
SOLVING TRANSACTIONAL CONTROL IN CURRENT
MANAGEMENT FRAMEWORKS

Vitor Roque
Polytechnic Institute of Guarda, ESTG, Guarda – Portugal

email: vitor.roque@ipg.pt

José Luís Oliveira
University of Aveiro, DET, Aveiro – Portugal

email: jlo@det.ua.pt

Rui P. Lopes
Polytechnic Institute of Bragança, ESTiG, Bragança – Portugal

email: rlopes@ipb.pt

Keywords: Policy based management, policies, network management, transactions.

Abstract: Policy Based Network Management has been presented as a paradigm for efficient and customisable
management systems. The IETF has provided a framework to describe the concept but some aspects still
open like transactional control. In fact transactional control mechanisms are receiving today great attention
in the scope of network management. In here, we identify the lacks of current management paradigms
concerning transactional control and we propose a policy-based network management system that allows
specify operations over aggregations of agents and that provides high-level atomic transactions.

1 INTRODUCTION

Today’s information systems are typically based
on a large numbers of heterogeneous computing
devices connected through communication
networks, and joining together various resources,
services, and user applications. These resources and
applications are now indispensable to organizations,
but as the whole system becomes increasingly larger
and more complex, also a higher number of elements
can be the source for the disruption of critical
business operations. In fact, network management
has gained in the last years great importance due the
increased dependence of the enterprises on their
computer systems, networks and networked
applications. This dependence has made availability
and performance of the network infra-structure and
network services more critical than ever. In addition,
the growth in size and complexity of modern
networks increases the need of standard
configuration mechanisms for an efficient network
management. It is expected that these mechanisms
are strongly related to fault-tolerance systems as

well with performance management systems. The
concept of policy-based management has emerged
during the last years as an adequate paradigm to deal
with this type of requirements and this concept has
been widely supported by standards organizations
such as the IETF and DMTF. In fact the Policy
Working Group is chartered to define a scalable and
secure framework for policy definition and
administration.

The development of policy-based management
applications, due to the diversity and type of
equipments, can be very complex in structure, with
complex relationships between their constituent
parts. Because of these, the success of network
operations (configuration operations and others) is a
critical issue in network management thus deserving
great attention. In fact transactional control
mechanisms are receiving today great attention in
the scope of network management. In here, we
identify the lacks of current management paradigms
concerning transactional control and we propose a
policy-based network management system that
allows specify operations over aggregations of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153407011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

agents and that provides high-level atomic
transactions.

2 NETWORK MANAGEMENT

PBNM technologies have been developed to
reduce the configuration complexity of the network
and its nodes. It is desirable that a network
management system technology will be provided
with the ability to automatically manage the network
configuration based upon high-level rules, more or
less in the same way business-oriented requests are
issued (Sloman 1994). In fact, policies definition
aim at replacing the dependency on vendor and
device specific configuration commands, thus
making network management a homogenous task
independent of the installed equipment. For
example, a management system should be capable,
in a specific management situation, of offering
facilities to reconfigure the whole system without
the network administrator having to worry about the
configuration details of network equipment.

The policy concept is quite wide (Moore,
Ellesson et al. 2001) – policies can be applied in
QoS management, access control, security or other
areas. Policies are defined by users, such as network
administrators or operators, stored and handled in
policy servers, and deployed on network nodes. The
execution of a policy depends on the evaluation of a
check-action rule that is activated when the implicit
condition or conditions are verified. Although the
main ideas are simple, the development and wide
adoption of policy-based management applications
have been complex. Issues such as policy format,
enforcement mechanisms, conflict avoidance, low
level protocol mapping, user-interface representation
and edition, just to name a few, are being a mater of
research and standardization. Today several
standardization organizations are working on this
subject, namely IETF and DMTF. As the result of
their work new proposals have been developed such
as COPS (Durham, Boyle et al. 2000; Chan,
Seligson et al. 2001), SNMP for Configuration
(MacFaden, Partain et al. 2003), PCIM (Moore,
Ellesson et al. 2001).

