
TOWARDS TRANSACTIONAL INTEGRITY ISSUES IN POLICY
BASED NETWORK MANAGEMENT SYSTEMS

Vitor Roque
Instituto Politécnico da Guarda, ESTG, Guarda � Portugal

email: vitor.roque@ipg.pt

Rui P. Lopes
Instituto Politécnico de Bragança, ESTiG, Bragança � Portugal

email: rlopes@ipb.pt

José Luís Oliveira
Universidade de Aveiro, DET, Aveiro � Portugal

email: jlo@det.ua.pt

Keywords: Policy based network management, policies, network management, transactions.

Abstract
As networks increase in size, heterogeneity, complexity and pervasiveness, effective

management of such networks becomes more important and increasingly difficult. In this
context, PBNM (Policy-Based Network Management) has been gaining popularity in the
recent years. New demands on internetworking, services specification, QoS and
generically on network management functionality have been driving users to consider
this paradigm in their own networks.

As people start exploiting PBNM, another aspect comes to attention: transactional
integrity. Transactional control envisages achieving consistent state changes along the
network. In other words, state transition in network devices is only authorized if all the
related operations are successfully taken.

In this paper we propose a transactional control mechanism for PBNM systems,
namely its assurance across different systems and different network domains.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153407014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1 INTRODUCTION
The telecommunications market has suffered an impressive growth during the last

years. The quantity of network devices, users and organizations that are interconnected
show how the complexity of these networks has increased. The number and diversity of
applications requiring network services (virtual private networks, QoS and so on) have
also increased. The bandwidth required by many of these applications, such as VoIP or
multimedia streaming, is considerably higher from what we have a couple of years ago.
Likewise, users� expectations are pointed to crescent demands and to higher service
levels. In this context, organizations will need expedited methodologies to configure and
manage networks, systems and resources. Policy-based network management (PBNM),
one of such methods, has been gaining importance as network dimension and complexity
has growing.

The goal behind PBNM is to approximate the business personal from the network
technicians, by allowing managing network from high level policy rules. Each policy can
represent an action that is applied to thousands of network elements. However, to be
effective, this operation should be automated with appropriate software tools and
protocols, which allows the policy to be applied regardless of the equipment vendor.

Another challenge in PBNM is how to achieve full transactional integrity in a network
domain. Today solutions, namely the COPS or SNMP protocols, permits to achieve
transactional integrity at the device level, but when we go to the network level, i.e., when
we want to apply the same configuration to all the devices at one network domain we will
face some difficulties.

This paper presents a transaction manager and pairs of PDP/PEP which can deal with
the properties of a network configuration transaction.

2 BACKGROUND ON POLICY BASED MANAGEMENT
Policies are plans of an organization to achieve its objectives. A policy is a persistent

specification of an objective to be achieved or of a set of actions to be performed in the
future or as an on-going regular activity.

Policy based networking is the application of these organizational policies in the
context of networking [1]. It is usually concerned with the implementation of
organizational objectives as automated operations, management and control systems. In
this context a policy is a relationship between network objects, such as particular groups
of network elements, network resources and services, and user groups. For example, a
bandwidth management policy may apply to all routers within a particular region or of a
particular type. An authorization policy may specify that all members of a department
have access to a particular service [2].

Comparing to conventional network management models, closer to low level
instrumentation procedures [3], PBNM simplifies interfaces by extracting commonality
across devices; moreover, it provides consistency across interfaces. Network behaviors
and management data will be standardized and abstracted. Network actions or

 3

configurations will be derived from these �policy rules�, and the policy rules can be
differently applied from vendor to vendor. These abstracted management data and fewer
interfaces are the keys to achieve better scalability and simplicity in large network.

To support the high level dictated by PBNM, the IETF has proposed a policy
framework architecture [2] that we describe in the Figure 1.

Policy Management
Station

Policy Decision
Point

PEPPEP
PEPPolicy

Enforcement
Point

Policy
RepositoryMonitoring and Control

Monitoring and Configuration

Policy Policy

Policy

SNMP, CLI, HTTP,
COPS, ...

