
Executable Graphics for PBNM

R. Lopes1, N. Raimundo1 M. Varanda1, J. Oliveira2, and V. Roque3

1 Polytechnic Institute of Bragança, 5301-854 Bragança, Portugal
rlopes,neves,mjoao@ipb.pt

2 University of Aveiro 3810-193 Aveiro, Portugal
jlo@det.ua.pt

3 Polytechnic Institute of Guarda 6301-559 Guarda, Portugal
vitor.roque@ipg.pt

Abstract. The specification of a policy is performed in a policy lan-
guage, usually following a textual representation. However, humans pro-
cess images faster than text and they are prepared to process information
presented in two or more dimensions: sometimes it is easier to explain
things using figures and their graphical relations than writing textual
representations.
This paper describes a visual language, in the form of graphics that are
executed in a networking environment, to define a network management
policy. This approach allows to map visual tokens and corresponding
arrangements into other languages to which a mapping is defined.

1 Introduction

Network management has been a constant worry among organisations and net-
work operators in the last decades. We have seen several approaches being de-
veloped and proposed, from distributed systems solutions (such as CORBA –
JIDM, for example – or Mobile Agent based solutions) to specific solutions, such
as the SNMP or CMIP. Among them, the SNMP model has, probably, been the
most well known and widely used. However, none of them has fully satisfied the
community which is still searching for an appropriate model or paradigm that
can be used efficiently in network management scenarios.

Policy-Based Network Management (PBNM) has become a promising solu-
tion for managing enterprise-wide networks and distributed systems. It is tar-
geted to systems that are dynamic in nature and where stopping and recoding
is undesirable – changing the policy rules allows the system to modify its be-
haviour [1].

The PBNM paradigm has proved, at least in theory, that is a good solution
for network management. The ideas involved in this paradigm helps greatly net-
work managers in the complicated tasks of the network administration. In fact,
when all the theoretical PBNM concepts are applied to practical and effective
management applications, the network administration task will be much easier
in terms of time, money and difficulty.

Central to the PBNM is the concept of policy, usually considered the link
between high-level business specification of desired services and low-level device

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153407017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II

configurations that provide those services [2]. This definition implies some form of
communication and, consequently, a means of describing the concepts associated
with the business-level goals – a policy description language.

Currently, there are several languages that can be used in policy definition.
Some authors have already discussed some of them and have also presented new
approaches [3, 4]. However, most of the approaches rely on formalisms that are
hard to remember and, sometimes, hard to use, forcing the user to learn new
terms and even new constructions. Much of this effort can be reduced by using
visual languages, where the user combines pictorial elements to build a flowchart
like arrangement or other similar structure [5].

In this paper, we propose the construction of a graphical editor to describe
policies. The idea is to create a visual language to specify policies and than use
an editor for generating the data structure that can be recognised by the network
as a generic representation of a policy. In this context, we are using the PCIM
formalism to store and to install the policy in the network.

2 Visual Languages for PBNM

The purpose of a policy description language is to translate from a business
specification, such as those found in a Service Level Agreement (SLA), to a
common vendor and device-independent intermediate form.

Although there are several approaches and formalisms for specifying policies,
there is a common understanding on the concepts involved [1, 6, 3]. This implicit
“understanding” allows the specification of a common representation of policies.
In general, we can classify policies in two broad classes: configuration policies
and management policies. Configuration policies are used to define initial, or
otherwise condition independent, rules, used in the configuration of resources
and in the definition of state independent policies. As an example, consider the
following sentence:

“file ‘X’ can be accessed by users from group ‘students’ ” (1)

Management policies can be used to define adaptable management actions, usu-
ally based on event-triggered, condition-action rules. For example:

“notify the admin when the error rate of outgoing packets is increasing” (2)

More focused in the latter approach, the IETF together with the DMTF, has
done a remarkable work with the Policy Core Information Model (PCIM) [7]
and corresponding extensions – PCIMe [8]. The Policy Framework WG defines
policy as an aggregation of policy rules [2]. Each policy rule is made up of a set
of conditions and a corresponding set of actions. Although this type of policy
rule does not explicitly specify an event to trigger the execution of the actions, it
assumes an implicit event, such as a process being lauched or a particular traffic
flow. In this case, the rules will include an event part [9]:

[(policyEvent) causes] (policyAction) if (policyCondition) (3)



III

Grouping is also implicit, as it represents the aggregation of related objects.
Finally, each network component may represent or act in a role or in a set of
roles. The role is a label which indicates a function of an interface or device. In
other words, a policy is a set of rules, which can belong to one ou more groups,
and which can be applied to devices acting under a specific role.