These works also stimulate the definition of the
policy framework architecture, composed of four
functional entities namely the Policy Management
Tool (Policy Console), the Policy Repository, the
Policy Decision Point or Policy Server (PDP) and
the Policy Enforcement Points (PEP) (Kosiur 2001).

This model describes the key components but it
does not prescribe any kind of implementation
details such as distribution, platform or language.

Policies and Transactions
The configuration activity and policies execution

causes state changes in network elements and it is
critical that this operation is executed atomically to
maintain the network elements in a consistent state.

PBNM systems must have mechanisms that in
case that the configuration of any equipment fails,
all the other network equipment which is involved in
that configuration must return to the last good
configuration installed.

Considering this situation, PBNM systems must
implement the ACID properties of Distributed
System theory, i.e., the applications must have the
capability of monitoring the execution of
configuration operations. If an operation would
compromise one of the ACID properties the system
must have the ability to return to the previous
configuration state (Gray and Reuter 1994;
Coulouris, Dollimore et al. 2001). We can associate
the term transaction with the term policy, i.e., we
may consider a policy as a transaction, where we
must execute all of the operations (rules –
conditions/actions) or none, in case something fails.
The definition of a transaction mechanism is also
necessary due the wide-nature of the networks, i.e.,
in large networks the time necessary to configure the
whole network, all the network elements, could be
long, running for minutes, hours or even days.
Although the network transportation protocols have
mechanisms, like “timeout” and “keep alive”
messages on COPS, to control the fault-tolerance,
this mechanisms/functions seems to be insufficient
because in certain situations the configuration effort
is too valuable to be undone.

3 A MECHANISM FOR
TRANSACTIONAL CONTROL

The definition of a mechanism for transactional
control on PBNM systems is essential because the
trust on transactional integrity at the protocol level
seems insufficient (MacFaden, Partain et al. 2003).
The mechanism here proposed uses the concepts of
server (PDP) and agent (PEP) of the IETF
conceptual policy model. The communication model
adopted is unidirectional, from PDP to PEP, because
the network management will be done in a
centralized way at the PDP, which will also have the
responsibility of querying the PEPs concerning the
policies installation. In this mechanism the
configuration process is based on five basic
commands: (1) examine (PDP->PEP) – Tells the
agent to carry out the operations related to the policy

without applying them; (2) test (PDP->PEP) – this
command is issued by the server to ask the agent if
the policy installation can be applied with success;
(3) execute (PDP->PEP) – it is indicated to the
agent that it must install the policy; (4) undo (PDP-
>PEP) – if error, this command is issued by the
server to indicate agent to forget about the policy
installation and (5) clean (PDP -> PEP) – it will be
issued by the server to indicate that the agent should
release the resources used by the temporary storage
of the policy.

The working mode of this mechanism is the
following: suppose that is planned to install a policy
on the network elements of an administrative
domain. In this mechanism it is assumed that the
PDP is the central element in the policies
distribution and the PEP´s (agents) must be always
in a listening state, waiting to be contacted by the
server. The configuration information (policies) is
sent to the various agents through the examine
command, and it is of the responsibility of the agent
to verify if the policies can be installed, i.e., if there
is no incompatibility concerning the possibility of
policies installation. Next, the server issues the test
command, to verify if no problems were detected
and that the policies are prepared to be installed in
the agent. This process is repeated in all agents of
the PEPs in the administrative domain. On the next
phase, the server (PDP) requests to all agents (PEPs)
to execute the command – the effective installation
of the policy. If the query made to the test command
was affirmative by all the agents, the server issues
the clean command for the agents to release the
resources allocated during the operations. In the case
of non affirmative answer by one or more agents to
the test command, the server issues the undo
command for the reposition of the precedent state
configuration. Finally, the server issues the clean
command to all the agents, telling them to release
the resources allocated during the operations. On

Figure 1 it is represented the flow information
diagram of the mechanism proposed.

The configuration information is sent in a high-
level file format, following the Extensible Markup
Language (XML) (W3C 2003). This file content is
then translated in accordance with the language and
protocol used by the PEP. All these tasks are of the
responsibility of the server (PDP) and are
independent of the transactional control mechanism
proposed. If the transaction was successful, it is
possible to assure, that the network has passed from
one consistent state to another consistent state.

