, Leucopaxillus giganteus, Sarcodon imbricatus, 

http://www.mykoweb.com/CAF/species/Hericium_erinaceus.html
http://doi.wiley.com/10.1111/j.1472-765X.1990.tb00100.x
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Cantharellus cibarius, Hypholoma fasciculare, Lepista nuda, Lycoperdon molle, 

Lycoperdon perlatum, Ramaria botrytis and Tricholoma acerbum), Korea (Grifola 

frondosa and Lentinus edodes), China (Lentinus edodes, Volvariella volvacea and 

Agrocybe aegerita), Taiwan (Grifola frondosa, Morchella esculenta, Termitomyces 

albuminosus, Dictophora indusiata, Grifola frondosa, Hericium erinaceus, Trichloma 

giganteum, Ganoderma lucidum, Ganoderma tsugae, Coriolus versicolor, Armillariella 

mellea, from India Termitomyces heimii, Helvella crispa, Termitomyces tylerance, 

Lactarius sanguifluus, Morchella conica, Termitomyces mummiformis, Pleurotus sajor-

caju, Termitomyces shimperi, Lentinus squarrulosus, Boletus edulis, Pleurotus djamor, 

Macrolepiota procera, Cantharellus clavatus, Morchella angusticeps, Termitomyces 

microcarpus, Lactarius deliciosus, Geastrum arinarius, Hydnum repandum, Lentius 

sajor-caju, Sparassis crispa, Russula brevepis, Auricularia polytricha and Cantharellus 

cibarius), Turkey (Agaricus bisporus, Polyporus squamosus, Pleurotus ostreatus, 

Lepista nuda, Russula delica, Boletus badius, Verpa conica and Lactarius deterrimus) 

and Brazil (Lentinula edodes and Agaricus blazei) were also reported to have 

antioxidant activity, which was mainly related to their phenolic content (Barros et al., 

2007b; Barros et al., 2007d; Barros et al., 2008c; Barros et al., 2007f; Barros et al., 

2008d; Cheung and Cheung, 2005; Cheung et al., 2003; Choi et al., 2006; Elmastas et 

al., 2007; Ferreira et al., 2007; Kitzberger et al., 2007; Lee et al., 2008; Lo and Cheung, 

2005; Mau et al., 2004; Mau et al., 2002; Ng et al., 2007; Puttaraju et al., 2006; 

Sarikurkcu et al., 2008; Soares et al., 2009; Song et al., 2003; Tsai et al., 2007; 

Turkoglu et al., 2007; Yang et al., 2002). 

The antioxidants found in mushrooms are mainly phenolic compounds (phenolic 

acids and flavonoids), followed by tocopherols, ascorbic acid and carotenoids. These 

molecules were quantified in tens of different species mainly from Finland, India, 

Korea, Poland, Portugal, Taiwan and Turkey. The values are available in literature, but 

expressed in different basis (dry weight, fresh weight and extract) (Ferreira et al., 2009).   

In the present work, the antioxidant potential of mushrooms was correlated to 

their chemical composition, including nutrients and antioxidants, using 

chemoinformatic tools. 
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2.3 Anticancer activity  

 

2.3.1. Breast Cancer   

Breast cancer is the most common type of cancer among women worldwide and 

its rate is increasing in both developed and developing countries. The burden is not 

evenly distributed and there are large variations in the incidence rates of breast cancer 

between different countries (Parkin et al., 2005). 

Most breast cancers (about 95%), whether in pre- or postmenopausal women, are 

initially hormone-dependent (Pasqualini and Chetrite, 2005). The majority of breast 

cancers occur during the postmenopausal period when the ovaries have ceased to be 

functional. Despite the low levels of circulating estrogens, the tissular concentrations of 

estrone (E1), estradiol (E2) and their sulfates (E1S, E2S) in breast tumours are several 

times higher than those found in the plasma or in the area of the breast considered as 

normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these 

hormones (Pasqualini, 2004). 

Figure 3 shows the biosynthesis of estrogens from steroid precursors via the 

aromatization of androstenedione to estrone by aromatase or via the hydrolysis of 

estrone sulfate by Estrone sulfatase (STS). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Estrogens pathway in breast cell. Estrone sulfatase (STS), 17-β-hydroxysteroid dehydrogenase 

type 1 (17β-HSD1) and Aromatase. 
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There are three enzymes that are directly involved in the production of estrone 

and estradiol in the breast cell, that are Estrone sulfatase (STS), 17-β-hydroxysteroid 

dehydrogenase type 1 (17β-HSD1) and Aromatase. These proteins were used as targets 

in the present work.  

Estrone sulfatase is a microsomal enzyme and is an integral membrane protein 

of the Endoplasmic Reticulum (Figure 4). It is most active at or near neutral pH and can 

be solubilised only in the presence of detergents (Ghosh, 2007). 

 

 

Figure 4. Estrone sulfatase X-ray protein structure (PDB: 1P49) represented in cartoon format; docked 

natural ligands are represented in wire format (pink).  

 

STS is an alternative source of sex-steroid precursors for the local biosynthesis 

of active estrogens and androgens. STS catalyzes the hydrolysis of E1S to unconjugated 

E1, which is subsequently reduced to estradiol (E2) by 17-β-hydroxysteroid 

dehydrogenase 1 (17β-HSD1). Androstenedione (A) to E1 and testosterone (T) to E2 

aromatization steps are catalyzed by aromatase (Figure 3). However, local biosynthesis 

of E2 from E1S has been proposed to be the major cause of high levels of active 

estrogens in the breast for post-menopausal women. The presence of STS in breast 

carcinomas and STS dependent proliferation of breast cancer cells have been 

demonstrated. STS immunoreactivity was detected in 84 out of 113 breast carcinoma 

cases and was significantly associated with their mRNA levels as well as enzymatic 

activities (Ghosh, 2007). 
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There are fifteen discovered 17β-HSD enzymes in mammals (Jansson, 2009). 

The common feature for this enzymes is the possibility to catalyze oxidation or reduce 

the carbon at position 17 in steroids. The enzymes have different preferences for 

substrates such as estrone, estradiol, testosterone, androstenedione, and 

dihydrotestosterone, are expressed in different parts of the cell, and in diverse tissues. 

This shows that the enzymes have separate physiological functions (Jansson, 2009). 

17β-HSD1 (Figure 5) known to be of main importance in breast tissue (Pasqualini, 

2004). 

 

 

 

 

Figure 5. 17β-HSD1 X-ray protein structure (PDB: 1FDT) represented in cartoon format; docked natural 

ligands represented in wire format (pink). 

 

17β-HSD1 predominantly catalyzes reduction of estrone to estradiol using 

NAD(H) or NADP(H) as co-factor (Figures 3 and 5). The expression is low in normal 

breast epithelium but increases in a large proportion on breast tumours. Highly variable 

amounts of this enzyme have been detected in benign and malign breast tissue. In some 

studies it was detected in all the analysed tumours, but others detected expression in 

only 20%. In invasive breast tumours 17β-HSD1 protein expression was detected in 

approximately 60% (Jansson, 2009).  
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Aromatase (Figure 6), an enzyme of the cytochrome P450 (CYP450) subfamily 

and the product of the CYP19A1 gene, is highly expressed in the placenta and in the 

granulose cells of ovarian follicles in premenopausal women. In menopause, 

androstenedione produced in the adrenals and, to a small extent, testosterone produced 

in the ovaries are released to the circulation and then sequestered to nonglandular 

tissues (e.g., liver and breast cells), where they are converted to estrone and estradiol, 

respectively, by aromatase located in these tissues (Desta et al., 2009). 

 

 

Figure 6. Aromatase (PDB: 3EQM) represented in cartoon format; docked natural ligands in wire format 

(pink). 

 

Drugs that effectively inhibit the aromatase-mediated synthesis of estrogens in 

peripheral tissues including the breast, thus depriving the system of estrogens, are 

widely used in the treatment of breast cancer. These drugs include the nonsteroidal 

triazole derivatives anastrozole and letrozole and the steroidal exemestane (Desta et al., 

2009). Aromatase inhibitors are used widely as second-line therapy in breast cancer; 

and there is now evidence for a chemopreventive role for these agents (Zaidman et al., 

2005).  

The present work explores mushrooms as sources of potential inhibitors of the 

three enzymes (estrone sulfatase, 17β- and aromatase) involved in breast cancer.   
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2.3.2 Contribution of mushrooms against cancer 

The mushroom Cordyceps militaris has been use for a long time in eastern Asia 

as a nutraceutical and in traditional Chinese medicine as a treatment for cancer patients. 

Cordyceps militaris proteins exerted strong antifungal effect against the growth of the 

fungus Fusarium oxysporum, and exhibited cytotoxicity against human breast and 

bladder cancer cells. New discoveries in molecular oncology along with rapid expansion 

of our knowledge concerning the processes that govern differentiation, apoptosis, 

immune surveillance, angiogenesis, metastasis, cell cycle, and signal transduction 

control have unveiled an abundance of specific molecular targets for cancer therapy, 

including a variety of small-molecule compounds that inhibit or stimulate these 

molecular targets (Park et al., 2009). 

