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Abstract 
As networks increase in size, heterogeneity, complexity and pervasiveness, effective 

management of such networks becomes more important and increasingly difficult. In this 
context, PBNM (Policy-Based Network Management) has been gaining popularity in the 
recent years. New demands on internetworking, services specification, QoS and 
generically on network management functionality have been driving users to consider 
this paradigm in their own networks. 

As people start exploiting PBNM, another aspect comes to attention: transactional 
integrity. Transactional control envisages achieving consistent state changes along the 
network. In other words, state transition in network devices is only authorized if all the 
related operations are successfully taken.   

In this paper we propose a transactional control mechanism for PBNM systems, 
namely its assurance across different systems and different network domains. 
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1 INTRODUCTION 
The telecommunications market has suffered an impressive growth during the last 

years. The quantity of network devices, users and organizations that are interconnected 
show how the complexity of these networks has increased. The number and diversity of 
applications requiring network services (virtual private networks, QoS and so on) have 
also increased. The bandwidth required by many of these applications, such as VoIP or 
multimedia streaming, is considerably higher from what we have a couple of years ago. 
Likewise, users� expectations are pointed to crescent demands and to higher service 
levels. In this context, organizations will need expedited methodologies to configure and 
manage networks, systems and resources. Policy-based network management (PBNM), 
one of such methods, has been gaining importance as network dimension and complexity 
has growing. 

The goal behind PBNM is to approximate the business personal from the network 
technicians, by allowing managing network from high level policy rules. Each policy can 
represent an action that is applied to thousands of network elements. However, to be 
effective, this operation should be automated with appropriate software tools and 
protocols, which allows the policy to be applied regardless of the equipment vendor. 

Another challenge in PBNM is how to achieve full transactional integrity in a network 
domain. Today solutions, namely the COPS or SNMP protocols, permits to achieve 
transactional integrity at the device level, but when we go to the network level, i.e., when 
we want to apply the same configuration to all the devices at one network domain we will 
face some difficulties. 

This paper presents a transaction manager and pairs of PDP/PEP which can deal with 
the properties of a network configuration transaction.  

2 BACKGROUND ON POLICY BASED MANAGEMENT 
Policies are plans of an organization to achieve its objectives. A policy is a persistent 

specification of an objective to be achieved or of a set of actions to be performed in the 
future or as an on-going regular activity. 

Policy based networking is the application of these organizational policies in the 
context of networking [1]. It is usually concerned with the implementation of 
organizational objectives as automated operations, management and control systems. In 
this context a policy is a relationship between network objects, such as particular groups 
of network elements, network resources and services, and user groups. For example, a 
bandwidth management policy may apply to all routers within a particular region or of a 
particular type. An authorization policy may specify that all members of a department 
have access to a particular service [2].  

Comparing to conventional network management models, closer to low level 
instrumentation procedures [3], PBNM simplifies interfaces by extracting commonality 
across devices; moreover, it provides consistency across interfaces. Network behaviors 
and management data will be standardized and abstracted. Network actions or 
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configurations will be derived from these �policy rules�, and the policy rules can be 
differently applied from vendor to vendor. These abstracted management data and fewer 
interfaces are the keys to achieve better scalability and simplicity in large network. 

To support the high level dictated by PBNM, the IETF has proposed a policy 
framework architecture [2] that we describe in the Figure 1. 
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Figure 1 � IETF PBNM architecture. 

This architecture describes the key components: Policy Management Tool (Policy 
Console), Policy Decision Point (PDP) or Police Server, Policy Enforcement Points 
(PEP) and Policy Repository. A network management protocol, like COPS [4], SNMP 
[5] or other, is used to transfer management information among network management 
entities such as agents, managers, decision, and enforcement points. These protocols 
guarantees transport of information, however network level transactions are still an open 
issue [6]. 

A PDP may have a different number of PEPs under its responsibility (Figure 2). 
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Figure 2 � PBNM architecture hierarchy. 
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If a single PDP is used to configure a large number of PEPs, we may have some 
scalability problems (centralized model). If we use more PDPs, we tend to distribute the 
configuration operations among a more meaningful number of PDPs. If each PDP is 
responsible for a single PEP, we are under a strong distribution scenario [7]. 

