
REDUCTION METHOD

The reduction method consists of two phases. First we must find all global

maxima of the constraint function, for a fixed xk

Let      be the optimal set containing all global maxima.

In the second phase, we solve a finite constrained optimization problem

This problem is solved by a penalty method based on the exponential

function.

To find all global solutions of the problem (1), we use a simulated annealing

algorithm [1] combined with a stretching technique [2].

The main idea of this multi-local algorithm is to replace the constrained

problem (1) by

If a new global maximum is found, then it is added to the optimal set      . The 

multi-local algorithm stops when the optimal set does not change for a fixed 

number of iterations. 
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Semi-infinite programming (SIP) problems are characterized by a finite number of variables and an infinite number of constraints. The class of the reduction methods is

based on the idea that, under certain conditions, it is possible to replace the infinite constraints by a finite set of constraints, that are locally sufficient to define the

feasible region of the SIP problem.

We propose a new reduction method based on a simulated annealing algorithm for multi-local optimization and the penalty method for solving the finite problem.

SIP PROBLEM

The semi-infinite programming problem can be defined as:

PRELIMINARY NUMERICAL RESULTS
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 is the solution of the SIP problem. kx
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Problem n m kRM kML kPM kRM kML

Problem 2 2 1 1 4 7 8 10
Problem 3 3 1 2 4 6 11 23
Problem 7 3 2 4 4 8 9 14
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These numerical results were obtained with problems 2, 3 and 7 of [3]. kRM, kMLand kPM represent the number of
iterations needed by reduction method algorithm, multi-local optimization and penalty method, respectively, of
presented algorithm. kRM and kML represent the number of iterations registered in [3].
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