In a recent study, it was found that Ganoderma lucidum, Phellinus rimosus, 

Pleurotus florida and Pleurotus pulmonaris possessed profound antioxidant and 

antitumor activities. This indicated that these mushrooms would be valuable sources of 

antitumor and antioxidant compounds. Extracts of fruiting bodies of Boletus edulis and 

other Basidiomycetes also revealed antitumor activity against Sarcoma 180 line in mice. 

In the 1960s, calvacin was the most commonly cited natural product isolated from the 

medicinal mushroom Calvatia gigantean and was broadly used in many laboratories as 

an antitumor agent (Ajith and Janardhanan, 2007; Lucas et al., 1957). 

In Eastern Europe, the fruiting bodies of Ionotus obliquus have been used as a 

folk medicine for cancer and stomach diseases since the 16
th

 or 17
th

 century. antitumor 

effects of several extracts and isolated compounds from mushrooms could be 

demonstrated in tumour cell systems and in animal assays (Burczyk et al., 1996; 

Molitoris, 1994). 

Several phytochemicals have been isolated from medicinal mushrooms and three 

of these, which are carcinostatic polysaccharide drugs, have been developed from 

mushrooms in Japan. These are “Krestin” (PSK), from the cultured mycelium of 

Kawaratake (Trametes versicolor), “Lentinan” from the fruiting bodies of Shiitake 

(Lentinus edodes) and “Schizophyllan” (Sonifilan) from the culture fluid of Suehirotake 

(Schizophyllum commune)(Mizuno, 1993). Lentinan and schizophyllan are pure β-

glucans, whereas PSK is a protein bound polysaccharide (Larone, 2002). The biological 

activity of these three products is related to their immunomodulating properties, which 

enhance the host‟s defence against various forms of infectious disease. These 
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immunopotentiators, or immunoinitiators, are also referred as “biological response 

modifiers” (Zaidman et al., 2005; Zjawiony, 2004). 

A recent clinical study suggests that higher dietary intakes of fresh and dried 

mushrooms are associated with a reduced breast cancer risk with a dose–response 

relationship in both pre- and postmenopausal Chinese women. The combination of 

dietary intake of mushrooms and green tea drinking decreased breast cancer risk with an 

additional reduced effect on the malignance (Zhang et al., 2009) 

Searching for new antitumor and other medical substances from mushrooms and 

studying their medical value has become a matter of great significance. In the present 

work, virtual ligand screening was performed using estrone sulfatase, 17β-HSD1 and 

aromatase as targets, in order to evaluate which mushrooms compounds may be 

potentially involved in anti-breast cancer activity. 
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3. Chemoinformatics methodologies 

 

The use of bioinformatic tools is widespread in all areas of basic and applied 

scientific knowledge. These tools include chemoinformatics methods that are used in 

the design, creation, organization, management, retrieval, analysis, dissemination, 

visualization and use of chemical information. In this work, we selected the appropriate 

chemoinformatic tool for each study performed: QCAR for mushroom antioxidant 

activity prediction and molecular docking for potential mushroom anti-breast cancer 

activity against selected protein targets. 

 

3.1 QCAR - Quantitative Composition-Activity Relationships  

 

Because most sets of biological observations, particularly those produced by 

testing different chemical structures in the same biological system, cannot be adequately 

described by existing theory, researchers often seek semi empirical models in which the 

changes in observed values are predicted as a mathematical function of properties which 

are better understood (Cramer, 1993). 

In modern pharmaceutical industry, computer-aided drug design methods, such 

as quantitative structure–activity relationship (QSAR) study has greatly accelerated the 

pace of drug discovery in recent decade. The underlying assumption behind QSAR 

analysis is that the variation of biologic activity within a group of compounds can be 

correlated with the variation of their respective structural and chemical features (Wang 

et al., 2006).  

Because detailed information about the antioxidant activity of each one of the 

compounds present in mushrooms are not available (antioxidant activity EC50 values 

correspond to extracts and not individual compounds), QSAR method cannot be directly 

used to predict bioactivity of mushrooms. However, variation of antioxidant activity of 

mushrooms is tightly associated with the variation of their chemical composition. Such 

relationship between chemical composition and biological activity (antioxidant activity) 

is termed Quantitative Composition–Activity Relationship (QCAR), and is a sister 

method of the well-known QSAR methodology. With QCAR instead of QSAR, 

compound composition is used instead of compound structure as studied variable, but 

the statistical analysis and tools used are essentially the same. 
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To develop the QCAR model, the PLS (Partial Least Squares) statistical method 

was used. PLS is an important technique for producing a linear equation to describe or 

predict differences in the values of one or more properties from differences in the values 

of other properties (Cramer, 1993). In composition–bioactivity studies, such a linear 

equation is usually called a QCAR model. The described or predicted properties (in this 

case, antioxidant activity) are called the 'dependent variables' or, in the PLS literature, 

the 'Y-block'. The describing or predicting properties (chemical composition) are called 

the 'independent variables' or the 'X-block'. To implement PLS technique and build a 

QCAR model we used SIMCA-P software a user-friendly software program (Fernandez 

et al., 2005).  

By quantitatively analyzing the chemical composition–bioactivity relationship, a 

QCAR mathematical model was established that is able to successfully predict 

antioxidant activity of mushrooms. The QCAR approach is very recent and, when used 

to study complex biological matrixes (like mushrooms), is a very promising 

methodology, better suitable for biological activity predictions than the more widely 

used QSAR methods. 

 

3.2 Molecular Docking and Virtual Ligand Screening 

 

Structure based drug design is now an established approach in drug discovery. 

Computational methodologies are used to facilitate structure based drug design at 

various stages of the process. One of the most important and routinely adopted methods 

is molecular docking (or just docking) and refers to the prediction of the binding mode 

of a specified compound within the active site of the protein target of interest (Congreve 

et al., 2005; Verdonk et al., 2007). 

Selecting (or designing) compounds in silico that bind to a protein active site is 

difficult. First, the in silico method must solve the docking problem by finding the 

optimum binding orientation for the compound in the active site of the protein. This 

means that it must predict the correct ligand conformation and orientation, in addition to 

any protein movement that is induced by the ligand, although for most applications of 

docking the protein is assumed rigid. Many methods and programs have been developed 

and tested in docking applications. Docking accuracy is usually assessed by the ability 

to reproduce the experimentally determined binding mode of a ligand as the highest-

ranking solution starting from a random ligand geometry but using the correct 
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conformation of the protein. Currently, state-of-the-art docking programs correctly dock 

~70–80% of ligands when tested on large sets of protein–ligand complexes (Congreve 

et al., 2005). 

The second challenge is that the in silico method must score the compound so 

that its relative affinity can be judged versus other compounds. 

The use of molecular docking to search large databases of compounds for 

possible ligands of a protein receptor is usually termed virtual ligand screening (VLS) 

and has been successfully applied in several therapeutic programs at the lead discovery 

stage (Ghosh et al., 2006). Rapid accumulation of high-resolution three-dimensional 

structures, further accelerated by the structural proteomics initiative and the 

improvements of docking and scoring technology, are making VLS an attractive 

alternative to the traditional methods of lead discovery. VLS can sample a virtually 

infinite chemical diversity of drug-like molecules without synthesizing and 

experimentally testing every screened molecule. Typically, a corporate high-throughput 

screening (HTS)-ready compound library ranges from 200,000 to 1,000,000 molecules. 

The high cost of such massive experimental testing and its technical complexity are 

further motivation for the theoretical alternative. Finally, the virtual experiment, as 

opposed to a high-throughput assay, can be easily designed to select for a particular 

binding site or receptor specificity (Abagyan and Totrov, 2001). 

In the present work, VLS was performed using estrone sulfatase, 17β-HSD1 and 

aromatase as protein targets, in order to evaluate the potential of mushrooms as sources 

of compounds with anti-breast cancer activity. We used AutoDock 4 (Morris et al., 

1998), acknowledged to be one of the most reliable and broadly used molecular docking 

tool (Sousa et al., 2006), with several examples of accurate docking predictions already 

published (Chen et al., 2007; Li et al., 2004). 
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II RESULTS  

 

1. A QCAR model for predicting antioxidant activity of wild 

mushrooms 

 

1.1 Introduction 

 

Free radicals play important roles in many physiological and pathological 

conditions (Valko et al., 2007). In general, excess of free radicals caused by the 

imbalance between free radical generation and scavenging may contribute to disease 

development. Free radicals can damage membranes, proteins, enzymes and DNA, 

increasing the risk of diseases such as cancer, Alzheimer‟s, Parkinson‟s, 

angiocardiopathy, arthritis, asthma, diabetes, and degenerative eye disease (Machlin and 

Bendich, 1987; Valko et al., 2007).   