Figure 1 � IETF PBNM architecture.

This architecture describes the key components: Policy Management Tool (Policy
Console), Policy Decision Point (PDP) or Police Server, Policy Enforcement Points
(PEP) and Policy Repository. A network management protocol, like COPS [4], SNMP
[5] or other, is used to transfer management information among network management
entities such as agents, managers, decision, and enforcement points. These protocols
guarantees transport of information, however network level transactions are still an open
issue [6].

A PDP may have a different number of PEPs under its responsibility (Figure 2).

Policy Console

PDP

PEP PEP PEP PEP

PDP

Figure 2 � PBNM architecture hierarchy.

 4

If a single PDP is used to configure a large number of PEPs, we may have some
scalability problems (centralized model). If we use more PDPs, we tend to distribute the
configuration operations among a more meaningful number of PDPs. If each PDP is
responsible for a single PEP, we are under a strong distribution scenario [7].

3 BACKGROUND ON TRANSACTIONS
The concept of transactions has been widely supported by a variety of existing

systems, including data-oriented systems, such as databases, and process-oriented
systems such as distributed systems. This concept has the same purpose in all these
systems and is meant to �group� a set of operations, mainly read and write operations,
into one logical execution unit called a transaction. Transactions guarantee that the data
will be consistent at the end of its execution, regardless of whether the transaction was
successful (commits) or have failed (aborts).

Transactions must follow the ACID properties [8]. These properties, identified by
Atomicity, Consistency, Isolation, and Durability ensure that a transaction is performed
in a correct way and that it leaves the system in a stable state.

The atomicity property ensures that all operations performed as a part of a transaction
are considered as atomic � i.e. all the transaction operations are performed or none of
them. If a transaction aborts, all the operations are undone and the state will roll back to
the previous stable state.

Consistency ensures that state changes occur from one consistent state to another.
Consistency of a state is defined by a set of constraints and variants which must be
satisfied. The property of consistency enables an application to perform a set of
operations guaranteed to create a new state satisfying these constraints.

The isolation property is used in situations where multiple processing entities
reference and change the same underlying resources and data. An executing transaction
cannot reveal its results to other concurrent transactions before it commits.

Durability guarantees that the result of a transaction is durable (persistent) and will not
easily be lost (except in the case of catastrophes, such as destruction of the disk and all its
backups). Durability is usually implemented by using a persistent storage mechanism.

Taking these concepts to PBNM, the configuration of equipment following a policy
usually results in the update of several managed objects and, to be successful, all of them
must be configured or none at all. Thus, PBNM must rely on a transaction service so that
the network travels between stable states.

4 DISTRIBUTION OF POLICIES
In modern communication networks, an efficient and effective network management

system must address support for management of network domains. In this context, the
term domain represents a set of interconnected networking devices which may share a
common goal or goals � the network wide policy.

Network wide policies imply that a single sentence of objectives be translated into a
set of network equipment rules which are then used for equipment configuration

 5

purposes. Each rule should be installed in a specific network component thus contributing
to the desired global goal.

Looking from a different angle, each network wide policy represents a transaction,
which means that several configuration requests must be clustered so that they are
performed with ACID properties. In other words, the requests must be all successfully
applied � thus achieving a consistent state transition � or none at all, thus rolling back to
the previous consistent state.

In the following examples, and to illustrated the transactions mechanism, we will use
the work coming from the several IETF working groups, namely Policy [9], Diffserv
[10], and SNMPconf [11].

4.1 Network wide policies as transactions
Let us consider the example of a network composed of several core routers, identified

by NE C_* and two edge routers, NE E_1 and NE E_2 (Figure 3). Let us also consider that
all the nodes support DiffServ classification of traffic [12] [13].

Network domain

NE E_1 NE E_2

NE C_1 NE C_N

Internet

. . .

Figure 3 � Network domain policies.