2.1 Using PBNM Languages

At the highest level, policies may resemble a human language, such as: “user
xpto may transfer files”. At system level the same policy may assume a different
form, still device and technology independent. Usually, policies are specified in a
format which is relatively easy to convert to network configuration commands.
This paper does not intend to be a survey of the existing approaches, however
it is important to provide some insight into how some of the languages are and
how do they look like.

Several languages have been developed, resulting from the effort of the academia
as well as private enterprises, such as IBM or Sun. Probably, one of the most
popular is the Ponder Policy Specification Language [10]. Ponder is a declar-
ative, object-oriented language that can be used to specify both configuration
and management policies. It supports obligation policies that are event triggered
condition-action rules for policy based management of networks and distributed
systems. Key concepts of the language include domains, to group the object
to which policies apply, roles to group policies relating to a position in an or-
ganisation, relationships to define interactions between roles and management
structures to define a configuration of roles and relationships pertaining to an
organisational unit such as a department.

The following example shows how Ponder can be used in policy description:

inst auth+ filter {

subject /Agroup + /Bgroup;

target UAStaff - DETUAgroup;

action VideoConf(BW, Priority)

{in BW=2; in Priority=3;} // default filter

if(time.after("1900")) {in BW=3; in Priority=1;}

}

The above policy says that the members of the predefined groups Agroup and
Bgroup may use the video-conference service to the group UAStaff excluding
DETUAgroup. If the service is used after 7 PM, the bandwidth is set to 3Mb/s
with priority 1. In other circumstances, the bandwidth is 2Mb/s and the priority
is 3.

XACML [11] is an XML specification for expressing policies mainly dedicated
to access control and is being defined by the Organisation for the Advancement of
Structured Information Standards (OASIS). The language supports roles, which
are the same as groups, and are defined as collections of attributes relevant
to a principal. It includes conditional authorization policies, as well as policies



IV

with external post-conditions to specify actions that must be executed prior to
permitting an access.

The following example describes a scenario where a set of video streaming
servers offers tutorials to registered and unregistered users. Registered users
have permission to access any server offering a service without time restrictions.
Unregistered users can have access to the video-streaming service only from the
internal network and not in business-time [12].

<service serviceId="TutorialVideoStreaming">

<description>tutorial video-stream</description>

<sap>

<inetaddress> 192.168.200.10 </inetaddress>

<inetaddress> 192.168.5.3 </inetaddress>

<protocol>tcp</protocol>

<port>8976</port>

</sap>

<serviceLevel serviceId="Gold">

<ResourceRsvp AttributeId="qosG7" RsvpClass="G7">

<TspecBucketRate_r>9250</TspecBucketRate_r>

<TspecBucketSize_b>680</TspecBucketSize_b>

<TspecPeakRate_p>13875</TspecPeakRate_p>

<TspecMinPoliceUnit_m>340</TspecMinPoliceUnit_m>

<TspecMaxPacketSize_M>340</TspecMaxPacketSize_M>

<RsvpService>Guaranteed</RsvpService>

<RsvpStyle>FF</RsvpStyle>

</ResourceRsvp>

</serviceLevel>

<serviceLevel serviceId="Silver"> . . . </serviceLevel>

<serviceLevel serviceId="Bronze"> . . . </serviceLevel>

</service>

The Routing Policy System WG of the IETF has defined the RPSL (Routing
Policy Specification Language) [13]. It was one of the first languages for specify-
ing routing policies and aims at generating router configuration from the policy
specification [14]. A possible example is:

aut-num: AS2

as-name: CAT-NET

descry: Teste

import: from AS1 accept ANY

import: from AS3 accept <^AS3+S>

export: to AS3 announce ANY

export: to AS1 announce AS2 AS3

admin-c: AO36-RIPE

tech-c: CO19-RIPE

mnt-by: OPS4-RIPE

changed: estig@ipb.pt

source: RIPE



V

The IETF did not define a specific language to express network policies but
rather a generic object-oriented information model for representing policy infor-
mation. An advantage of the information modelling approach followed by the
IETF is that the model can be easily mapped to structured specifications such
as XML, which can then be used for policy analysis as well as distribution of
policies across networks. The mapping of CIM to XML is already undertaken
within the DMTF [15]. The IETF has defined a mapping of the PCIM to a form
that can be implemented in a directory that uses LDAP as its access proto-
col [16]. Considering the following example, we will try to specify the attributes
of all the necessary PCIM classes.