Mushrooms have become attractive as functional foods and as a source of 

physiologically beneficial compounds including antioxidants (Lindequist et al., 2005; 

Wasser, 1999). Different wild mushroom species were reported to have antioxidant 

activity, which was mainly related to their phenolic content (Cheung et al., 2003; 

Elmastas et al., 2007; Kim et al., 2008; Lee et al., 2008; Mau et al., 2004; Soares et al., 

2009; Tsai et al., 2007). Nevertheless, none of the available reports present a 

quantitative study to obtain a predict model for antioxidant potential. Furthermore, other 

chemical substances in mushrooms including proteins, carbohydrates, vitamins and 

fibers could also contribute to the antioxidant capacity (Maisuthisakul et al., 2008). 

Our recent investigation provided an insight to the chemical composition, 

nutritional value and antioxidant properties of several wild mushroom species from 

Northeast of Portugal, one of the European regions with higher wild edible mushrooms 

diversity, valorising mushrooms as a source of nutrients and nutraceuticals (Barros et 

al., 2007a; Barros et al., 2007b; Barros et al., 2007c; Barros et al., 2008b; Barros et al., 

2008d). The analysis of nutrients included determination of proteins, fats, ash, and 

carbohydrates, particularly sugars by High Performance Liquid Chromatography 

coupled to a refraction index detector (HPLC-RI). The analysis of nutraceuticals 

included determination of fatty acids by Gas-Chromatography with a flame ionization 

detector (GC-FID), and other phytochemicals such as phenolic compounds by HPLC 
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coupled to a diode array detector and mass spectrometry (HPLC/DAD-ESI/MS), 

carotenoids and ascorbic acid, by spectrophotometric techniques. The antioxidant 

activity was screened through chemical and biochemical assays (Barros et al., 2007b; 

Barros et al., 2007d; Barros et al., 2007f; Barros et al., 2008c; Barros et al., 2008d). 

Numerous tests have been used for measuring the antioxidant capacity of food and 

biological samples. However, there is no universal method that can measure the 

antioxidant capacity of all samples accurately and quantitatively (Prior et al., 2005). 

DPPH radical scavenging activity (RSA) and reducing power (RP) assays are two of the 

most widely used methods for antioxidant activity screening. 

The relationship between chemical substances including phenolic compounds 

and antioxidant properties may be complex, and there is very little data to elucidate the 

relationship between chemical composition and antioxidant capacity of wild 

mushrooms. Herein, the antioxidant potential (RSA and RP) and chemical composition 

of some Portuguese wild mushrooms were evaluated using linear regression analysis 

(Partial Least Square, PLS), in order to find possible relationships between those 

parameters. Furthermore, a Quantitative Composition-Activity Relationships (QCAR) 

model was constructed in order to predict the reducing power of mushrooms.  

 

1.2. Methods 

 

1.2.1. Data set 

A total of twenty three samples from seventeen Portuguese wild mushroom 

species were used in this study (Table 1). The samples were selected using the 

following criteria: wild mushrooms studied by our research group using the same 

methodologies; results of chemical composition and antioxidant activity available on the 

same sample. In some species, results considering different stages of fruiting body 

growth (SI, SII and SIII) and different conservation conditions (frozen and dehydrated) 

were available, and therefore used in this study. 
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Table 1. Chemical composition and antioxidant activity (reducing power, RP and radical scavenging activity, RSA) values of Portuguese wild mushrooms.  

Species 
Ash 

(g/100g ) 

Carbohydrates  

(g/100g ) 

Proteins 

(g/100g ) 

Fat  

(g/100g ) 

PUFA 

(%) 

MUFA 

(%) 

SFA 

(%) 

Phenolics 

(mg/g ext) 

Flavonoids 

(mg/g ext) 

Ascorbic acid 

(mg/g ext) 

ß-Carotene 

(µg/g ext) 

EC50 (RP) 

(mg/ml) 

EC50 (RSA) 

(mg/ml) 
References 

Agaricus arvensis 3.53 37.45 56.27 2.75 - - - 2.72 1.65 0.02 8.52 4.2 15.85 
(Barros et al., 2007a; 

Barros et al., 2008c) 

Agaricus bisporus 9.9 8.25 80.93 0.92 76.41 1.52 22.1 4.49 1.73 0.03 1.95 3.63 9.61 
(Barros et al., 2008b; 

Barros et al., 2008c) 

Agaricus romagnesii  (a) - - - - - - - 6.18 2.87 0.04 1.32 2.23 6.22 (Barros et al., 2008c) 

Agaricus silvaticus 16.48 9.49 71.99 2.05 75.23 7.67 17.1 8.95 3.88 0.04 5.42 2.08 5.37 
(Barros et al., 2008b; 

Barros et al., 2008c) 

Agaricus silvicola 14.93 12.18 70.47 2.43 76.95 4.25 18.8 6.4 3.4 0.04 3.02 3.24 6.39 
(Barros et al., 2008b; 

Barros et al., 2008c) 

Cantharellus cibarius 12.12 14.25 69.14 4.49 54.08 23.29 22.6 0.88 0.67 0.86 13.56 5.89 7.41 (Barros et al., 2008b) 

Hypholoma fasciculare (a) - - - - - - - 17.67 5.09 0.09 24.62 0.95 1.13 (Barros et al., 2008d) 

Lactarius deliciosus (F) 9.53 57.68 24.33 8.45 21.68 24.69 53.5 2.95 1.91 - - 4.65 20.54 
(Barros et al., 2007b; 

Barros et al., 2007e) 

Lactarius deliciosus (D) 14.28 60.3 17.87 6.47 23.65 21.85 54.4 3.4 2.71 0.24 90.1 4.98 16.31 
(Barros et al., 2007b; 

Barros et al., 2007e) 

Lactarius piperatus (SIII) 9.8 42.48 40.79 6.93 8.64 27.33 64 3.09 0.35 0.13 17.22 5.4 20.24 
(Barros et al., 2007c; 
Barros et al., 2007d) 

Lactarius piperatus (SII) 8.77 70.06 14.74 6.44 6.94 11.51 81.5 5.76 1.58 0.16 33.78 2.29 5.19 
(Barros et al., 2007c; 

Barros et al., 2007d) 

Lactarius piperatus (SI) 6.94 78.18 6.86 8.11 6.74 6.63 86.6 5.52 1.26 0.15 26.08 2.83 12.92 
(Barros et al., 2007c; 

Barros et al., 2007d) 

Lepista nuda 18.46 24.88 59.39 1.77 52.1 30.32 17.6 6.31 3.36 0.23 2.52 3.53 4.41 (Barros et al., 2008d) 

Lycoperdon molle 20.16 62.33 16.77 0.73 65.92 9.04 25 11.48 2.45 0.34 4.48 2.27 3.23 (Barros et al., 2008d) 

Lycoperdon perlatum 31.89 50.57 17.09 0.44 71.52 4.91 23.6 10.57 2.1 0.21 12.5 2.96 3.95 (Barros et al., 2008d) 

Macrolepiota mastoidea (D) 7.96 67.6 21.89 2.55 60.76 19.04 19.9 3.08 2.1 - - 4.35 8.18 (Barros et al., 2007b) 

Macrolepiota mastoidea (F) 11.76 60.68 24.51 3.05 60.89 20.27 18.6 2.69 1.56 - - 4.44 8.49 (Barros et al., 2007b) 

Macrolepiota procera (D) 9.86 80.38 7.62 1.45 64.72 10.17 24.6 3.17 0.99 - - 4.18 5.38 (Barros et al., 2007b) 

Macrolepiota procera (F) 916 79.28 9.36 2.18 62.31 15.23 22.3 2.59 0.9 - - 4.49 6.95 (Barros et al., 2007b) 

Ramaria botrytis 8.8 50.05 39.89 1.37 38.91 44.69 16.4 20.32 16.56 0.27 10.41 0.68 0.66 (Barros et al., 2008d) 

Sarcodon imbricatus (D) 12.14 54.43 29.98 3.45 28.69 50.46 20.7 3.06 1.52 0.16 2.53 4.41 5.82 
(Barros et al., 2007b; 
Barros et al., 2007f) 

Sarcodon imbricatus (F) 8.31 55.98 25.71 8.94 25.37 52.88 21.6 2.22 1.12 - - 5.94 10.98 
(Barros et al., 2007b; 

Barros et al., 2007f) 

Tricholoma acerbum (a) - - - - - - - 5.53 1.87 0.22 75.48 3.27 3.6 (Barros et al., 2008d) 

(a) More that 50% of missing data; F- frozen mushrooms; D- dehydrated mushrooms; SI immature (cap diameter less than 4.5 cm); SII mature (cap 

diameter between 4.5 and 7 cm) with immature spores; SIII mature (cap diameter higher than 7 cm) with mature spores. All the other samples were 

lyophilized and in SII. 
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The samples were collected in Bragança (Northeast of Portugal), in autumns of 2005 

and 2006. Different chemical parameters (ash, carbohydrates, proteins, fat, monounsaturated 

fatty acids (MUFA), polyunsaturated fatty acids (PUFA), saturated fatty acids (SFA), 

phenolics, flavonoids, ascorbic acid and β-carotene), radical scavenging activity (RSA) and 

reducing power (RP) values were obtained from previous reports of our research group 

(Barros et al., 2007a; Barros et al., 2007b; Barros et al., 2007c; Barros et al., 2007d; Barros et 

al., 2007e; Barros et al., 2007f; Barros et al., 2008b; Barros et al., 2008c; Barros et al., 

2008d). 