Considering that it is necessary to establish a connection with a given class of service
(the network wide policy) we have to configure all the routers along the path and we must
guarantee that the communication requirements are met. If, at any point, this is not
possible, we have to rollback to the previous configuration.

For simplicity, we consider that the DiffServ nodes are configured through SNMP
and/or COPS with the DiffServ MIB [14] and/or DiffServ PIB [15].

The configuration activity taken when applying a policy must be performed as a
transaction, thus having the ACID properties. Transactions must be isolated from each
other. This property requires some sort of concurrency control to prevent other policies,
which might collide with the one we are trying to enforce, from being applied (Figure 4).

 6

PDP

PEP
A

PEP
B

PEP
C

PEP
D

PDP

Policy Policy

PDP

PEP
A

PEP
B

PEP
C

PEP
D

PDP

Policy Policy

a) b)

Figure 4 � Concurrency control.
a) Conflicting configuration in PEP C; b) Isolation of transactions.

From a technical perspective, we have to get a write lock to each router under state
change. It is well known, from the distributed systems theory that a value can be read
simultaneously by several clients. However, modifying a value usually requires dedicated
access by each client [16]. This fact alerts us to the possibility of deadlocks as well as
starvation.

The SNMP framework defines a mechanism to deal with multiple managers. The
standard textual convention document defines TestAndIncr, a spinlock, which is used to
avoid race conditions [17]. Objects of this type must be set to their current value
otherwise the set operation will fail. If successful, its value is incremented.

In a transaction scenario, the manager would have to retrieve the spinlock value from
all the PEPs and then try to set a new state with the retrieved value. Should any operation
fail, the transaction would have to bring all the PEPs to the previous state. This scenario
does not provide an exclusive access lock to the PEP but it provides a method to detect if
a different manager tried to configure it.

A different perspective would be to use a transaction manager to grant or deny access
to the PDP but this would require that all the requests be sent to it. Current management
applications are not built to perform in this way.

The durability property is ensured by the storage resources on network elements.
Usually, it relies on flash RAM or on hard drives. This is usually defined through an
object of the StorageType type [17].

A transaction could only end successfully if the state is consistent. The PEPs must
only accept data which drives them to a possible state. In the DiffServ MIB [18], several
conceptual tables are used for configuration. A conceptual table provides a column, of the
RowStatus type, which reflects the status of the data stored in the associated row. If the
status is �notReady� then there are missing or incorrect information in it. Only if it is
�active� or �notInService� the state is, or can, be consistent.

The last property is atomicity. A transaction must be executed completely or not at all.
Since we can have policies being applied to different PEPs and that each PEP has no
knowledge about the others, the atomicity must be ensured at a higher level � the PDP.

 7

Transaction control is independent of the client and server objects and the operations
between them. The coordination role is usually taken by a specific process � the
transaction coordinator. The transaction is transparent to the client: it just requests the
beginning of a transaction by sending a begin message to the coordinator followed by the
configuration messages to the server objects. Finally, the client issues a commit message
to the coordinator which will be responsible for ending the transaction.

A well known protocol for achieving atomicity in transactions is the Two-Phase
Commit Protocol (2PC) [19]. The 2PC has two phases:

The voting phase: a coordinator process is started (usually at the site where the
transaction is initialized), writes a begin commit record in its log, sends a vote message to
the participants, and enters the wait state. This message also contains a unique transaction
id, which will be used in further messages.

When a participant receives a vote message, it checks if it can commit the transaction.
If it can, the participant writes a ready record in its log, sends a vote confirmation
message to the coordinator, and enters the ready state. Otherwise, the participants decide
to unilaterally abort the transaction by sending an abort message to the coordinator. It
enters the abort state and can forget about the transaction.

The commit phase: After the coordinator has received votes from all participants it
decides whether to commit or abort according to the global commit rule, and writes this
decision in the log. If the decision is to commit, it sends a commit message to all
participants. Otherwise, it sends an abort message to all sites that voted to commit.
Finally, it writes an end of transaction record in its log.