Group students: Role=[studentPrinters] {

if (studentPrinterQuota < 0) {

deny printing job;

}

}

The first thing to do is to create an instance of CIM PolicyRule (Table 1)
to define the base of the policy. Then, the condition is created by defining an

CIM PolicyRule
Caption “Policy”
CommonName “printer quota”
ConditionListType ‘DNF’
CreationClassName “CIM PolicyRule”
Description “Controls printing jobs”
ElementName “printer quota”
Enabled ‘Enabled’
ExecutionStrategy ‘Do Until Failure’
PolicyDecisionStrategy ‘First Matching’
PolicyRuleName “printer quota”
RuleUsage “Test the printer quota”
SequencedActions ‘Don’t Care’
PolicyKeywords ‘USAGE’

Table 1. PolicyRule

CIM VendorPolicyCondition
Caption “Condition”
CommonName “printer quota”
ConstraintEnconding “UTF-8”
CreationClassName “VendorPolicyCondition”
Description “Test students print jobs”
ElementName “Test print quota”
PolicyConditionName “Test print quota”
PolRuleCrtnClassName “CIM PolicyRule”
PolicyRuleName “printer quota”
Constraint “studentPrinterQuota<0”
PolicyKeywords ‘USAGE’

Table 2. VendorPolicyCondition

CIM PolicyConditionInPolicyRule
ConditionNegated ‘FALSE’
GroupNumber 1
GroupComponent “printer quota”
PartComponent “Test print quota”
Table 3. PolicyConditionInPolicyRule

instance of CIM VendorPolicyCondition (Table 2).
After creating the condition, it must be associated to the policy with an in-

stance of CIM PolicyConditionInPolicyRule (Table 3). Now the action is spec-
ified by creating an instance of CIM ActionPolicyCondition (Table 4) and it is
associated to the policy through an instance of CIM PolicyActionInPolicyRule
(Table 5).

The resulting policy must be associated to a group, so we need to create the
group (Table 6) and create the association object (Table 7). Finally, the policy
must be set to a role (Tables 8 and 9).



VI

CIM VendorPolicyAction
ActionEncoding “UTF-8”
Caption “Action”
CommonName “printer quota”
CreationClassName “CIM VendorPolicyAction”
Description “Deny printing job”
DoActionLogging “Denying printing job”
ElementName “Deny printing”
PolicyActionName “Deny printing”
PolRuleCrtnClassName “CIM PolicyRule”
PolicyRuleName “printer quota”
ActionData “deny printing job”
PolicyKeywords ‘USAGE’

Table 4. VendorPolicyAction

CIM PolicyActionInPolicyRule
ActionOrder 1
GroupComponent “printer quota”
PartComponent “Deny printing”
Table 5. PolicyActionInPolicyRule

CIM PolicyGroup
Caption “Policy Group”
CommonName “printer quota”
CreationClassName “CIM PolicyGroup”
Description “policy group”
ElementName “Students”
Enabled ‘Enabled’
PolicyDecisionStrategy ‘First Matching’
PolicyGroupName “Students”
PolicyKeywords ‘USAGE’

Table 6. PolicyGroup

CIM PolicySetComponent
Priority 4
GroupComponent “printer quota”
PartComponent “Students”
Table 7. PolicySetComponent

CIM PolicyRoleCollection
Caption Role
Description “printers”
ElementName “Role1”
InstanceID “IPB:role1”
PolicyRole “studentPrinters”
Table 8. PolicyRoleCollection

CIM PolicySetInRoleCollection
Collection “IPB:role1”
Member “printer quota”

Table 9. PolicySetInRoleCollection

A clear message resulting from the above paragraphs is that the textual de-
scription of policies is a boring and error prone task. With these semantics, the
primary goal of PBNM may be compromised since the idea is to simplify tasks
through the use of high level, business oriented, declarations. The assistance of
a graphical user interface, that can help in filling the various attributes, may
simplify the job and may allow a faster definition of policies. We can establish a
parallel between the Visual Basic programming environment, where the develop-
ment of applications is faster and may be achieved by less skilled programmers,
and a C++ programming environment, where the development of applications
typically takes more time but results in a better structured code.