Ash was determined by incineration at 600±15 ºC; the proteins content (N  4.38) was 

estimated by the macroKjeldahl method; fat was determined by extracting a known weight of 

powdered mushroom sample with petroleum ether, using a Soxhlet apparatus; carbohydrates 

were calculated by difference; saturated fatty acids (SFA), monounsaturated fatty acids 

(MUFA) and polyunsaturated fatty acids (PUFA) were determined by GC-FID after a trans-

esterification procedure. Phenolics, flavonoids, ascorbic acid and β-carotene were determined 

by spectrophotometer assays. These phytochemicals are frequently analyzed in mushrooms 

and reported in literature. 

For antioxidant activity data, we used the results of two in vitro chemical assays, 

previously reported by us: reducing power - RP (measures the conversion of a 

Fe
3+

/ferricyanide complex to the ferrous form) and scavenging activity on DPPH radicals- 

RSA (measures the decrease in DPPH radical absorption after exposure to radical 

scavengers). These assays are the most commonly used methods for assessment of the 

antioxidant properties of natural products. Both assays are suitable for solvent extracts and as 

rapid assays, they can be applied for monitoring the activity of numerous samples over a 

limited period of time (Amarowicz et al., 2004; Maisuthisakul et al., 2008). Moreover, they 

are reproducible and strongly correlated with phenolic compounds (Maisuthisakul et al., 

2008). The RSA was calculated as a percentage of DPPH discolouration using the equation: 

% RSA = [(ADPPH-AS)/ADPPH]  100, where AS is the absorbance of the solution when the 

sample extract has been added at a particular level, and ADPPH is the absorbance of the DPPH 

solution. The RP was obtained by measuring the absorbance of the product obtained by the 

reduction of the ferric ion to the ferrous form; a higher absorbance indicates higher RP. 
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To make the RSA and RP data homogenous and directly comparable, all the values 

were reported as EC50, (expressed in mg/mL, concentration required to achieve 50% of RSA 

or 0.5 of absorbance in RP).  

 

1.2.2. Statistical Analysis 

The relationships between antioxidant activity (RP and RSA) and the different 

chemical composition parameters were studied using PLS (Wold et al., 2001) method 

implemented in SIMCA-P v12 statistics software (Fernandez et al., 2005), and using NIPALS 

algorithm for missing data (A.B. Umetrics, 2008). Because Agaricus romagnesii, Hypholoma 

fasciculare and Tricholoma acerbum had more than 50% of missing data, these observations 

were not used in the models. 

The goodness of fit of the model was evaluated using the following statistical 

parameters: squared correlation coefficient (R
2
), standard deviation of regression (S), 

significance of the model (ρ) and Fisher ratio value (F).  

The predictive stability and robustness of the model was first verified by internal 

cross-validation calculating the following parameters: Q
2

LOO
 

(“Leave-One-Out”; 1-

PRESS/TSS were PRESS is the Predictive Error Sum of Squares and TSS the Total Sum of 

Squares) and RMSE (training set) (Root Mean Squared Errors for the training set) (Gramatica, 

2007; Gramatica and Papa, 2005). 

 

1.2.3. QCAR model 

To build the QCAR model the complete data set was used (table 1) and the Partial 

Least Square (PLS) method implemented in SIMCA-P v12 statistics software was used. The 

twenty three samples were first divided in two groups: training and test sets. The training set, 

representing about 3/4 of the total number of samples (17 samples), was used to build the 

QCAR model. The remaining 1/4 (6 samples) was assigned to the test set and used to validate 

the model. The division was made to cover all the antioxidant activity scale (Farkas et al., 

2004; Saiz-Urra et al., 2007) and the samples included on the training set were randomly 

selected within each group (Durand et al., 2007). 

The goodness of fit of the models was evaluated using the following statistical 

parameters: squared correlation coefficient (R
2
), standard deviation of regression (S), 

significance of the model (ρ) and Fisher ratio value (F).  
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The predictive stability and robustness of the model was first verified by internal 

cross-validation calculating the following parameters: Q
2

LOO
 

(“Leave-One-Out”; 1-

PRESS/TSS were PRESS is the Predictive Error Sum of Squares and TSS the Total Sum of 

Squares), permutation test of SIMCa-p software and RMSE (training set) (Root Mean Squared 

Errors for the training set) (Eriksson et al., 1997; Gramatica, 2007; Gramatica and Papa, 

2005). Using the test set, the model was further checked by external cross-validation by 

calculating parameters: Q
2

ext (External, 1-PRESS/SD) and RMSE (test set) (Root Mean Squared 

Errors for the test set). PRESS is defined as the sum of the squared difference between the 

observed value and the predicted value for each compound in the test set, and SD is defined as 

the sum of the squared deviation between the observed value and the mean measured value of 

the training test (Gramatica, 2007).  

 

 

 

1.3. Results and Discussion 

 

1.3.1. Relationships between antioxidant activity and chemical composition  

The relationships between antioxidant activity (RP and RSA) and several chemical 

components from various species of Portuguese wild mushrooms were evaluated using PLS 

regression (Figure 7). This approach has been adopted because PLS can predict possible 

relationships using the chemical variables as explicative ones. PLS extracts a few linear 

combinations (PLS factors) of the chemical and antioxidant data that predict as much of the 

systematic variation in the sample data as possible. Standarlized regression coefficients for the 

relationships between variables revealed by the PLS were estimated by cross-validation and 

were used to evaluate the importance of each chemical component on antioxidant activity 

(Figure 7). 
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Figure 7.  Standardized coefficients of the chemicals compounds, Ash, Carbohydrates, Proteins, Fat, 

Polyunsaturated fatty acids (PUFA), Monounsaturated fatty acids (MUFA), Saturated fatty acids (SFA), 

Phenolics, Flavonoids, Ascorbic acid and β-Carotene, used in the in the approached model for RSA (A) and RP 

(B) . 

 

This analysis presented good statistical parameters for both RP and RSA, as 

summarized in Table 2. Information about some chemical compounds was not available 

(Table 1). To overcome this lack of information, we used a specific statistic algorithm 

available on SIMCA-P (A.B. Umetrics, 2008). This algorithm dynamically selects samples 

with more than 50% of the chemical compound results. From the data set available four 

mushroom species did not meet this criterion and were not considered in this initial analysis.  
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Table 2. Statistical parameters of the models radical scavenging activity (RSA) and reducing power (RP) using 

PLS method. 

  

 

 

 

 

 
N- number of samples, S- standard deviation, R

2
- squared correlation coefficient, ρ- significance, F- Fisher ratio, 

Q
2

LOO- “Leave-One-Out” correlation coefficient and RMSE(training set)- Root Mean Squared Errors for the training  

set.  

 

A similar relationship between chemical composition and antioxidant activity was 

observed for RSA (Figure 7A) and RP (Figure 7B), with the exception of fatty acids and 

ascorbic acid. A close observation of the standarlized coefficients of the analysed chemical 

parameters shows that antioxidant activity is strongly positively related to phenolics and 

flavonoids contents (Figure 7). This is in agreement with several manuscripts reporting 

phenolic compounds as the main antioxidant substances in mushrooms, particularly phenolic 

acids and flavonoids (Ferreira et al., 2009).  Phenolic substances (ArOH) serve as oxidation 

terminators by scavenging radicals to form resonance stabilized radicals (Rice-Evans et al., 

1997), according to: 

 

 

Ascorbic acid is a well-known powerful antioxidant, reported in mushrooms in lower 

amounts than phenolics (Ferreira et al., 2009). Accordingly, it seems to contribute positively 

to the RSA but with less significance. Otherwise, it gives a negative contribution to the 

reducing power of the samples. In fact, ascorbic acid mechanism of action has been related to 

free radicals scavenging effects and not to reducing processes with electrons transference 

(which is present in RP assay- reducing Fe
3+

 to Fe
2+

); ascorbic acid protect biomembranes 

against lipid peroxidation damage by eliminating peroxyl radicals in the aqueous phase before 

the latter can initiate lipid peroxidation (Davey et al., 2000). Carbohydrates gave a small 

positive contribution possible due to the presence of mannitol (reducing sugar), a very 

Parameter RSA RP 

N 20 20 

S 2.985 0.488 

R
2
 0.84 0,92 

 0,011 0.023 

F 4.74 3.87 

Q
2

LOO 0.59 0,70 

RMSE 3,1942 0,5162 

RO2
•
 + ArOH ROOH + ArO

•
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abundant sugar in mushrooms which functions to provide support and expansion of the fruit 

body (Barros et al., 2007a; Barros et al., 2007b; Barros et al., 2007c; Barros et al., 2008b; 

Barros et al., 2008d). Unsaturated fatty acids (MUFA and PUFA) show also a small positive 

contribution to RSA but a negative contribution to RP; the presence of double bonds makes 

them susceptible to oxidation; they can react with free radicals and become radicals 

themselves. Therefore, they act mostly as free radical scavengers. Particularly, oleic (C18:1) 

and linoleic acid (C18:2), abundant in mushrooms (Barros et al., 2007a; Barros et al., 2007b; 

Barros et al., 2007c; Barros et al., 2008b; Barros et al., 2008d) proved to have more than 80% 

of RSA (Henry et al., 2002). Nevertheless, it should be noticed that fatty acids exist in 

mushrooms in a very low concentration. 