3 BACKGROUND ON TRANSACTIONS 
The concept of transactions has been widely supported by a variety of existing 

systems, including data-oriented systems, such as databases, and process-oriented 
systems such as distributed systems. This concept has the same purpose in all these 
systems and is meant to �group� a set of operations, mainly read and write operations, 
into one logical execution unit called a transaction. Transactions guarantee that the data 
will be consistent at the end of its execution, regardless of whether the transaction was 
successful (commits) or have failed (aborts). 

Transactions must follow the ACID properties [8]. These properties, identified by 
Atomicity, Consistency, Isolation, and Durability ensure that a transaction is performed 
in a correct way and that it leaves the system in a stable state.  

The atomicity property ensures that all operations performed as a part of a transaction 
are considered as atomic � i.e. all the transaction operations are performed or none of 
them. If a transaction aborts, all the operations are undone and the state will roll back to 
the previous stable state. 

Consistency ensures that state changes occur from one consistent state to another. 
Consistency of a state is defined by a set of constraints and variants which must be 
satisfied. The property of consistency enables an application to perform a set of 
operations guaranteed to create a new state satisfying these constraints.  

The isolation property is used in situations where multiple processing entities 
reference and change the same underlying resources and data. An executing transaction 
cannot reveal its results to other concurrent transactions before it commits. 

Durability guarantees that the result of a transaction is durable (persistent) and will not 
easily be lost (except in the case of catastrophes, such as destruction of the disk and all its 
backups). Durability is usually implemented by using a persistent storage mechanism. 

Taking these concepts to PBNM, the configuration of equipment following a policy 
usually results in the update of several managed objects and, to be successful, all of them 
must be configured or none at all. Thus, PBNM must rely on a transaction service so that 
the network travels between stable states. 

4 DISTRIBUTION OF POLICIES 
In modern communication networks, an efficient and effective network management 

system must address support for management of network domains. In this context, the 
term domain represents a set of interconnected networking devices which may share a 
common goal or goals � the network wide policy. 

Network wide policies imply that a single sentence of objectives be translated into a 
set of network equipment rules which are then used for equipment configuration 
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purposes. Each rule should be installed in a specific network component thus contributing 
to the desired global goal. 

Looking from a different angle, each network wide policy represents a transaction, 
which means that several configuration requests must be clustered so that they are 
performed with ACID properties. In other words, the requests must be all successfully 
applied � thus achieving a consistent state transition � or none at all, thus rolling back to 
the previous consistent state. 

In the following examples, and to illustrated the transactions mechanism, we will use 
the work coming from the several IETF working groups, namely Policy [9], Diffserv 
[10], and SNMPconf [11]. 

4.1 Network wide policies as transactions 
Let us consider the example of a network composed of several core routers, identified 

by NE C_* and two edge routers, NE E_1 and NE E_2 (Figure 3). Let us also consider that 
all the nodes support DiffServ classification of traffic [12] [13]. 

Network domain

NE E_1 NE E_2

NE C_1 NE C_N

Internet

. . .

 
Figure 3 � Network domain policies.     

Considering that it is necessary to establish a connection with a given class of service 
(the network wide policy) we have to configure all the routers along the path and we must 
guarantee that the communication requirements are met. If, at any point, this is not 
possible, we have to rollback to the previous configuration. 

For simplicity, we consider that the DiffServ nodes are configured through SNMP 
and/or COPS with the DiffServ MIB [14] and/or DiffServ PIB [15].  

The configuration activity taken when applying a policy must be performed as a 
transaction, thus having the ACID properties. Transactions must be isolated from each 
other. This property requires some sort of concurrency control to prevent other policies, 
which might collide with the one we are trying to enforce, from being applied (Figure 4). 
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Figure 4 � Concurrency control. 
a) Conflicting configuration in PEP C; b) Isolation of transactions. 

From a technical perspective, we have to get a write lock to each router under state 
change. It is well known, from the distributed systems theory that a value can be read 
simultaneously by several clients. However, modifying a value usually requires dedicated 
access by each client [16]. This fact alerts us to the possibility of deadlocks as well as 
starvation. 