2.2 Using Visual Languages

A visual language is characterized by the use of graphical notation – a graphical
vocabulary and sentences constructed by a spacial combination of symbols (two
dimensions). There are several reasons to use visual languages. The basic idea
is that humans process images faster than text and that they are prepared to
process information presented in two or more dimensions.

The human reasoning is image-oriented: sometimes it is easier to explain
things using figures and their graphical relations than writing textual represen-
tations. A text has a sequential structure and its visual aspect is always the



VII

same. When we read a text we must understand each character to read a word
and we must understand all the words to read and understand sentences.

In visual languages each figure can give different information depending on
its size, on its colour, on its form and so on. A visual sentence can be more
attractive and easier to understand. So, it is common to use drawings to explain
things. Many pedagogical tools use visualisations and animations as a simple
way to achieve their purposes. However, visual languages are not as simple to
specify, process or traduce by automatic mechanisms than textual languages.

There are some visual language compiler generators and other interesting
tools (some of them are very specific) that can be used to process visual languages
in order to generate other representations.

The idea of using a visual language to specify policies allows the user to
work with a graphical editor to build a structure that can be interpreted as
a policy. Just like with textual languages, where compiler-compilers, such as
LEX and Yacc, build the code to deal with some programmer defined language,
graphical languages can also be achieved by compiling a grammar to build an
editor automatically.

3 Executable Graphics for PBNM

In the previous sections we described some approaches to specify policies through
the use of textual languages. This section presents a visual language, composed
of graphical elements which are executed into a textual description. Because we
like to interpret the visual richness of objects as executable charts we use the
term executable graphics [17].

The main idea is to describe the policy language using a grammar, to be
compiled into a graphical editor, and the appearance of the tokens using images:
:The advantages of formal specification of programming language semantics are
well known: first, the meaning of a program is precisely and unambiguously de-
fined; second, it offers a unique possibility for automatic generation of compilers
or interpreters.

screen : policy resources

resources : resources resource

| resource

resource : NAME roles

policy : rule roles

roles : roles role

| role

role : STRING

rule : IF condition THEN actions

| IF condition THEN actions WHEN events

condition : dnf | cnf

dnf : exp1

| dnf OR exp1

cnf : exp2

| cnf AND exp2



VIII

exp1 : cterm AND cterm

exp2 : cterm OR cterm

cterm : STRING

| NOT STRING

actions : actions action

| action

action : STRING

events : events event

| event

event : STRING

We have chosen a spatial paradigm for the policy definition instead of a chart
like approach because we think it is easier to fill spaces than connecting lines. The
user will need to drag and drop elements to specific spaces in the user interface,
thus making the definition of policies easier. We assume that the non-terminal
symbols (role, cterm, action and event) are represented as blocks in the user
interface in a corresponding pallet. This tablet is the initial drag point and the
source for the conditions, actions, events and roles.

A condition is a combination of condition terms (cterm) in CNF or DNF
form. Considering that we want to build a conjunction of two conditions
(Condition1 ∧ Condition2) it is necessary to drag and drop both of them into
the same screen space. The user interface will show the resulting condition in-
side the same block. If the condition is negated, it is shown as a patterned box
with diagonal lines. If we further want to have the result of a conjunction of
three more conditions in DNF form, we need to build a disjunction of the re-
sulting blocks (Figure 1). The colours represent the type of operation. A light
colour (light gray, in this case) represents the AND operation and the darker
colour represents the OR operation. Using CNF instead of DNF would reverse
the colours, as shown in Figure 2.

�����������

����������	


�

�����������

����������

�����������

�����������

����������	

�����������

����������

�����������

Fig. 1. Building a condition.

�����������

����������	

����������


�����������

�����������

�����������

����������	

����������


�����������

�����������

�� ��

Fig. 2. CNF vs. DNF.

