

The SNMP evolution: lost on simplicity or on functionality

Rui Pedro Lopes
ESTiG, Instituto Politécnico de Bragança,

5300 Bragança, Portugal
{rlopes@ipb.pt}

and

José Luís Oliveira

DET/IEETA, Universidade de Aveiro
3810 Aveiro, Portugal

ABSTRACT

The SNMP framework has gained a new stimulus
with the efficient emergence of the third version
(SNMPv3). Beyond its enrichments, namely the
security model, the enormous base of legacy
knowledge and legacy systems leads the SNMP
management framework to a necessary choice in
nowadays management scenarios.

However, its services correspond roughly to low-level
operations for setting or retrieving network equipment
parameters. Traditionally, high-level management
operations were outside the scope of IETF strategy.

The IETF Distributed Management working group
have been producing normalization documents that
intent to apply to the enrichment of SNMP semantics,
especially in what concerns the processing of
management information. One of such deliverables is
the Expression MIB that, up till now, is in the Internet
draft standard track.

This paper will highlight the recent outcome of this
WG, will present an Expression MIB implementation
and will discuss the cost of these more powerful
solutions on the “keep simple” and “low inference”
principles of SNMP engines.

Keywords: Distributed management, SNMP, Disman,
Expression MIB.

I. INTRODUCTION

For several years the network management buzzword
was mostly associated with SNMP. Guided by the
simplicity and the shorter inference principles soon
has conquer the attention of a market with a big
appetite for this solutions. However, its evolution has
suffered from several drawbacks and has open space
for other approaches.

The straight path that was maintained by SNMPv3
working group, which last results were published as
draft standards by the IETF, may have provide a new
breath into the SNMP management framework.
SNMPv3 tries to eliminate previous versions
weaknesses by the inclusion of some new features.
Among these are the security support and a flexible
architecture that allows the redefinition of current
modules or the introduction of new parts inside the
framework. Each SNMP configuration is classified as
a “SNMP Entity” composed by several interacting
modules: Dispatcher, Message Processing, Security,
Access Control and Application module. The
combination of these modules allows providing
different SNMP roles (i.e. an agent, proxy or
manager) [1].

The Application(s) use services from the SNMPv3
engine to send and receive messages, authenticate,
encrypt and control the access to managed objects [2].

The Dispatcher subsystem coordinates the
communication between SNMPv3 engine subsystems
and differentiates modules belonging to the same
subsystem. Based on the PDU information, it
determines which application should be invoked and
coordinates the respective transport mappings.

The SNMP framework is a centralized approach, i.e. a
NMS uses distributed agents to collect management
information. This data is retrieved on demand by the
NMS to be processed.

This approach has some drawbacks, in particular due
to the lack of extensibility and scalability of the model
on very large networks. This constraint results from
the inability of a centralized manager to handle huge
amounts of management information and also because
centralized polling across geographically distributed
sites is infeasible and expensive [3]. Moreover,
system updates usually entail the modification of
several agents or of the management station itself. In

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153406998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

addition, there are occasions where it is necessary to
cope with situations where the management station is
not accessible. The classic management architectures
are not well suited for low-bandwidth or disconnected
operation.

Several authors have addressed these problems along
the past years [4-6] resulting in ad-hoc and partial
solutions typically based on management distribution
and delegation. Inside the IETF, the Distributed
Management (Disman) WG was chartered to define
an architecture where a main manager can delegate
control above several distributed management stations
thus improving scalability through distribution and
allowing “off-line” operations.

II. DISMAN

Management distribution allows reducing the
processing load on traditional centralized management
station (NMS) by delegation tasks upon several
Distributed Managers (DM) or upon more powerful
agents. A DM is an SNMP entity that receives
requests from another manager and executes those
requests by performing management operations on
agents or other managers.

Since the management entities are split over the
network and collaborate between themselves by
assignment, a hierarchy of several “islands” is created
increasing the robustness and fault tolerance of the
overall management system. Although if the access to
the central manager is not possible, each DM may
handle locally critical situations.

The IETF Disman framework is based on distributed
applications and services. This kind of application
performs some management function, often by
monitoring and controlling managed elements. The
distributed management services can perform
functions or store information once for all applications
on the local system thus making a set of applications
more efficient. Each service is provided by a specific
MIB interface.

Currently there are being proposed several MIB to
address different but complementary issues of
management operations distribution [7]:

• Event MIB

• Notification Log MIB

• Remote Operations MIB

• Schedule MIB

• Script MIB

• Expression MIB

The Event MIB is the successor of the SNMPv2
Manager-to-Manager MIB. It provides the ability to
monitor MIB objects either locally or remotely and
takes an action when a trigger condition occurs.

