

Species identification in heat processed meat products

Sónia Soares^{1,2}, Joana S. Amaral^{1,2}, Isabel Mafra^{1,3} and M. Beatriz P. P. Oliveira¹

¹REQUI*M*TE, Serviço de Bromatologia, Faculdade de Farmácia, Universidade do Porto ²ESTiG, Instituto Politécnico de Bragança ³Escola Superior de Biotecnologia, Universidade Católica Portuguesa

Introduction

The need for reliable and sensitive methods for meat species identification encompasses many issues including the fraudulent substitution of cheaper/lower quality meats in place of more expensive ones [1]. Besides representing a commercial fraud, incorrect labeling is also a problem for religious issues, since pork meat is forbidden in some religions. Following the European labeling regulations, meat products should be accurately labeled regarding their species content. From several analytical methodologies developed to accomplish meat product authentication, DNA analysis coupled with polymerase chain reaction (PCR) presents a fast, sensitive and highly specific alternative to other methods [2]. The aim of this work was to develop PCR techniques able to identify and quantify different ingredients (pork, poultry and beef) in highly processed meat product, such as Frankfurt sausages.

Metodology

Food samples and standards (binary mixtures with known percentages of pork/poultry) were extracted by two methodologies: the CTAB method, based on liquidliquid extraction, and the Wizard method, based on silica solid-phase extraction as described by Lipp et al. (1999) [3]. Yield and purity of extracts were assessed by agarose gel electrophoresis and by spectrophotometry. All PCR amplifications were performed in a iCYCLER BIO-RAD thermocycler using AmpliTaq Gold[®] DNA polymerase (Applied Biosystems). The oligonucleotide primers used are presented in Table1. The PCR amplification conditions and components used, are presented in Tables 2 and 3. SYBR Green I dye (Applied Biosystems) was used for real-time PCR assays.

Table 1 – Oligonucleotide primers

Species	Primers	Sequence 5'-3'	Amplicon (bp)	Reference
Qualitativ	e PCR			
Dork	SUS-F	CTA CAT AAG AAT ATC CAC CAC A	290	Dalmasso <i>et</i> <i>al</i>
TOIK	SUS-R	ACA TTG TGG GAT CTT CTA GGT		2004
Doultry	GAL-F	tga gaa cta cga gca caa c	102	Dalmasso <i>et</i> <i>al</i>
FOULUY	GAL-R	GGG CTA TTG AGC TCA CTG TT	105	2004
Cow	916	GTA CTA CTA GCA ACA GCT TA	256	Botero <i>et al</i>
COW	1171	GCT TGA TTC TCT TGG TGT AGA G	230	2003
Quantitati	ive PCR			
	Pork-F	ATG AAA CAT TGG AGT CCT ACT TT TAC C	140	Dooly et al
РОГК	Pork-R	CTA CGA GGT CTG TTC CGA TAT AAG G	140	2004
Poultry		The same as in qualitative PCR		

Table 2 – PCR Amplification conditions

Target Primers	Pork Sus-F/Sus-R	Poultry Gal-F/Gal-R	Cow 619/1171	Real-Time PCR
Steps	Temp. Time	Temp. Time	Temp. Time	Temp. Time
Denaturation	94°C 5 min	94°C 5 min	94°C 5 min	94°C 2.5 min
Amplification	94ºC 30 s	94ºC 30 s	94ºC 30 s	94ºC 30 s
	60°C 1 min	60°C 1 min	55°C 1 min	65°C 1 min
	72°C 1 min	72°C 1 min	72°C 1 min	
N ^o of cycles	35	38	35	45
Final extension	72°C 5 min	72°C 5 min	72°C 5 min	*

* Real time-data collection after each cycle; Increse temperature of 0.5°C (from 65 to 94°C) and collection of data for melting curve; conditions applied for Pork, Poultry and Soybean PCR-RT tests.

5% Pork

Table 3 – Qualitative PCR components

	Reaction volume (µL)			
Component	Pork	Poultry	Beef	
Ultrapure water	13.8	13.55	14.8	
Buffer (10 x)	2.5	2.5	2.5	
MgCl ₂ (25 mM)	2.0	2.25	2.5	
dNTPs (2.5 mM each)	2.0	2.0	2.0	
Primers (10mM each)	1.25	1.25	0.5	
Taq Polimerase (5U/µL)	0.2	0.2	0.2	
DNA extract	2.0	2.0	2.0	
Total reaction volume	25	25	25	

References

Qualitative PCR

Real-time PCR

Figure 2 – **A1**, **B1**: Fluorescence signal with SYBR Green I dye *vs.* Cycle number (A: binary mixtures of pork/soybean; C: 100% pork sample); A2, B2: C: Melting curves for the 140 bp fragment of pork species.

Table 4 – Agarose gel electrophoresis for PCR products of specific detection of pork, poultry, beef and soybean.

Samples	Pork Labelled Detected		Poultry Labelled Detected		Milk protein Labelled Detected	
	\checkmark	\checkmark	\checkmark	X	Х	\checkmark
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Χ
3	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Χ
5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
6	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark
7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
8	\checkmark	\checkmark	Х	Х	\checkmark	\checkmark
9	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
10	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
11	\checkmark	\checkmark	Х	Х	Х	Х

[1] Dooley, J. J.; Paine, K. E.; Garrett, S. D.; Brown, H. M. Detection of meat species using TaqMan real-time PCR assays. Meat Sci. 68, 2004, 431-438. [2] Mafra, I; Ferreira, IMPLVO; Oliveira, MBPP. Food authentication by PCR-based methods. Eur. Food Res. Technol. 22, 2008, 649-665. [3] Lipp M., Brodmann P., Pietsch K., Pauwels J., Anklam E. IUPAC collaborative trial study to detect genetically modified soy beans and maize in dried powder JAOAC Int. 82, 923-928, 1999)

Conclusion

 \checkmark The developed techniques allowed the detection of the tested species (pork, poultry and cow). The methodologies were successfully applied in commercial samples of frankfurters.

 \checkmark Qualitative PCR assays showed the presence of undeclared pork species in 2 samples, undeclared poultry species in 1 sample and undeclared cow species in 1 sample (Table 4). In one sample, the declared poultry species was not detected. The same happened in 2 samples labelled as containing milk protein.

 \checkmark Real-time PCR assays showed high sensibility (0.1%) for pork (Fig. 2) and poultry (data not shown)

 \checkmark The high real-time PCR efficiency and high correlation coefficients obtained (Fig. A2, B2) suggest that this techniques proved to be adequate for future quantitative assays