We thus have an exchange of messages as shown in Figure 5.

PDP PEP
A

PEP
B

PEP
C Coordinator

begin()

set() register()

set() register()

set() register()

commit()

vote()

vote()

vote()

commit()
commit()

commit()

Figure 5 � Messages exchanged for the 2PC.

To cope with eventual crashes or lost messages, the participants will have to provide
some recover procedures:

 8

• If the client fails before committing, the coordinator will eventually abort the
transaction by sending abort messages to the transaction servers.

• If a server fails before voting, the coordinator should interpret the missing vote
as a vote against and should explicitly abort the transaction.

• If the coordinator fails during the voting phase, the servers will not receive the
commit message and eventually abort.

• If the server fails after voting and if it has voted in favour, after restarting it
will ask the coordinator for the decision taken and act accordingly. If the
decision is to commit, it must use the data recovered from temporary storage.

• If the coordinator fails after the first commit message, it has to retransmit the
commit request, when getting back online.

Next section will describe how the roles can be applied to policy based management.

5 AN ARCHITECTURE FOR POLICY TRANSACTIONS
This section describes our architecture for implementing transactions in PBNM

(Figure 6). Ignoring the Policy Console and the Policy Repository, it closely resembles
the IETF architecture, basing the main operations on PDPs and PEPs.

PDP UserTransaction Transaction Coordinator
Transaction

Agent 1

Agent 3

Agent 2

begin/commit

SNMP/COPS/...

Policy decision and
decomposition

PEP

XAResource
Policy

enforcement
PEP

XAResource
Policy

enforcement
PEP

XAResource
Policy

enforcement

vote/com
mit

Figure 6 � Architecture for PBNM transactions.

We use the Java Transaction API (JTA) [20] to provide coordination between the PDP
and PEPs. The role of the Transaction Coordinator is to control and coordinate the
transaction, as referred in the previous section. The JTA provides a generic coordinator as
part of the API.

 9

The PDP works as a transactions client and the PEPs as servers. In JTA, this means

that the PDP has to obtain a reference to a UserTransaction object, which will be used to
start and end the transactions:
public void applyPolicy(Policy policy) {

 UserTransaction ut = context.getUserTransaction();

 try {
 // Request the transaction coordinator to start a transaction
 ut.begin();
 setPolicy(policy);
 // Request the transaction coordinator to commit the transaction
 ut.commit();
 } catch (Exception ex) {
 try {
 ut.rollback();
 } catch (SystemException syex) {
 throw new EJBException("Rollback failed: " + syex.getMessage());
 }
 throw new EJBException("Transaction failed: " + ex.getMessage());
 }
}

 The PEP is the transaction server object. As such, it has to implement the
XAResource interface. This interface provides methods corresponding to the 2PC
protocol, namely the voting phase (prepare), commit and others.

When the PDP send a configuration message to the PEP, it has to register on the
Transaction Coordinator through the enlistResource method of the Transaction
interface. This is how the coordinator gets the references to the participants in the
transaction. The PEP may have to store some information retrieved from the agent to
cope with crashes the may happen.

The implementation of the prepare method must also include code to check if the
agent is in a consistent state, by querying the conceptual table RowStatus column, for
example, and if the transaction could be committed. Meanwhile, it also has to check the
spinlock object, to see if some other manager is configuring or has configured the agent.
In this case, the PEP will vote against committing and the transaction has to be aborted.

After the PDP has issued the commit message, the transaction coordinator will
request the PEPs to install the policy in the agent.

The PEP also plays an important role in the recovery process in case some message is
lost or some participant crashes:

• If the PDP fails before committing, the coordinator will eventually abort the
transaction by sending abort messages to the PEPs.

• If a PEP fails before voting, the coordinator should interpret the missing vote
as a vote against and should explicitly abort the transaction.

• If the agent fails before voting, the PEP will loose contact with it and will vote
against the commit.