The Notification Log MIB is intended mainly for
notifications providers but may be also used by
consumers. It defines a mechanism to cope with
notifications lost by recording each notification data.

The Remote Operations MIBs group (ping, traceroute,
lookup) enables the correspondent network-checking
operation to be performed at a remote location. It
provides a standard way to perform remote tests, to
issue periodical sets of operations, and to generate
notifications with test results.

The Schedule MIB provides the definitions to perform
the scheduling of actions periodically or at specific
times and dates. The actions are modeled by SNMP
set operations on local MIB variables (restricted to
INTEGER type). More complex actions can be
realized by triggering a management script, which is
responsible for performing complex state transitions.

The Script MIB module allows the delegation of
management functions over distributed managers.
Management functions are defined as management
scripts written in a language supported by the
managers. It may be a scripting language (such as
TCL) or native code, if the remote site is able to
execute this code. The module does not make any
further assumptions on the language. The distributed
manager may be decomposed in two blocks: the
SNMP entity, which implements this MIB, and the
runtime system, capable of executing the scripts. The
Script MIB sees the runtime system as the managed
resource, which is controlled by the MIB. The runtime
system can be defined as an SNMP application,
according to the SNMPv3 architecture.

The Expression MIB was planned to move to the
agent side part of the management information
processing typically performed by managers. In other
words, it supports externally defined computation
expressions over existing MIB objects. The
Expression MIB allows providing the Event MIB with
custom-defined objects. The result of an expression
can trigger an event, resulting in an SNMP
notification. Without the Expression MIB such
monitoring is limited to the objects in predefined
MIBs.

The work presented here is mostly based on an
implementation of Expression MIB proposal.

III. EXPRESSION MIB DEVELOPMENT

There are several reasons for a manager to apply some
kind of expression on management information.

Aggregation of data can be done in simple statistical
tasks, such as the percentage of inbound discarded
packets that contained errors (1), or in expressions
with a higher degree of complexity.

 (1)

The Expression MIB is currently an internet-draft
(11th) of the Distributed Management working group,
within the Operations and Management Area of the
IETF. The MIB is divided in three main groups [8]:

• expResource – this group is related to
resource control, with particular incidence
on sampling parameters since this operation
can have some impact on system resources.

• expDefine – is organized in three tables
which gather information about the
expression definition and about the errors
occurred while evaluating it:
a) expExpressionTable, defines the
expression string, the result type as well as
the sampling period.
b) expErrorTable maintains a table of
errors’ registers gathering information such
as: the last time an error occurred on
evaluating the expression, the operation in
which it occurred, the error type.
c) expObjectTable controls each
element characteristics inside the
expression. The expression string may
contain variables and each variable may
have different sampling types and be or not
wild-carded.

• expValue – this group has a single table
which instantiates the evaluation objects. It
is by querying this table that the result from
the expression is known.

Sampling and Wildcards

The Expression MIB supports three types of
sampling:

1. absolute – the objects are sampled just before
calculating the result.

2. delta – the difference from one sample to the
next. It is necessary to maintain the last
sample. Creates a constant overhead whether
or not anyone is looking at the results, so not
very suitable for severely limited
environments.

3. changed – boolean indicating whether or not
the object changed its value since the last
sample.

In addition to sampling, the MIB also defines
wildcarding, allowing the usage of a single expression
over multiple instances of the same MIB object.
While regular objects are resolved by a SNMP Get
operation, wild-carded objects are controlled through
the GetNext operation. Users are familiar with
wildcarding for referencing multiple files (such as “cp
foo.* /tmp”). On this MIB, wild-carded objects are
attributes. If there is more than one wildcard variable
on an expression they all must have the same OID
termination (semantics) to maintain coherence on the
result.

For example, the expression (2) has two variables
each corresponding to a wild-carded OID, ($1=
“1.3.6.1.32.1.4” and $2= “1.3.6.1.50.2.7.1.321”).

100*$1/$2 (2)

The object values are retrieved by GetNext operations
thus retrieving the instance INDEX. If the result from
GetNext $1 is “1.3.6.1.32.1.4.1.2.3”, the INDEX part
is “1.2.3”. So $2 will be “1.3.6.1.50.2.7.1.321.1.2.3”.

An OID can be specified (expExpressionPrefix)
in order to help retrieve the INDEX. In this example it
can be captured in each of the two OIDs since both
follow a MIB definition where it is possible to look at
the INDEX clause.

Subsets

According to the conformant statements the
implementation of the Expression MIB can leave out
several parts.