The SNMP framework defines a mechanism to deal with multiple managers. The 
standard textual convention document defines TestAndIncr, a spinlock, which is used to 
avoid race conditions [17]. Objects of this type must be set to their current value 
otherwise the set operation will fail. If successful, its value is incremented. 

In a transaction scenario, the manager would have to retrieve the spinlock value from 
all the PEPs and then try to set a new state with the retrieved value. Should any operation 
fail, the transaction would have to bring all the PEPs to the previous state. This scenario 
does not provide an exclusive access lock to the PEP but it provides a method to detect if 
a different manager tried to configure it.  

A different perspective would be to use a transaction manager to grant or deny access 
to the PDP but this would require that all the requests be sent to it. Current management 
applications are not built to perform in this way. 

The durability property is ensured by the storage resources on network elements. 
Usually, it relies on flash RAM or on hard drives. This is usually defined through an 
object of the StorageType type [17]. 

A transaction could only end successfully if the state is consistent. The PEPs must 
only accept data which drives them to a possible state. In the DiffServ MIB [18], several 
conceptual tables are used for configuration. A conceptual table provides a column, of the 
RowStatus type, which reflects the status of the data stored in the associated row. If the 
status is �notReady� then there are missing or incorrect information in it. Only if it is 
�active� or �notInService� the state is, or can, be consistent. 

The last property is atomicity. A transaction must be executed completely or not at all. 
Since we can have policies being applied to different PEPs and that each PEP has no 
knowledge about the others, the atomicity must be ensured at a higher level � the PDP.  
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Transaction control is independent of the client and server objects and the operations 
between them. The coordination role is usually taken by a specific process � the 
transaction coordinator. The transaction is transparent to the client: it just requests the 
beginning of a transaction by sending a begin message to the coordinator followed by the 
configuration messages to the server objects. Finally, the client issues a commit message 
to the coordinator which will be responsible for ending the transaction. 

A well known protocol for achieving atomicity in transactions is the Two-Phase 
Commit Protocol (2PC) [19]. The 2PC has two phases: 

The voting phase: a coordinator process is started (usually at the site where the 
transaction is initialized), writes a begin commit record in its log, sends a vote message to 
the participants, and enters the wait state. This message also contains a unique transaction 
id, which will be used in further messages.  

When a participant receives a vote message, it checks if it can commit the transaction. 
If it can, the participant writes a ready record in its log, sends a vote confirmation 
message to the coordinator, and enters the ready state. Otherwise, the participants decide 
to unilaterally abort the transaction by sending an abort message to the coordinator. It 
enters the abort state and can forget about the transaction. 

The commit phase: After the coordinator has received votes from all participants it 
decides whether to commit or abort according to the global commit rule, and writes this 
decision in the log. If the decision is to commit, it sends a commit message to all 
participants. Otherwise, it sends an abort message to all sites that voted to commit. 
Finally, it writes an end of transaction record in its log. 

We thus have an exchange of messages as shown in Figure 5. 

PDP PEP
A

PEP
B

PEP
C Coordinator

begin()

set() register()

set() register()

set() register()

commit()

vote()

vote()

vote()

commit()
commit()

commit()
 

Figure 5 � Messages exchanged for the 2PC. 

To cope with eventual crashes or lost messages, the participants will have to provide 
some recover procedures: 
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• If the client fails before committing, the coordinator will eventually abort the 
transaction by sending abort messages to the transaction servers. 

• If a server fails before voting, the coordinator should interpret the missing vote 
as a vote against and should explicitly abort the transaction. 

• If the coordinator fails during the voting phase, the servers will not receive the 
commit message and eventually abort. 

• If the server fails after voting and if it has voted in favour, after restarting it 
will ask the coordinator for the decision taken and act accordingly. If the 
decision is to commit, it must use the data recovered from temporary storage. 

• If the coordinator fails after the first commit message, it has to retransmit the 
commit request, when getting back online. 

Next section will describe how the roles can be applied to policy based management. 