Surprisingly, β-carotene gave a small negative contribution to the antioxidant activity. 

This can be explained by the fact that this compound is present is mushrooms only in vestigial 

amounts (Ferreira et al., 2009). The negative correlation between the fat and the antioxidant 

properties was expectable since total fat obtained by soxhlet extraction include linked 

compounds, not free fatty acids; to obtain fatty acids, a derivatization process should be done. 

Saturated fatty acids (SFA) are not antioxidants and therefore, seem not to contribute to the 

scavenging effects. Particularly, stearic acid (C18:0), a fatty acid abundant in mushrooms 

proved to have less than 20% of RSA (Henry et al., 2002). Surprisingly, SFA show a slightly 

positive contribution to the RP of samples, probably through the reducing properties of the 

carboxylic moiety. The biosynthesis of phenolic compounds is derived from some amino 

acids, including tyrosine and tryptophan, in the shikimic acid pathway. A possible explanation 

for the negative contribution of proteins to the antioxidant properties is that they might be 

used as a source of amino acids to obtain phenolics, decreasing proteins content.  The 

negative correlation between the ash and the reducing properties can also be explained as ash 

contains minerals and heavy metals (including iron) which can act as pro-oxidants 

(Maisuthisakul et al., 2008). 

 

1.3.2. QCAR model 

Based on the preliminary analysis we then set out to develop a QCAR model that 

could be used for predictive purposes. As phenolics and flavonoids contents were the 

parameters that had better correlate to antioxidant activity they were chosen to build the 

model. Also RP analysis consistently gave better statistical parameters when compared to 
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RSA analysis (Table 2) and thus we selected RP values to build the predictive QCAR model 

(Table 3).  

 

Table 3. Phenolics, flavonoids, experimental and predicted EC50 reducing power values of Portuguese wild 

mushrooms. 

Species 
Phenolics 

(mg/g ext) 

Flavonoids 

(mg/g ext) 

Experimental 

EC50 RP 

Predicted 

EC50 RP 
Residues 

Agaricus arvensis 2.72 1.65 4.20 4.26 -0.06 

Agaricus bisporus 4.49 1.73 3.63 3.84 -0.21 

Agaricus romagnesii 6.18 2.87 2.23 3.25 -1.02 

Agaricus silvaticus 8.95 3.88 2.08 2.62 -0.54 

Agaricus silvicola (a) 6.40 3.40 3.24 3.11 0.13 

Cantharellus cibarius 0.88 0.67 5.89 5.02 0.87 

Hypholoma fasciculare (a) 17.67 5.09 0.95 1.50 -0.55 

Lactarius deliciosus F 2.95 1.91 4.65 3.83 0.82 

Lactarius deliciosus D 3.40 2.71 4.98 4.13 0.85 

Lactarius piperatus (SIII) (a) 3.09 0.35 5.40 3.74 1.66 

Lactarius piperatus (SII) 5.76 1.58 2.29 3.62 -1.33 

Lactarius piperatus (SI) 5.52 1.26 2.83 4.54 -1.71 

Lepista nuda 6.31 3.36 3.53 3.13 0.40 

Lycoperdon molle 11.48 2.45 2.27 2.49 -0.22 

Lycoperdon perlatum 10.57 2.10 2.96 2.68 0.28 

Macrolepiota mastoidea D (a) 3.08 2.10 4.35 4.06 0.29 

Macrolepiota mastoidea F (a) 2.69 1.56 4.44 4.29 0.15 

Macrolepiota procera D 3.17 0.99 4.18 4.33 -0.15 

Macrolepiota procera F 2.59 0.90 4.49 4.50 -0.01 

Ramaria botrytis 20.32 16.56 0.68 0.62 0.06 

Sarcodon imbricatus D 3.06 1.52 4.41 4.21 0.20 

Sarcodon imbricatus F 2.22 1.12 5.94 4.53 1.41 

Tricholoma acerbum (a) 5.53 1.87 3.27 3.60 -0.33 

(a) test set observations; F- frozen mushrooms; D- dehydrated mushrooms; SI immature (cap diameter less than 

4.5 cm); SII mature (cap diameter between 4.5 and 7 cm) with immature spores; SIII mature (cap diameter 

higher than 7 cm) with mature spores. All the other samples were lyophilized and in SII. 

 

Figure 8A shows the number of samples assigned to the three groups of antioxidant 

activity: 0–3, 3–4.5 and 4.5–6 according to EC50 values. 

The QCAR model equation obtained and the statistical parameters were the following: 

EC50 RP = 10
(-0.0239517 x

 
Phenolics (mg/g ext) - 0.027891 x

 
Flavonoids (mg/g ext) + 0.740363) 

N=17; R
2
=0,84; F=37.53 ρ=2.37x10

6
; S=0.8114 ; Q

2
LOO=0.83; RMSE (training set) = 0.7507; 

Q
2

ext =0,95; RMSE(test set) = 0.4979 
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were N is the number of samples used, R
2
 is the squared correlation coefficient, ρ is the 

significance of the model, F is the Fisher ratio, Q
2

LOO is the “Leave-One-Out” correlation 

coefficient and RMSE(training set) and RMSE(test set) are Root Mean Squared Errors for the 

training and test sets, respectively. 
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Figure 8. Distribution of reducing power (EC50 RP) versus number of samples for the training set (black) and 

test set (grey) of the QCAR model. 

 

The model was evaluated for its robustness and predictive power by internal leave-

one-out (LOO) validation, as demonstrated by R
2
 and Q

2
 values, and by external validation as 

demonstrated by Q
2

ext value. Also RMSE values, for both the training and test sets, validate 

the model by presenting low and similar values. External validation is acknowledged to be the 

best method to validate a model as it is usually immune to overfitness and overprediction. 

To validate even further the model, a permutation test was performed (Gramatica, 

2007). In this test the model is recalculated for randomly reordered response data (EC50 RP) 

and these permuted EC50 RP values are related to intact predictor data by refitting the model 

and including cross-validation. When R
2
permutation test and Q

2
permutation test are plotted as a function 

of the correlation coefficient between the original values and the predicted values, the 

intercept with the Y axis express to which degree these values rely on chance. Figure 9 shows 

the results obtained from 100 permutations for each of the samples under study. The 

intercepts of the two regression lines (for R
2

permutation test and Q
2

permutation test) indicate the degree 
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of overfit and overprediction. Intercepts for R
2

permutation test and Q
2

permutation test below 0.30 

indicate a valid model, as is the case. 

 

 
 

Figure 9. Results of the permutation test. The R
2
 and Q

2
 values were obtained from 100 permutations for the 

four developed PLS models. Intercepts: (R
2
) R

2
permutation test=0, -0.0818, (Q

2
)
 
Q

2
permutation test =0, -0.244 

 

A plot of predicted EC50 RP versus experimental EC50 RP values, for both the training 

and test sets, is shown on Figure 10. The agreement observed between the predicted and 

experimental values confirmed the predictability of this QCAR model. Also plot of the 

residuals (predicted EC50 RP–experimental EC50 RP) versus experimental EC50 RP, for both 

the training and test sets is shown on Figure 11. A random distribution of the residuals about 

zero was observed for both sets. Because of this, no sample was considered a possible outliers 

as residuals were all within the standard deviation interval (-3S to 3S) usually considered the 

limit line for spotting outliers. The relation between RP and phenolic and flavonoids content 

was not linear rather exponential. This is an indication that higher contents of these 

compounds will elevate by order of magnitudes RP (lower RP values means better antioxidant 

activity). Overall, as far as we know, this is the first report of a QCAR model to predict 

reducing power using the chemical composition of mushrooms.  
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Figure 10. Predicted versus experimental EC50 RP for  for the training (●) and test sets (○)., 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Residual versus experimental log EC50 RP for the training (●) and test sets (○).- 
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2. Insights on wild mushrooms anti-breast cancer activity by Virtual 

Ligand Screening of low molecular weight compounds 

 

2.1. Introduction  

 

Mushrooms comprise a vast and yet largely untapped source of powerful new 

pharmaceutical products. In particular, and most importantly for modern medicine, they 

represent an unlimited source of compounds with antitumor and immunostimulating 

properties (Wasser, 2002; Zaidman et al., 2005; Zjawiony, 2004). Mushrooms contain 

compounds known as long-chain, large-molecular weight polysaccharides which, when 

present in specific configurations or linkages (beta, 1-3 glucan and beta, 1-6 glucan), have 

strong effects on the immune system of humans (Borchers et al., 2004; Mattila et al., 2000; 