1. No wildcards - significantly reduces complexity.
Suitable for expressions made up of individual
MIB objects but not suitable for expressions
applied across large tables.

2. No Deltas - reduces state that must be kept and
the burden of ongoing processing unnecessary
sampling threads. Suitable for applications that do
not require expressions or events on counters.

3. One object expressions - reduces the complexity
of parsing expressions, retrieving multiple objects
per expression and doing expression evaluation.
This is the slightest implementation of the
Expression MIB that supports the threshold of the
Event MIB.

Expressions

The key aspects in defining expressions are
parameters, results and operators. We can define an
expression as: “result = parameter operator
parameter”; where “parameter = constant | variable |
function | result”. The Expression MIB allows several
operators and a set functions that helps to build

something similar to typical expressions in any
programming language.

An expression is executed through a row on the
expValueTable. Each row has only one column,
formatted according to the result type of the
expression. The value is accessed by an OID
containing the OID for the data type, the expression
name and a fragment (Fig. 1).

Fig. 1. Value identification OID.

The expression name has the form of
x.“owner”.y.“name” converted to dot separated
integers. The integer x is the length of the owner and y
is the length of the string which identifies this
expression to the particular owner. Each word
character is converted to integer and separated from
the other integers by a dot.

The fragment starts with “0.0.” and ends with a zero,
if there is no wildcard or, otherwise, with the instance
that satisfied the wildcard.

Implementation Issues

The implementation of the Expression MIB can be
divided in two sections:

1. The communication module, responsible for
receiving and sending SNMP commands.

2. The agent, responsible for the SNMP agent
behavior.

With a well-established interface between the
communication mechanism and the SNMP engine it is
possible to switch modules maintaining the agent.
This feature is useful if we want, in runtime, to use
SNMP or other communication method, for example,
to check CORBA or RMI performance, or to add
mobility to the agent [9].

Considering the SNMP operations and the tree-like
organization of objects in the agent, some decisions
can be made to help on the agent architecture
planning.

Management operations have information about
“which” object and “what” to do with it. In “which”,

it is possible to point precisely the object (the case of
get and set) and to define a walking procedure (get-
next and get-bulk). In “what”, the operations are
retrieval (get, get-next and get-bulk) and restore (set).

Fig. 2 – SNMP operations on Agents.

Adapting these concepts to an O-O language, the
“which” is modeled by a container class (Agent) and
the “what” are methods to call on contained objects
(Object) (Fig. 2).

To evaluate an expression it is necessary to recognize
the expression components (operators, functions,
constants and variables), i.e. the lexicon, and the
grammar (the expression organization). There are,
available as public domain software, lexical and
grammar analysis tools, which generate code such as
C [10] or Java [11]. As this implementation is Java
based, the chosen tools were JLex, a lexical compiler,
and JavaCup, a grammar compiler [12]. Both
compilers generate source code based on specification
files. These routines are then compiled (into Java
.class files) and included in the Expression MIB
agent. The lexical analyzer starts reading the stream of
characters and tries to matches the sequences
identifying tokens. The tokens information is forward
to the grammar, which groups tokens into meaningful
sequences and invokes action routines to act upon
them. In this particular case, it must recognize a
complete expression and evaluate the result.

Lets now discuss how the communication model and
Expression MIB agents it together (Fig. 3). When
started, the agent waits for input. When receiving a
SET message it inspects to which table it is destined.
After populating the appropriate table, it confirms if
both the expExpressionEntryStatus and all the
related expObjectEntryStatus are set to ‘active’.
If so, it creates an entry on expValueTable, after
checking for syntax errors.

Unknown
Field Code Changed

Unknown
Field Code Changed

Fig. 3. Expression definition.

This object is then responsible for calculating the
expression. If the expression has some sort of delta
sampling, it launches a thread to periodically calculate
the expression and store the result. If the expression is
‘absolute’, meaning that there are no periodic
sampling involved, the expression is calculated only
when the expValueTable is queried.

The process of calculating the expression is, on the
whole, the most complex part, particularly when
wildcarding is used. For this purpose, the agent:

1. Retrieves the expression string
(expExpression).

2. Creates a parser object (based on the code
generated by JLex and JavaCup).

3. Checks to see if the expression is wild-carded
(expExpressionPrefix).

4. Builds a list of objects (variables) that the
expression contains.

5. Retrieves the value of each object
(expObjectTable).

6. Calculates the expression value and stores it
in the appropriate expValueTable
instance.

IV. EVALUATION

The Expression MIB documentation is clear and the
included examples also help the deployment phase.
However, while the expExpressionTable and the
expErrorTable are quite straightforward the
expObjectTable has some aspects that require

further explanation (i.e., the wildcarding aspect is
somehow very scattered on the recommendation).