Actions can be sequenced or not. The former implies that the policy, when
the condition is true, executes the actions in the order defined by the user. In
this situation, as the user drops the actions in the specific place, the actions are
connected with arrows.



IX

We considered that the policy can be triggered by one or more events,
so we defined a dark area to allow the user to drop a disjunction of events
(Event1 ∨ Event2 ∨ Event3). The resulting interface groups roles, conditions,
actions and events in a logical distribution and with well defined spatial distri-
bution (Figure 3).

������ ������ ������ �����	 �����
 ������

���������

���������

���������

��������	

��������


���������

���������

�����

�����

�����

�������

�������

�������

������	

�����

����

���	
�
����������� ���
������������	�������� �����������
���

Fig. 3. Visual specification of a policy.

4 Conclusions

The way users communicate with computational entities is usually based on some
form of language. Textual languages, although easier to process by automatic
processes, are seldom as user friendly as its visual equivalents. A visual sentence
can be more attractive and easier to understand. In fact, humans recall faster,
and understand better, a subject through some form of visual representation –
it is common to use drawings to explain things.

We have defined a visual language for the definition of network management
policies. This language works by dragging blocks, representing the actions, con-
ditions and events, and dropping them in specific spaces for building a policy
rule. This approach helps reducing the number of attributes to set as well as
providing the user with visual aid in remembering the policy components. A
well known analogy is the development of applications in a visual language, such
as Visual Basic. Although less structured, it helps reducing the time-to-market
and the rapid prototyping of applications when compared to textual languages,
such as C++.



X

We hope that this approach helps reducing the difficulty in specifying and
remembering policies which, some times, are written in a form difficult to un-
derstand and to remember.

References

1. Sloman, M.: Policy driven management for distributed systems. Journal of Network
and Systems Management 2 (1994)

2. Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Herzog, S.,
Huynh, A., Carlson, M., Perry, J., Waldbusser, S.: Terminology for Policy-Based
Management. rfc 3198, IETF (2001)

3. Stone, G., Lundy, B., Xie, G.: Network policy languages: A survey and a new
approach. IEEE Network 15 (2001) 10–21

4. Damianou, N.: A Policy Framework for Management of Distributed Systems. PhD
thesis, Imperial College (2002)

5. Shneiderman, B.: Direct manipulation. a step beyond programming languages.
IEEE Transactions on Computers 16 (1983) 57–69

6. Wies, R.: Policies in network and system management – formal definition and
architecture. Journal of Network and Systems Management 2 (1994)

7. Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy Core Information
Model – Version 1 Specification. rfc 3060, IETF (2001)

8. Moore, B., Ed.: Policy Core Information Model (PCIM) Extensions. rfc 3460,
IETF (2003)

9. Chomicki, J., Lobo, J., Naqvi, S.: Conflict resolution using logic programming.
IEEE Transactions on Knowledge and Data Engineering 15 (2003)

10. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: Policy 2001: Workshop on Policies for Distributed Systems and
Networks, Bristol, UK, Springer-Verlag (2001)

11. OASIS: extensible access control markup language (xacml) version 2.0. Technical
report, OASIS (2005)

12. Toktar, E., Jamhour, E., Maziero, C.: Rsvp policy control using xacml. In: IEEE
5th International Workshop on Policies for Distributed Systems and Networks
(POLICY 2004), New York (2004)

13. Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer, D., Bates, T.,
Karrenberg, D., Terpstra, M.: Routing Policy Specification Language (RPSL).
rfc 2622, IETF (1999)

14. Meyer, D., Schmitz, J., Orange, C., Prior, M., Alaettinoglu, C.: Using RPSL in
Practice. rfc 2650, IETF (1999)

15. DMTF: Representation of cim in xml (xml mapping specification), v2.0.0. Tech-
nical report, DMTF (1999)

16. Strassner, J., Moore, B., Moats, R., Ellesson, E.: Policy Core Lightweight Directory
Access Protocol (LDAP) Schema. rfc 3703, IETF (2004)

17. Lakin, F.: Spatial parsing for visual languages. In Chang, S.K., Ichikawa, T.,
Ligomenides, P., eds.: Visual Languages. Plenum Press, New York (1986) 35–85