4 TRANSACTIONS
REPRESENTATION

Transactions, or the definition of atomic sets of
policies, should be easy to define, in a graphical user
interface. The purpose of this mechanism is related
with the previous work, namely the build of a
prototype for policy representation in a graphical
way (Roque, Oliveira et al. 2003).

With the development of this mechanism it will
be possible to endow the visual policy editor with
transactional control, i.e., to make available the
interfaces of the transactional mechanism to be used
by the application (visual policy editor), keeping in
this way the separation between application –
mechanism.

The policy editor allows the user to define
policies using a single specification language: XML.
The resulting information is then transferred to the
network elements using a common syntax. The
XML file must follow the rules defined in a standard
template (DTD/Schema) where it is referred all the
relevant information that the policy must have. After
validation, the policy must be sent to the network

Figure 1 - Flow of the proposed fault-tolerance mechanism.

send
policy

start

examine
policy

test
policy

ok

execute
policy

undo

clean end

start
transaction

end
transaction

not ok

elements (Figure 2). If the network elements
(agents) are XML compatible, the policy is
immediately delivered through the transactional
control mechanism, in the case that network
elements do not support XML, the policy will have
first to pass through a converter. The converter will
transform the XML policy into a specific language
that the network element could understand. After the
transformation the policy is delivered to the network
element by the transactional mechanism.

Having the network elements (agents) received
the policies, the transactional mechanism grantees
that the policies are manipulated in accordance with
the ACID properties.

5 CONCLUSIONS

Policy-Based Configuration Management is a
methodology wherein configuration information is
derived from rules and network-wide objectives, and
is distributed to many potentially network elements
with the goal of achieving a consistent network
behaviour.

The configuration activity causes state changes
in the network elements and it is critical that the
configuration system treats all the configuration
operations atomically.

The development of a transactional mechanism
for the management of policies installation in the
various network elements, is because on the work
that comes being developed, we discovered some
gaps in the existing management models about this
matter, i.e., this kind of work is left to the central
management systems, that will have to handle, case
by case, its implementation.

Within this paper we made some considerations
about the importance of the transactional
mechanisms at the level of policies specification and
presented some solutions that could be used in today
systems. The definition of this mechanism is based
on the supposition that simple commit/rollback
semantics of an ACID transaction is enough. With
this supposition, even in the presence of failures, the
state transition of the network elements is guarantee
by the atomicity of the transactions.

6 REFERENCES

Chan, K., J. Seligson, et al. (2001). COPS Usage for
Policy Provisioning (COPS-PR) - RFC3084, IETF.

Coulouris, G., J. Dollimore, et al. (2001). Distributed
Systems - Concepts and Design, Addison-Wesley.

Durham, D., J. Boyle, et al. (2000). The COPS (Common
Open Policy Service) Protocol - RFC2748, IETF.

Gray, J. and A. Reuter (1994). Transaction Processing:
Concepts and Techniques, Morgan Kaufmann.

Kosiur, D. (2001). Understanding Policy-Based
Networking, Wiley.

MacFaden, M., D. Partain, et al. (2003). Configuring
Networks and Devices With SNMP - RFC3512, IETF.

Moore, B., E. Ellesson, et al. (2001). Policy Core
Information Model Specification v1 - RFC3060, IETF.

Roque, V., J. Oliveira, et al. (2003). Visual Composition
of Management Policies. 4th Conference on
Telecommunications (ConfTele2003), Aveiro -
Portugal.

Sloman, M. (1994). "Policy driven management for
distributed systems." Journal of Management
Information Systems 2(4): 333-360.

W3C (2003). W3C XML Documents.

Figure 2 – XML model for policies.

GUI - Policy
Editor Converter specific management

dataPolicyXML
validator

XML data

network
element 1

network
element n

...
managed objects

XML -
DTDs and
Schemas

Transactional
Control

Mechanism

no XML dataXML data