To study the impact of adding a parser to an agent we
have performed some preliminary load tests. In these
tests we were mainly concerned with the overload of
delta sampling by comparing this situation to the
situation of ‘absolute’ value.

We measured the agent used memory for 0, 1, 20 and
100 expressions with one (Fig. 4) and three (Fig. 5)
variables both for absolute and delta sampling.

For reference, we measured the memory load of the
JVM by launching a “do nothing” program and found
that it uses 3780 Kbytes. The Expression MIB agent
with no objects (0 expressions) uses 5884 Kbytes.

Fig. 4 – Memory load for 1 variable expression.

We can see that, as expected, the number of
expressions is proportional to the used memory.
Moreover, the difference between delta and absolute
expressions is considerable (near 25% for 20 one
variable expressions and 18% for 100 one variable
expressions).

The memory requirements increase with the number
of expressions and with the number of variables per
expression.

For CPU utilization we also did some tests by
changing the sampling interval (for absolute sampling
the CPU is used only when a get message is received
on a value object). For 100 expressions with evaluated
every 5 seconds the processor (Intel Pentium II
333MHz) was near 100% load. For 20 expressions
evaluated every 10 seconds it as near 10%.

Fig. 5 – Memory load for 3 variables expression.

For the pointed values, the memory requirements are
somewhat excessive for restrictive environments. The
JVM we used (Java 2 Platform Standard Edition) is
not targeted to such kind of platforms and we did not
try a more adequate virtual machine, such as the Java
2 Micro Edition. In terms of CPU usage, it is very
dependent of the sampling period and may be
considered acceptable if the interval between samples
is sufficiently long.

V. CONCLUSION

The management of enterprise networks, i.e., to
monitor and to act on network components, is a task
that involves commonly the use of heavy and complex
applications. This difficulty is further enlarged in
situations where network scale or connection
characteristics inhibit the full use of the SNMP
framework. The Disman framework, proposed by the
IETF, addresses these problems by distributing some
of the management application responsibility to the
agents (Distributed Managers).

This paper has presented an implementation of the
Disman Expression MIB that supports externally
defined computation expressions over existing MIB
objects. However, the upcoming of such solutions
might compromise the performance and raise new
requirements on the agents’ side. As happen with IP
during the past, SNMP supporters may struggle to
maintain agents as simple as they can and continue
throwing the management task to some higher level,
typical centralized and real-time limited systems.

VI. REFERENCES
[1] J. Case, R. Mundy, D. Partain, B. Stewart,

RFC2570 (I), “Introduction to Version 3 of the

Internet-standard Network Management
Framework”, Internet Request for Comments
2570, April 1999.

[2] B. Wijnen, D. Harrington, R. Preshun,
RFC2571 (DS), “An Architecture for
Describing SNMP Management Frameworks”,
Internet Request for Comments 2571, April
1999.

[3] R. Sprenkels, J-P Martin-Flatin, “Bulk Transfer
of MIB Data”, The Simple Times, Vol. 7, N. 1,
March 1999.

[4] G. Goldszmidt, Y. Yemini, “Delegated Agents
for Network Management”, IEEE
Communications Magazine, Vol. 36 No. 3, pgs.
66-71, March 1998.

[5] José Luís Oliveira, Arquitectura para
Desenvolvimento e Integração de Aplicações
de Gestão, PhD Thesis, University of Aveiro,
September 1995.

[6] José Luís Oliveira, J. Arnaldo Martins, “A
Management Application Programming
Interface”, Proc. DSOM’94, Fifth IFIP/IEEE
International Workshop on Distributed
Systems: Operations & Management, October
1994.

[7] Distributed Management (disman) Charter,
http://www.ietf.org/html.charters/disman-
charter.html

[8] Bob Stewart, Ramanathan R. Kavasseri,
“Distributed Management Expression MIB”,
draft-ietf-disman-express-mib-11.txt, February
2000.

[9] José Luís Oliveira, Rui Pedro Lopes,
“Distributed Management based on Mobile
Agents”, Proc. of the 1st International
Workshop on Mobile Agents for
Telecommunications Applications –
MATA’99, October 1999, Ottawa, Canada.

[10] Manson, T., Brown, D., lex & yacc, O’Reilly &
Associates, 1990, ISBN 0-837175-49-8.

[11] Appel, A., A Modern Compiler Implementation
in Java, Cambridge University Press, 1998,
ISBN 0-521-58388-8.

[12] JLex & JavaCup, http://www.cs.princeton.edu/
~appel/modern/java/.