5 AN ARCHITECTURE FOR POLICY TRANSACTIONS 
This section describes our architecture for implementing transactions in PBNM 

(Figure 6). Ignoring the Policy Console and the Policy Repository, it closely resembles 
the IETF architecture, basing the main operations on PDPs and PEPs. 

PDP UserTransaction Transaction Coordinator
Transaction

Agent 1

Agent 3

Agent 2

begin/commit

SNMP/COPS/...

Policy decision and 
decomposition

PEP

XAResource
Policy 

enforcement
PEP

XAResource
Policy 

enforcement
PEP

XAResource
Policy 

enforcement

vote/com
mit

 
Figure 6 � Architecture for PBNM transactions. 

We use the Java Transaction API (JTA) [20] to provide coordination between the PDP 
and PEPs. The role of the Transaction Coordinator is to control and coordinate the 
transaction, as referred in the previous section. The JTA provides a generic coordinator as 
part of the API. 
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The PDP works as a transactions client and the PEPs as servers. In JTA, this means 

that the PDP has to obtain a reference to a UserTransaction object, which will be used to 
start and end the transactions: 
public void applyPolicy(Policy policy) { 
 
  UserTransaction ut = context.getUserTransaction(); 
 
  try { 
    // Request the transaction coordinator to start a transaction 
    ut.begin();  
    setPolicy(policy); 
    // Request the transaction coordinator to commit the transaction 
    ut.commit(); 
  } catch (Exception ex) { 
    try { 
      ut.rollback(); 
    } catch (SystemException syex) { 
      throw new EJBException("Rollback failed: " + syex.getMessage()); 
    } 
    throw new EJBException("Transaction failed: " + ex.getMessage()); 
  } 
} 

 The PEP is the transaction server object. As such, it has to implement the 
XAResource interface. This interface provides methods corresponding to the 2PC 
protocol, namely the voting phase (prepare), commit and others. 

When the PDP send a configuration message to the PEP, it has to register on the 
Transaction Coordinator through the enlistResource method of the Transaction 
interface. This is how the coordinator gets the references to the participants in the 
transaction. The PEP may have to store some information retrieved from the agent to 
cope with crashes the may happen. 

The implementation of the prepare method must also include code to check if the 
agent is in a consistent state, by querying the conceptual table RowStatus column, for 
example, and if the transaction could be committed. Meanwhile, it also has to check the 
spinlock object, to see if some other manager is configuring or has configured the agent. 
In this case, the PEP will vote against committing and the transaction has to be aborted. 

After the PDP has issued the commit message, the transaction coordinator will 
request the PEPs to install the policy in the agent. 

The PEP also plays an important role in the recovery process in case some message is 
lost or some participant crashes: 

• If the PDP fails before committing, the coordinator will eventually abort the 
transaction by sending abort messages to the PEPs. 

• If a PEP fails before voting, the coordinator should interpret the missing vote 
as a vote against and should explicitly abort the transaction. 

• If the agent fails before voting, the PEP will loose contact with it and will vote 
against the commit. 

• If the coordinator fails during the voting phase, the PEPs will not receive the 
commit message and, after a timeout, will abort the transaction. 
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• If the PEP fails after voting and if it has voted in favour, after restarting it will 
ask the coordinator for the decision taken and act accordingly. If the decision is 
to commit, it must use the data recovered from temporary storage. 

• If the agent fails after the PEP has voted and if the decision is to commit, the 
PEP will wait for the agent to come back online and restore the state 
previously retrieved from it. The PEP will then complete the transaction by 
applying the transaction decision. 

• If the coordinator fails after the first commit message, it has to retransmit the 
commit request, when getting back online. 

6 CONCLUSIONS 
Policy-Based Network Management is a methodology wherein configuration 

information is derived from rules and network-wide objectives, and is distributed to many 
potentially network elements with the goal of achieving a consistent network behaviour. 

The configuration activity causes state changes in the network elements and to achieve 
consistent state changes in network domains it is necessary to guarantee support for 
transactional integrity.  

Within this paper we made some considerations about the importance of to guarantee 
transactional integrity at the network level in PBNM. The presented architecture, based on 
the JTA package and on the 2PC protocol, validates our ideas. 
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