Zhang et al., 2006). Several phytochemicals have been isolated from medicinal mushrooms 

and three of these, which are carcinostatic polysaccharide drugs, have been developed from 

mushrooms in Japan. These are “Krestin” (PSK), from the cultured mycelium of Kawaratake 

(Trametes versicolor), “Lentinan” from the fruiting bodies of Shiitake (Lentinus edodes) and 

“Schizophyllan” (Sonifilan) from the culture fluid of Suehirotake (Schizophyllum commune) 

(Larone, 2002; Mizuno, 1993). More importantly extracts from wild mushrooms species have 

been shown to reduce the risk of breast cancer in Chinese women (Zhang et al., 2009) and in 

breast cancer cell lines (Grube et al., 2001). Mushrooms are also rich sources of low 

molecular weight (LMW) antioxidant compounds mainly phenolic compounds (phenolic 

acids and flavonoids), followed by tocopherols, ascorbic acid and carotenoids as described by 

our research group (Ferreira et al., 2009). In fact, in the last years tens of different mushroom 

species from Northeast of Portugal, one of the European regions with higher wild edible 

mushrooms diversity, were evaluated by us, for their composition on those LMW compounds 

(Barros et al., 2007f; Barros et al., 2008a; Barros et al., 2008b; Barros et al., 2008c; Barros et 

al., 2008d; Barros et al., 2009; Heleno et al., 2009b). Since the non-controlled production of 

free radicals has been related to more than one hundred diseases including several kinds of 

cancer, it was our goal to evaluate the potential properties of the antioxidants found in 

mushrooms against some proteins identified as targets in breast cancer.  

Most breast cancers (about 95%), whether in pre- or postmenopausal women, are 

initially hormone-dependent and it is well accepted that estradiol plays an important role in 
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their development and progression. Estradiol in complex with their receptor can mediate the 

activation of proto-oncogenes or oncogenes (e.g. c-fos, c-myc), nuclear proteins, as well as 

other target genes. Consequently, processes that modulate the intracellular concentrations of 

active estrogens can have the ability to affect the etiology of this disease. It is known that that 

mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of 

estradiol from circulating precursors (Pasqualini and Chetrite, 2005). Two principal pathways 

are implicated in the last steps of estradiol formation in breast cancer tissues: the „aromatase 

pathway‟, with Aromatase (EC: 1.14.14.1) that forms androgens into estrogens and the 

„sulfatase pathway‟ which converts estrone sulfate into estrone by the Estrone Sulfatase (EC: 

3.1.6.2). The final step of steroidogenesis is the conversion of the weak estrone to the potent 

biologically active estradiol by the action of a reductive 17β-hydroxysteroid dehydrogenase 

type 1 activity (17β-HSD-1; EC: 1.1.1.62) (Pasqualini and Chetrite, 2005). Figure 12 gives a 

general view of estrogen formation and transformation in human breast cancer. 

 

 

 
Figure 12. General view of estrogen formation and transformation of estrogens in human breast cancer: 

aromatase and sulfatase pathways.  
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Intermolecular interactions between proteins and small ligands play essential roles in 

several life processes and understanding these interactions is critical for pharmaceutical and 

functional food industries (Vaque et al., 2008). Molecular docking is an in silico tool that 

predicts how a ligand (substrate or drug candidate) interacts with a receptor usually by 

predicting the ligand binding free energy and the three-dimensional structure of the ligand-

receptor complex. The use of molecular docking to search large databases of compounds for 

possible ligands of a protein receptor is usually termed virtual ligand screening (VLS) and has 

been successfully applied in several therapeutic programs at the lead discovery stage (Ghosh 

et al., 2006). We have used AutoDock 4 (Morris et al., 1998), acknowledged to be one of the 

most reliable and broadly used molecular docking tool (Sousa et al., 2006), with several 

examples of accurate docking predictions already published(Chen et al., 2007; Li et al., 2004). 

In the present study, we performed VLS using 3-D structures of Aromatase, Estrone Sulfatase 

and 17β-HSD-1 as targets and phenolic acids, flavonoids, tocopherols, carotenoids, sugars 

and fatty acids as ligands. The main goal was to identify which mushrooms LMW antioxidant 

compounds may be active against human breast cancer by identifying the potential protein 

targets. In addition, the molecular basis of the interaction between the best LMW compounds 

identified and the protein target is discussed. This study suggests what type of LMW 

compounds should be looking for in wild mushrooms that present activity against human 

breast cancer. 

 

2.2. Methods 

 

2.2.1 Ligand dataset 

The ligand dataset used was composed of 43 LMW compounds that are representative 

of the chemical composition of wild mushrooms. The 2-D structure of the ligand dataset was 

constructed using MDL Isis/Draw 2.5 (http://www.symyx.com). We then used the software 

VegaZZ 2.3.1 (Pedretti et al., 2004) to: convert all ligands to 3-D, perform energy 

minimization and record files in pdb format. Next, AutoDockTools1.5.2 (ADT) (Sanner, 

2005) was used to: merge nonpolar hydrogens, add Gasteiger charges, and set up rotatable 

bonds through AutoTors (Gasteiger and Marsili, 1980). Finally, all ligands were recorded in 

pdbqt format, a file format used by AutoDock 4. 
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2.2.2 Protein structures preparation 

The X-ray 3-D structures of the protein targets used were extracted from the Protein 

Data Bank (PDB) (http://www.rcsb.org) including: Aromatase (PDB: 3EQM), Estrone 

Sulfatase (PDB: 1P49) and 17β-HSD1 (PDB: 1FDT). 

For 3EQM and 1FDT the co-crystallized ligand (Androstenedione and Estrone 

respectively) was extracted from the PDB file (Table 4). This procedure was not done with 

1P49 structure because this structure was determined without a co-crystallized ligand. ADT 

was then used to assign polar hydrogens and Gasteiger charges to the protein structures and 

the structure was in pdbqt format, a format needed for docking with AutoDock 4 (Morris et 

al., 1998). 

 
Table 4. Comparison of estimated and experimental values of Km (ƞM) and ΔG (Kcal/mol) values. 

Enzyme Ligand 
Experimental 

Km (ƞM) 

Estimated 

Km (ƞM) 

Experimental 

ΔG (Kcal/mol) 

Estimated 

ΔG (Kcal/mol) 

Mean 

RMSD 

Aromatase 

(PDB: 3EQM) 
Androstenedione 20 (a) 4 -10,51 -11.46 0.08 Ǻ 

Estrone Sulfatase 

(PDB: 1P49) 
Estrone Sulfate 6850 (b) 416 -7,04 -8.70 - 

17β-HSD1 

(PDB: 1FDT) 
Estrone 124  (c) 238 -9.44 -9.02 0.66 Ǻ 

RMSD- Root Mean Square Deviation; 
(a)

 Numazawa et al., 1996; 
(b)

 Ishida et al., 2008; 
(c)

 Mendozahernandez et 

al., 1984.. 

 

For each protein structure, AutoGrid 4 (Morris et al., 1998) was used to create affinity 

grid maps for all the atoms present on the protein and ligands used. We used ADT to choose 

the correct parameters before using AutoGrid 4. All affinity grid maps were centred on the 

active site and coordinates were selected in order to encompass all the active site for each 

protein. 3EQM affinity grids enclosed an area of 100 Å by 100 Å by 100 Å with 0.375 Å 

spacing, centred on the coordinates x=86.312 y=51.204 z=48.26, 1P49 affinity grids maps 

enclosed an area of 80 Å by 80 Å by 80 Å with 0.375 Å spacing, centred on the coordinates 

x=71.9 y=-5.072 z=30.368 and 1FDT affinity grids enclosed an area of 80 Å by 110 Å by 110 

Å with 0.375 Å spacing, centred on the coordinates x=39.685 y=1.159 z=37.333.  
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2.2.3 Virtual Ligand Screening using AutoDock 4 

AutoDock 4 (version 4.0.1) with the Lamarckian genetic algorithm was used to 

simulate ligand-receptor molecular docking (Morris et al., 1998). Docking parameters 

selected for AutoDock 4 runs were as follows: 50 docking runs, population size of 200, 

random starting position and conformation, translation step ranges of 2.0 Å, mutation rate of 

0.02, crossover rate of 0.8, local search rate of 0.06, and 2.5 million energy evaluations. 

Docked conformations were clustered using a tolerance of 2.0 Å RMSD (Root Mean Square 

Deviation). All 3 crystal structures are used as receptors for VLS against the ligand dataset. 