• If the coordinator fails during the voting phase, the PEPs will not receive the
commit message and, after a timeout, will abort the transaction.

 10

• If the PEP fails after voting and if it has voted in favour, after restarting it will
ask the coordinator for the decision taken and act accordingly. If the decision is
to commit, it must use the data recovered from temporary storage.

• If the agent fails after the PEP has voted and if the decision is to commit, the
PEP will wait for the agent to come back online and restore the state
previously retrieved from it. The PEP will then complete the transaction by
applying the transaction decision.

• If the coordinator fails after the first commit message, it has to retransmit the
commit request, when getting back online.

6 CONCLUSIONS
Policy-Based Network Management is a methodology wherein configuration

information is derived from rules and network-wide objectives, and is distributed to many
potentially network elements with the goal of achieving a consistent network behaviour.

The configuration activity causes state changes in the network elements and to achieve
consistent state changes in network domains it is necessary to guarantee support for
transactional integrity.

Within this paper we made some considerations about the importance of to guarantee
transactional integrity at the network level in PBNM. The presented architecture, based on
the JTA package and on the 2PC protocol, validates our ideas.

7 REFERENCES
1. Chadha, R., G. Lapiotis, and S. Wright, Guest Editorial - Policy-Based

Networking, in IEEE Network. 2002, IEEE.
2. Yavatkar, R., D. Pendarakis, and R. Guerin, A Framework for Policy-based

Admission Control - RFC2753. 2000, The Internet Engineering Task Force
(IETF).

3. Wong, K. and E. Law. ABB: active bandwidth broker. in SPIE ITCom 2001.
2001. Denver, USA.

4. Durham, D., et al., The COPS (Common Open Policy Service) Protocol -
RFC2748. 2000, The Internet Engineering Task Force (IETF).

5. Case, J., et al., Introduction to Version 3 of the Internet-standard Network
Management Framework - RFC 2570. 1999, The Internet Engineering Task Force
(IETF).

6. MacFaden, M., et al., Configuring Networks and Devices With SNMP - RFC3512.
2003, The Internet Engineering Task Force (IETF).

7. Martinez, P., et al. Using the Script MIB for Policy-based Configuration
Management. in IEEE/IFIP Network Operations and Management Symposium
2002. 2002. Florence.

8. Gray, J. and A. Reuter, Transaction Processing: Concepts and Techniques. 1994:
Morgan Kaufmann.

9. Policy Framework (policy) WG. 2004, The Internet Engineering Task Force
(IETF).

 11

10. Differentiated Services (diffserv) WG. 2003, The Internet Engineering Task Force
(IETF).

11. Configuration Management with SNMP (snmpconf) WG. 2003, The Internet
Engineering Task Force (IETF).

12. Blake, S., et al., An Architecture for Differentiated Services - RFC2475. 1998,
The Internet Engineering Task Force (IETF).

13. Grossman, D., New Terminology and Clarifications for Diffserv - RFC3260.
2002, The Internet Engineering Task Force (IETF).

14. Baker, F., K. Chan, and A. Smith, Management Information Base for the
Differentiated Services Architecture - RFC3289. 2002, The Internet Engineering
Task Force (IETF).

15. Chan, K., et al., Differentiated Services Quality of Service Policy Information
Base - RFC3317. 2003, The Internet Engineering Task Force (IETF).

16. Emmerich, W., Engineering Distributed Objects. 2000: Wiley.
17. McCloghrie, K., et al., Textual Conventions for SMIv2 - RFC2579. 1999, The

Internet Engineering Task Force (IETF).
18. Hazewinkel, H. and D. Partain, The Differentiated Services Configuration MIB -

RFC3747. 2004, The Internet Engineering Task Force (IETF).
19. Özsu, M. and P. Valduriez, Principles of Distributed Database Systems. 2nd. ed

ed. 1999: Prentice Hall.
20. The Java Transaction API (JTA). 2004, Sun Microsystems.