The entire VLS experiment was performed on a cluster of 8 Intel Dual-Core 2.8 GHz 

computers using custom designed software called MOLA (Abreu et al., submitted). Inhibition 

constant (Ki) for all ligands was calculated by AutoDock 4 as follows: Ki = 

exp((ΔG*1000.)/(Rcal*TK)) where ΔG is the binding energy, Rcal is 1.98719 and TK is 

298.15. The Michaelis-Menten constant (Km) for natural ligands presented on table 4 were 

calculated by AutoDock 4 using the same equation indicated above. The 3-D ligand-protein 

docking pose was analysed manually using ADT and the images presented on figures 2 and 4 

were prepared using the software PyMOL 0.99r6 (http://pymol.sourceforge.net/). 

 

2.3. Results and Discussion 

 

2.3.1 Docking validation 

In order to validate the molecular docking approach the respective ligand (natural 

substrate) was docked to the active site of the proteins (from which the natural ligand was 

previously removed).  

Then the estimated Km obtained was compared with experimental Km values (Table 

4) and the estimated 3-D binding mode was compared with the experimentally (X-ray 

crystallography) determined co-crystallized binding mode (Figure 13). For the proteins 

studied, when comparing experimental and estimated Km values, we observe that values fall 

in the same order of magnitude with estimated Km being 5 times lower for Aromatase, 20 

times lower for Estrone Sulfatase and 2 times higher for 17β-HSD1 (Table 4). Km values 

were calculated from the binding energy (ΔG) and the difference between experimental and 

estimated ΔG were 0.95, 1.60 and 0.42 Kcal/mol for Aromatase, Estrone Sulfatase and 17β-

HSD1, respectively. This variation is well within the standard error for binding energy (ΔG) 
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previously reported for AutoDock 4 that is around 2.5 Kcal/mol (Morris et al., 1998) 

corresponding to a difference between estimated and experimental Km of more than 2 orders 

of magnitudes. Also the binding mode of the docked ligands for Aromatase and 17β-HSD1 

corresponded well with the binding mode of the co-crystallized ligands, with RMSD values of 

0.08 Ǻ and 0.66 Ǻ, respectively (Figure 13).  

 

 

 
 

Figure 13. Superimposition of X-ray (sticks and balls) and docked configurations (wire) for: (A) 

Androstenedione in Aromatase and (B) Estrone in 17β-HSD1. The 10 best docked configurations are represented 

for easier inspection. 

 

 

These values shows that the difference between the X-ray conformation and the 

predicted docked conformations of the ligands was very small (Figure 13) thus validating the 

protein structures for VLS with the LMW dataset. This comparison is not possible for Estrone 

Sulfatase as there is no experimentally determined structure with a co-crystallized ligand, only 

the non bounded protein structure. This probably explains the higher different between 

estimated and experimental Km for Estrone Sulfatase (1.60 Kcal/mol) although well within 

the expected error for docking using AutoDock 4. 
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2.3.2 Mushrooms LMW Virtual Ligand Screening 

After validation of the 3 protein targets for molecular docking with AutoDock 4 we 

performed the VLS of the selected wild mushroom LMW dataset against the 3 target 

structures. The ligand dataset used is not exhaustive but is a good representation of the 

different LMW families of compounds that can be found in wild mushrooms. The results will 

be discussed for each family of compounds: phenolic compounds (benzoic acid and cinnamic 

acid derivatives, and flavonoids), vitamins (tocopherols and ascorbic acid), carotenoids, 

sugars and fatty acids.  

The results obtained using phenolic acids (Table 5) revealed that benzoic acid 

derivatives appear to have no significant inhibitory activity for the 3 enzymes studied with all 

values well above 1 μM. Cinnamic acid derivatives also had no significant inhibitory activity 

except for 4-O-caffeylquinic and 5-O-caffeylquinic which presented moderate inhibition 

activity for the enzymes with values in the hundreds of ƞM (Figure 14 and Table 5). The 

presence of quinic acid seems to be an essential condition for phenolic acid inhibition. Also 

the fact that both compounds present activity against all the 3 enzymes probably results from 

the fact that the natural ligands have similar structures. This simultaneous inhibition activity 

may result in a synergistic inhibition of overproduction of Estrone in breast cancer by 

inhibiting both “Aromatase” and “Sulfatase” pathway as well as inhibiting estradiol to 

estrogen conversion by 17β-HSD1. 
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Table 5. Docking studies with phenolic acids found in mushrooms as ligands. 

 

 

R3

R4

R2 R1

X

    

CHR3

R4

R2

CH C

O

O

X

R1

 
   

 * The carboxylic group is esterified with quinic acid. 

 

 

  

Benzoic acid 

Derivatives 

Substitution Estimated Ki (µM) 

X R
1
 R

2
 R

3
 R

4
 Aromatase Estrone Sulfatase 17β-HSD1 

p-Hydroxibenzoic COOH H H H OH 607.4 278.3 101.6 

Protocatechuic COOH H H OH OH 365.9 155.0 102.2 

Gallic COOH H OH OH OH 358.3 129.2 100.6 

Gentisic COOH OH H H OH 546.1 599.0 578.3 

Homogentisic CH2COOH OH H H OH 939.4 583.9 116.4 

Vanillic COOH H OCH3 OH H 227.0 98.08 89.70 

5-Sulphosalicylic COOH OH H H HSO3 219.7 381.8 365.5 

Syringic COOH H OCH3 OH OCH3 239.9 212.4 93.68 

Veratric COOH H OCH3 OCH3 H 309.4 98.04 98.60 

Vanillin CHO* H OCH3 OH H 213.5 299.4 >1 000 

Cinnamic acid 

derivatives 

Substitutions Estimated Ki (µM) 

X R
1
 R

2
 R

3
 R

4
 Aromatase Estrone Sulfatase 17β-HSD1 

p-Coumaric H H H OH H 80.91 28.81 124.6 

o-Coumaric H OH H H H 78.17 27.27 118.2 

Caffeic H H OH OH H 57.28 19.48 73.97 

Ferulic H H CH3O OH H 26.63 105.5 91.29 

Sinapic CH3O H CH3O OH CH3O 8.260 122.5 27.10 

4-O-caffeoylquinic * H OH OH H 0.317 0.474 0.289 

5-O-caffeoylquinic * H OH OH H 0.760 3.990 0.255 

Benzoic acids Cinnamic acids 
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Figure 14. Colour coded representation of the best results obtained by virtual ligand screening of the LMW 

dataset against the 3 protein targets. Colours used are green for good inhibiton activity (< 0.1 μM), yellow for 

moderate inhibition activity (0.1 μM > Ki > 1 μM) and red for weak or no inhibition activity (Ki > 1 μM). Green 

and yellow tagged ligands are ordered from best to worst Ki value. 
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The results obtained using flavonoids (Table 6) as ligands showed that naringenin was 

the best compound to inhibit Aromatase, while naringin proved to be better for Estrone 

Sulfatase and 17β-HSD1. Interestingly, the substitution of the hydroxyl group for the 

disaccharide rutinose increases Ki values for Aromatase and decreases the corresponding 

values for the other two enzymes (see in Table 6 and Figure 14 rutin relative to quercetin, 

and naringin relative to naringenin).   

 

Table 6. Docking studies with flavonoids found in mushrooms as ligands. 

O

O

OH

HO

OH

R'1

R'2

R'3

O

O

HO

OH

R'1

R'2

R'3

OHO

OH

R'1

R'2

R'3

OH

O

O

HO

OH

R'1

R'2

R'3

 

O

O

HO

R'1

R'2

R'3  

 Substitution Estimated Ki (µM) 

Flavonols R'1 R'2 R'3 Aromatase Estrone Sulfatase 17β-HSD1 

Quercetin OH OH H 0.316 4.560 0.092 

Rutin* OH OH H 29.80 0.488 0.094 

Kaempferol H OH H 1.090 8.960 0.249 

Myricetin OH OH OH 0.790 5.620 0.091 

Flavones 

Chrysin H H H 0.610 15.03 0.467 

Flavan-3-ols 

Catechin H OH OH 11.76 11.54 3.210 

Flavanones R'1 R'2 R'3 Aromatase Estrone Sulfatase 17β-HSD1 

Hesperetin OH H H 5.410 7.970 2.310 

Naringenin H OH H 0.342 10.67 0.413 

Naringin * H OH H 0.743 0.206 0.001 

Isoflavones R'1 R'2 R'3 Aromatase Estrone Sulfatase 17β-HSD1 

Formonetim H OCH3 H 0.590 17.40 0.571 

Biochanin** H OCH3 H 0.710 11.14 0.771 

        * OH in position-3 is substituted with the disaccharide rutinose; ** OH in position-5. 

 

Flavonols Flavones 

 

Flavan-3-ols 

 

Flavanones Isoflavones 
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The presence of rutinose in those compounds might increase the stereochemical 

hindrance of the molecules decreasing their binding capacity to Aromatase, which contains a 

heme group. In general, it was observed that a good number of the flavonoids from different 

groups present inhibition activity. This is probably because, from the ligand dataset used, 

flavonoids have more similar structures with the natural ligands. 

The results obtained using vitamins and carotenoids as ligands are given in Table 7. 

Vitamin E (tocopherols) proved to have better binding capacity than vitamin C (ascorbic 

acid). The four isoforms of vitamin E (α, β, δ, and γ-tocopherol) revealed very good inhibition 

properties for 17β-HSD1 with Ki in the nanomolar range. Furthermore, β-carotene and 

lycopene revealed excellent properties for inhibition of 17β-HSD1 with lycopene reacting on 

the subnanomolar range (0.2 ƞM), the best result in all the VLS. Also, α, δ, and γ-tocopherol 

showed moderate inhibition activity against Estrone Sulfatase. 

 
Table 7. Docking studies with vitamins and carotenoids found in mushrooms as ligands.  

 

        

 

 Substitution Estimated Ki (µM) 

Tocopherols R1 R2 Aromatase Estrone Sulfatase 17β-HSD1 

α-tocopherol CH3 CH3 41.23 0.672 0.002 

β-tocopherol CH3 H 35.38 1.510 0.009 

γ-tocopherol H CH3 61.36 0.505 0.010 

δ-tocopherol H H 59.68 0.882 0.012 

Ascorbic acid - 277.7 85.87 268.8 

Carotenoids     

β-Carotene - 16.27 > 1 000 0.016 

Lycopene* - > 1 000 5.100 0.0002 

       *The rings are opened. 

 

O

HO

R1

R2

O

HO

HO

H

OH

CH2OH

O

CH3

H3C

H3C CH3

CH3H3C CH3 CH3

CH3 CH3

Carotenoids 

 

Tocopherols 
Ascorbic acid 
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In relation to the results obtained using sugars and fatty acids (Table 8) it was not 

observed any significant inhibition activity in any of the studied targets. Only maltose showed 

a very moderate activity 17β-HSD1 but with a relatively high Ki value (0.605 μM); 

interestingly maltose is the only reducing sugar which may be an important fact as 17β-HSD1 

is a dehydrogenase enzyme. Nevertheless sugar and fatty acids do not seem implicated in anti-

breast cancer activity.  

 

Table 8. Docking studies with sugars and fatty acids found in mushrooms as ligands. 

 Estimated Ki (µM) 

Sugars Aromatase Estrone Sulfatase 17β-HSD1 

Maltose 1.520 3.340 0.605 

Trehalose 9.080 5.650 12.23 

Melezitose > 1 000 > 1 000 > 1 000 

Fatty acids    

Myristic acid (C14:0) 10.59 283.8 56.01 

Palmitic acid (C16:0) 6.940 157.0 12.04 

Stearic acid (C18:0) 2.770 108.6 7.810 

Oleic acid (C18:1n9c) 6.070 84.64 5.070 

Linoleic acid (C18:2n6c) 1.450 28.18 3.730 

 

2.3.3 Structure analysis of the best docked conformations 

The docked binding mode of all the compounds with good Ki values was manually 

inspected in order to verify that they effectively bind to the catalytic site in a structurally 

viable conformation.  

For Aromatase the top ranked compound was 4-O-caffeoylquinic acid and the docked 

structure occupies the space where the natural ligand Androstenedione binds (Figure 15A).  
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Figure 15. Docking of the top ranked inhibitor for each of the studied protein targets. Figure shows (A) 

Aromatase, (B) Estrone Sulfatase and (C) 17β-HSD1 docked with 4-O-caffeoylquinic, naringin and lycopene, 

respectively. Protein target are represented in cartoon format, docked inhibitor in sticks and balls format (red) 

and natural X-ray ligands in wire format (blue). 
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The aromatic rings from 4-O-caffeoylquinic occupies the space of the aromatic rings 

of Androstenedione and the quinic acid seems to be the key element in the binding mode with 

the carboxylic acid stabilized by polar contacts with the Heme group. It‟s important to note 

that all the estimated Ki values (317 ƞM for 4-O-caffeoylquinic) obtained with Aromatase as 

the protein target was at least one order of magnitude higher than the experimental Km value 

obtained with Androstenedione (20 ƞM). This fact indicates that Aromatase is probably not 

the most important target for LMW compounds in wild mushrooms.  

For Estrone Sulfatase inhibition the top ranked compound was the flavanone naringin 

(Figure 15B; Table 6). The disaccharide rutinose seems to play a pivotal role in naringin 

inhibition by promoting hydrogen bonds with the sulfate group present. The X-ray structure 

used for docking had no co-crystallized ligand. The Ki value obtained for naringin (206 ƞM) 

was more than one order of magnitude lower than the value obtained for estrone sulfate (6850  

ƞM), the natural ligand of the enzyme. Also several compounds have Ki values below 6850 

ƞM. This indicates that probably the “sulfatase” pathway is the most likely target for LMW 

wild mushrooms compounds inhibition. This is even more interesting in view of recent 

findings in human breast cancer that point towards “sulfatase” pathway as the more likely 

path for estradiol production with “aromatase” pathway playing a secondary role (Pasqualini 

and Chetrite, 2005). 

Finally 17β-HSD1 was the most susceptible protein target to the studied ligands with 

the lowest Ki of all the dataset. Lycopene (Figure 15C; Table 7) presented the best Ki value 

(0.2 ƞM) about three orders of magnitude lower than the Ki value for the natural ligand 

Estrone (124 ƞM). Analysing the docked structure (Figure 15C) we can see that lycopene 

“fits” exactly on the binding pocket occupied by the coenzyme NADPH and the natural ligand 

estrone. Because lycopene is composed only of carbon and hydrogen, its structure is stabilized 

by van der Walls interactions. It is important to note that, although the estimated Ki value was 

very low, its inhibition ability is probably „balanced by the difficulty of lycopene to reach the 

binding site of 17β-HSD1 due to his insolubility in water. 
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III. CONCLUSION 

 

In a first step, the information about chemical compounds found in wild mushrooms 

was collected. Then, chemical parameters, including primary and secondary metabolites, were 

correlated to bioactive properties such as antioxidant and antitumor activities.  

Several relationships were established between antioxidant activity and chemical 

composition (ash, carbohydrates, proteins, fat, monounsaturated fatty acids, polyunsaturated 

fatty acids, saturated fatty acids, phenolics, flavonoids, ascorbic acid and β-carotene) that 

provide a better understanding of the complex mechanisms of antioxidant activity of wild 

mushrooms. The positive effect of phenolics and particularly flavonoids, was clearly 

established and other possible correlations with different composition parameters were 

discussed. This information allowed the development of a predictive QCAR model using 

mushroom flavonoids and phenolic composition. Several internal and external validation 

protocols were used and confirm the predictive power of the QCAR model. Especially 

external validation is acknowledged to be the best rationale protocol to avoid overprediction 

and overfitting. This model could be a useful tool in the study and prediction of antioxidant 

activity of more mushroom species.  

Since the non-controlled production of free-radicals has been related to more than one 

hundred diseases including several kinds of cancer, it was our goal to evaluate the potential 

properties of antioxidants found in mushrooms against some proteins identified as targets in 

breast cancer. In fact, this study highlighted several low molecular weight compounds from 

wild mushrooms that may act against breast cancer by inhibiting several proteins involved in 

overproduction of estrone and estradiol. From the studied phenolic acids, cinnamic acid 

derivatives esterified with quinic acid (4 and 5-O-caffeylquinic acid) were the only ones with 

significant inhibition against the three protein targets studied, specially 4-O- caffeoylquinic 

acid that presented the best ki against Aromatase. Among flavonoids, several compounds 

presented moderate to good inhibition ability with flavanones (naranigenin and naringin) and 

flavonols (quercetin and rutin) as the best compounds. Naringin was the top ranked inhibitor 

against Estrone Sulfatase indicating that the presence of the disaccharide rutinose may be a 

key element for active compounds against breast cancer. Vitamins and carotenoids were target 

specific showing very good inhibition ability only against 17β-HSD1, with Lycopene as the 

top ranked inhibitor. Sugar and fatty acids did not show any significant inhibition ability. The 
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highlighted compounds are the ones to look for in wild mushrooms when searching for 

species with anti-breast cancer activity. Furthermore, the information provided shows several 

interesting starting points for further development of Aromatase, Estrone Sulfatase and 17β-

HSD1 inhibitors. 

The identification of the active natural compounds against cancer, and the 

understanding of the molecular basis of the interaction between the best compounds and the 

protein targets are key factors for development of nutraceuticals or functional foods. The 

present work raises the possibility of using chemoinformatic tehniques as a part of the 

development process of new nutraceuticals or functional foods.  

 

The present work gave two international publications (correspondent to the results 

section): 

 

[1] Hugo J.C. Froufe, Rui M.V. Abreu, Isabel C.R.R. Ferreira, “A QCAR model for 

predicting antioxidant activity of wild mushrooms”, SAR and QSAR Environmental 

Research, 2009, accepted (corrected proofs).  

 

[2] Hugo J.C. Froufe, Rui M.V. Abreu, Isabel C.R.R. Ferreira, “Insights on wild 

mushrooms anti-breast cancer activity by Virtual Ligand Screening of low molecular weight 

compounds”, Journal of Molecular Graphics and Modelling, 2009, submitted on October 

2009. 
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